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Abstract: True sine wave DC-to-AC inverters are becoming more and more important in solar
power generation in order to raise the system’s efficiency. A high-quality true sine wave DC-to-AC
inverter can be built with a robust intelligent control method. This robust intelligent control method
is comprised of improved sliding mode reaching law (ISMRL) and particle swarm optimization
(PSO)—catfish effect (CE). The sliding mode reaching law is robust and insensitive to parameter
variations and external disturbances. However, it has infinite system-state convergence times and
steady-state errors. In addition, solar panels are often affected by partial shading, causing the output
power–voltage characteristic curve to be multi-peaked. Such a situation causes misjudgment of
the maximum power point tracking with conventional algorithms, which can neither obtain the
global extremes nor establish high conversion efficiency. Therefore, this paper proposes an ISMRL
based on PSO-CE applied to the tracking of maximum power in the case of partial shading of a solar
power generation system. The ISMRL guarantees quick terminable time convergence, making it
well-suited for digital implementation. In this paper, PSO-CE is used to find the global best solution
of ISMRL, rejecting steady-state errors, slow convergence, and premature trapping in local optimums.
Simulation and experimental results are verified using digital implementation based on a Texas
Instruments digital signal processor to produce more accurate and better tracking control of true sine
wave DC-to-AC inverter-based solar power generation systems.

Keywords: true sine wave DC-to-AC inverter; improved sliding mode reaching law; particle swarm
optimization–catfish effect

1. Introduction

Following scientific advances, solar power generation is emerging as the fastest long-
term investment in terms of cost effectiveness [1,2]. Therefore, how to maximize the
performance of solar cells has always been one of the most important development issues
all over the world, and it is also the most important problem in solar power generation-
related technology [3–5]. In order to realize the maximum power tracking of the solar
system, it is necessary to adjust the output of the solar cell through the power conversion
circuit with the maximum power tracking control function, so that the solar panel can
output the maximum power and realize fast and accurate tracking. Various maximum
power point tracking (MPPT) methods are proposed throughout the literature, such as
bang-bang control, wavelet control, and the Fourier series method [6–9]. However, the solar
illumination and ambient temperature are closely related to the change of the maximum
output power of solar panels. Most of these MPPT algorithms cannot strictly analyze the
convergence and stability, or cannot quickly track the maximum power point, resulting
in the reduction of output power. Sliding mode reaching law (SMRL) is simple and
easy to design, and is robust to parameter changes and external disturbances in smooth
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motion [10,11]; many related SMRL applications have been published in the control of solar
power generation systems [12–26]. However, in practice, the solar system controlled by
the SMRL is affected by uncertainty, the system state convergence time is not limited, and
steady-state errors will occur, which will affect the stability, convergence, and performance
of the system. Some methods have been proposed to improve steady-state errors, such as
predictors and adaptive methodologies. However, they are mathematically complex and
computationally time consuming [27–29]. Recently, the improved sliding mode reaching
law (ISMRL) has provided a terminable system state convergence time to reject the steady-
state error (i.e., the terminable time for the system trajectory to reach the sliding mode
region in the presence of uncertainty) [30–41]. However, it should be noted that even if
ISMRL makes the solar power generation system achieve the expected control effect, it is
easy for the solar array to become partially shielded by buildings, trees, dust, etc.; this will
greatly reduce the output power of the solar system, resulting in a large amount of energy
loss. The output power of the solar array will change irregularly and exist in multiple local
extremes. If the traditional MPPT methods described earlier are used (such as bang-bang
control, wavelet control, and Fourier series method, etc.), they will be tracked to the local
extreme value (local maximum power point) rather than the global extreme value (global
maximum power point). Several methods have been employed to try to solve multiple
local extremums, such as gray wolf optimizer and brute force algorithm [42–44]. Although
the gray wolf optimizer is fast, it is limited to local searches and cannot conduct global
searches. Its disadvantage is that it easily converges to the local solution, while the brute
force algorithm shows good solution ability in finding the best solution; that is, it can find
a better solution, but its disadvantage is that it needs a long search time and can easily
become stagnated on a specific solution. The PSO (particle swarm optimization)-CE (catfish
effect) algorithm allows simplified calculation and enhanced population diversity. The
PSO-CE algorithm can show the search ability in the global domain and is widely used
to solve many optimization problems [45–60]. It can help address the disadvantage that
the traditional PSO algorithm tends to converge to the local extreme value prematurely.
Therefore, the PSO-CE algorithm is used to calculate the voltage reference value of the
maximum power point of the solar panel under partial occlusion. In this paper, the PSO-CE
algorithm is used to search the global extreme of a solar panel under partial occlusion,
while the ISMRL is used to track and control it to provide good power output, so that
the highest conversion efficiency of the solar system can be maintained. Therefore, the
ISMRL based on PSO-CE will improve the steady-state errors, shorten the system state
terminable time, solve the multi-peak phenomenon (local maximum power point), and
make the solar MPPT system have good steady-state response. The proposed controller is
easy to understand, fast converging, easy to program, and able to realize more accurate
and stable tracking control. Simulation and experimental results show that the proposed
controller will improve the steady-state performance of the solar MPPT system under the
conditions of partial shading or high uncertainty. The proposed system is also compared
with the traditional SMRL-controlled solar MPPT system to show the superior performance
and theoretical applicability of the proposed system.

2. Description of Circuit Modeling

A solar power generation system usually consists of a solar panel, a DC-to-DC con-
verter, a true sine wave DC-to-AC inverter, and the attached load. As the illumination and
temperature change, there will be a reference value for the voltage corresponding to the
maximum power point of the solar power generation system. Thereby, a Cuk DC-to-DC
converter (Figure 1) is employed to regulate the solar panel voltage.



Micromachines 2022, 13, 1723 3 of 17
Micromachines 2022, 13, x FOR PEER REVIEW 3 of 17 
 

 

pvi

pvv

1L

T

+PanelSolar 

D

2L

2C
+

2cv

+

−

1C

R

−

inC
+
−

−

1cv

1Li 2Li

+

ov

−

 
Figure 1. Construction of a Cuk DC-to-DC converter. 
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The equation for the dynamics of the Cuk DC-to-DC converter is given by the state
space averaging method below: 

.
vpv =

ipv−iL1
Cin.

iL1 =
vpv
L1
− vc1(1−u)

L1.
iL2 = − vc2

L2
+ vc1u

L2.
vc1 = iL1(1−u)

C1
− iL2u

C1.
vc2 = iL2

C2
− vc2

RC2

(1)

where
.
x =

[
.
vpv

.
iL1

.
iL2

.
vc1

.
vc2

]T
,

f (x) =
[
(ipv − iL1)/Cin (vpv − vc1)/L1 −vc2/L2 iL1/C1 (iL2 − (vc2/R))/C2

]T , and

h(x) =
[
0 vc1/L1 vc1/L2 −(iL2 + iL1)/C1 0

]T , and u denotes control input with duty
cycle signal.

Then, Equation (1) can be rewritten as

.
x(t) = f (x(t)) + h(x(t))u (2)

Let vre f be the voltage reference of the maximum power point calculated by the
PSO-CE algorithm, and in order to make vpv follow vre f , the ISMRL closed-loop control
technology is necessary. In other words, in a PV system, the error in the output voltage
can be defined as the state variable e1 = vpv − vre f . Our goal is to design the control law
u properly. If it is well designed, (2) will be stable and the error e1 quickly converges to
the balance point. The solar output voltage will be the same as the required reference
voltage. Even if the solar MPPT system is partially shaded or malfunctioning or under
non-matching uncertainty, the tracking control can still be fast, accurate, and robust. Then,
a single-phase true sine wave DC-to-AC inverter is used to convert the generated DC
power into AC power supplied to the load. A typical true sine wave DC-to-AC inverter is
displayed in Figure 2, where four semiconductor switches, LC filters, and loads (resistive
loads or capacitive input rectifier loads) are combined.

The state-space equation for a true sine wave DC-to-AC inverter can be derived by
taking the KVL and KCL in Figure 2 as

..
vAC = − .

vAC/RLC− vAC/L f C + KPWMuivt/L f C (3)

where KPWM denotes the equivalent gain of the inverter.
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Figure 2. Circuit structure of a true sine wave DC-to-AC inverter. 
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stances, the proposed robust intelligent control method directly controls the inverter to 
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Figure 2. Circuit structure of a true sine wave DC-to-AC inverter.

The error state equation in an inverter can thereby be described as

.
xe2 = −xe2/RLC− xe1/L f C + KPWMuivt/L f C− vre f

AC/L f C − .
vre f

AC/RLC − ..
vre f

AC (4)

where L f = L f 1 + L f 2, xe1 = vAC − vre f
AC,

.
xe1 = xe2 =

.
vAC −

.
vre f

AC, and vre f
AC stands for

a demanded sinusoidal reference. Figure 3 plots the structure of the total control sys-
tem, and in order to allow the error states to converge to zero, the control law uivt is
designed with the fractional proportional–integral-derivative (FPID) method, written as
xe1 · (KP + KI

d−γ

dt−γ + KD
dγ

dtγ )), where KP indicates proportional gain, KI represents integral
gain, KD stands for derivative gain, and γ is the fractional order. It is worth noting that at
present, for cost and financial considerations, the DC-side input voltage of the true sine
wave DC-to-AC inverter obtained from the solar panel and the Cuk DC-to-DC converter in
the experimental environment as illustrated in Figure 2 is produced by using a full wave
bridge rectifier with a capacitor filter. Under such circumstances, the proposed robust intel-
ligent control method directly controls the inverter to verify the effectiveness. In Figure 3,
the proposed robust intelligent control method together with the circuit architecture (in-
cluding solar panel, converter, and converter) are fully executed with Matlab/Simulink
software (R2021a, MathWorks, Natick, MA, USA, 2021) to verify the good performance of
the system.
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3. Control Design

The terminable time sliding function can be written as

s = e1 +
1
ε

e`2 (5)

where e1 = vpv − vre f , e2 =
.
e1, ε > 0 and 1 < ` < 2. Then, it is advised that the improved

sliding mode reaching law be written as follows:

.
s = −η‖e‖sign(s) (6)

where η > 0 and ‖e‖ denotes the norm of state variable. The sign function is replaced by
the continuous function 2π−1 tan−1(s/κ) (κ > 0) to suppress chatter.

From Equations (2), (5), and (6), the control law is derived as

u = −h−1(Keque + ε`−1e2−`
2 )− (2ηπ−1‖e‖ tan−1(s/κ)) (7)

where Kequ signifies equivalent control feedback gain to yield the required sliding mode
with system uncertainty at zero. The state of the system is forced to converge to s = 0,
within a time-terminable period.

Proof: The definition of a Lyapunov candidate is given as follows: V = s2/2. In
accordance with the dynamical system trajectory along from the control law (7) with the
use of the Lyapunov candidate, the time derivative of V becomes

.
V = s

.
s

= s · ( .
e1 +

1
ε `e`−1

2
.
e2)

≤ −s · ( 1
ε `e`−1

2 (2ηπ−1‖e‖ tan−1(s/κ))

(8)

` is fractional (1 < ` < 2), and when e2 6= 0, e`−1
2 > 0; thus,

.
V ≤ 0 holds. Under

the situation e2 6= 0, it is proven that the system fulfils the Lyapunov stability condition,
which allows it to quickly arrive at the sliding surface within a terminable time. To gain
the global best solution of the ISMRL control parameters, the PSO-CE algorithm can be
used. Each particle represents a potential solution of particle swarm optimization. The
goodness of a particle is evaluated by a pre-defined fitness function. In each iteration, the
particle searches for the best solution by tracking two extrema (local extrema pbest and
global extrema gbest) and flying to a better position in the target search space. Additionally,
the mechanism of the worst position is introduced, so that the particles can remember the
worst position, and the best path can be determined efficiently during the search process.
Thus, the particle updates its velocity and position according to the following equations:

υn+1
m = Ωυn

m + ξ1κn
1 (Xn

pbest, m − Xn
m) + ξ2κn

2 (Xn
gbest, m − Xn

m) + ξ3κn
3 (Xn

wt, m − Xn
m) (9)

Xn+1
m = Xn

m − υn+1
m (10)

where υn
m represents present flying speed; Xn

m represents present position; Xn
pbest, m rep-

resents individual best position; Xn
gbest, m represents global best position; Xn

wt, m denotes
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worst position; ξ1, ξ2, and ξ3 signify learning factors; κn
1 , κn

2 , and κn
3 are random numbers

between 0 and 1; and Ω denotes inertia weight ranging between 0 and 1. The particle
swarm optimization algorithm can also be overly concentrated at the local extremes in the
early stages of the swarm and can be prematurely reduced, so we introduce the catfish
effect into the swarm algorithm to reactivate its global range of search capabilities. The
catfish effect is used to stimulate the population dynamics of the sardine population by
introducing powerful individuals in the middle of the process to simulate the effect of
repelling sardine populations by catfish in nature, thus allowing the population inertia of
the fish to change, which can greatly increase the diversity of particles. In other words, the
PSO-CE determines that the search swarm has not evolved after several iterations, and that
it has fallen into a locally optimal solution, at which point the worst 10% of all particles are
removed. A population of (population/10) catfish particles is introduced, which will find
the better solution, and these catfish particles guide all the particles to a new region near
the best solution. The flow chart of the PSO-CE is displayed in Figure 4.
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4. Results, Discussion, and Future Research

The presented system parameters are shown in the Table 1. The simulated output
voltage waveform resulting from the use of the traditional SMRL (shown in Figure 5)
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exhibits a substantial drop in voltage along with a slower restoration period during the
firing angle. Figure 6 shows the simulated output voltage waveform achieved with the
proposed method with a firing angle of 90 degrees per half cycle from no load to full load
when loaded with TRIAC. We note that both show good transient behavior and that a
small drop in voltage was observed. Following the transient behavior, the voltage wave-
form comes back to its highly accurate steady state. Operating at TRIAC load with an
ignition angle of 90 degrees every half cycle from full load to no load, Figures 7 and 8
show the simulated output voltages using the traditional SMRL and the proposed method,
respectively. Checking of the waves revealed that the steady-state reaction in Figure 8
has a rapid response with few fluctuations in comparison to Figure 7. Figures 9 and 10
demonstrate the simulated output voltage waveforms of the true sine wave DC-to-AC
inverter by the traditional SMRL and the proposed method when under rectifier load,
respectively. The simulated output voltage of the proposed method in the exact steady
state appears to be virtually a sine wave, in which it manifests promising AC inverter
performance (%THD of 0.05% being obtained in this case); there is a noticeable distortion in
the simulated output voltage waveform of the traditional SMRL compared to the proposed
method, presenting a high %THD of 25.15%. Figure 11 reveals the simulated inverter
output voltage waveform of the open loop at full load, while the simulated output voltage
of the closed-loop controlled true sine wave DC-to-AC inverter under full load is displayed
in Figure 12. The open-loop control system lacks a feedback signal to judge whether the
system output meets the required level, while the closed-loop system allows feedback
to govern system states. In the closed-loop compensation system, the output response
outperforms the open-loop system, yielding a reduction of the total harmonic distortion.
Figures 11 and 12 show that the open-loop system tends to generate oscillating waveforms,
causing the system to be unstable. The open-loop system gives great voltage harmonics,
which is a major shortcoming with the difficulty in filtering such harmonics. The per-
formance of the proposed method under weak illumination is considered as shown in
Figure 13. When compared with traditional PSO, the proposed method has fewer searching
steps as well as faster convergence to zero. The experimental output voltage waveform
of the traditional SMRL subjected to a sudden increment of load is displayed in Figure 14.
Figure 15 depicts the experimental output voltage waveform of the proposed method with
a similar loading requirement. The proposed method affords fewer voltage drops and
speedier recuperation time at 90 and 270 degrees ignition angles compared to the traditional
SMRL. Figures 16 and 17 illustrate the experimental output voltage waveforms with the
traditional SMRL and the proposed method, respectively, when the load is suddenly re-
moved at 90 and 270 degrees ignition angles. By examining these waveforms in detail, one
can see that there is always a poor steady-state reaction in the output voltage produced by
the traditional SMRL controlled solar system, especially in the 90 and 270 degrees ignition
angles with a large voltage swing and vibrations. Figure 18 shows the experimental output
voltage for the traditional SMRL of the solar system under rectifier load. It can be seen
that the output voltage is a distorted sine wave, and the THD value is as high as 26.82%.
Figure 19 represents the experimental output waveform of the solar system controlled by
the proposed method under rectifier load. The output voltage waveform is very close
to the required sinusoidal reference voltage (low %THD value is 0.06%). It can be seen
that the proposed solar system has better steady-state response than the traditional SMRL
controlled solar system. The comparison of the simulated and experimental THD values for
various loads between traditional SMRL and the proposed method is presented separately
in Tables 2 and 3. The results indicate that %THD of the proposed method is low and
the voltage waveform is close to the required sinusoidal reference voltage. However, the
distortion rate of the output voltage of the solar system controlled by the traditional SMRL
is more than 5%, which is worse than the 519 harmonic control standard formulated by the
American Society of electrical and electronic engineers. In terms of further research in the
future, the true sine wave DC-to-AC inverter architecture in this paper can be extended and
developed into a three-phase T-type inverter circuit (as shown in Figure 20) yielding greater
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power, lower output voltage total harmonic distortion, better efficiency, and reduction of
power loss and device stress. The relevant three-phase T-type inverter circuits have been
investigated broadly in the latest publications as follows: A fault diagnosis and tolerant
control was employed in three-level T-type inverters [61]. The presented control method
enables online as well as seamless switching in the configuration of the inverter wiring.
The proposed inverter provides a three-phase balancing power output with strengthened
robustness. A T-type three-level grid-tied inverter using model-free predictive control was
developed [62]. This case removes the influence from the current gradient renewal stop-
page whilst also decreasing the calculation complexity, leading to precise inverter output
response. A modified T-type topology of a three-phase multi-level inverter with application
to photovoltaic systems was presented [63]. The proposed topology features a simplified
structure, fewer semi-conductors, and the absence of additional elements. A three-level
T-type MLI-based three-phase four-wire distribution static compensator incorporated with
a nonlinear sliding mode controller was suggested [64]. This kind of inverter can avoid
wave harmonics, reactive power, imbalanced loading, and neutrality current, which are
current-dependent power quality issues. Three-phase three-level AC-to-DC (or DC-to-AC)
converters with unity power factor operation on the basis of low-frequency partial voltage
oscillation were presented [65]. The proposed approach accesses simpler as well as more
visual analytic expressions for quantification of partial DC-link voltage vibrations, which
allow decreasing low-frequency neutral-point voltage vibrations as well as split DC-link
capacitor values.

Table 1. Parameters of the true sine wave DC-to-AC inverter.

Parameters Values

Filter inductor, L f 0.25 mH

Filter capacitor, C 30 µF

DC link voltage, Vd 200 V

True sine wave output voltage, vAC 110 Vrms

True sine wave frequency, f 60 Hz

Switching frequency, fsw 24 kHz

Load resistance, RL 12 Ω
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Table 2. Simulated AC output voltage total harmonic distortion (THD).

Methods Results (%THD)

Traditional SMRL

Sudden load
increase

Sudden load
removal Rectifier load

THD (%) THD (%) THD (%)

9.83% 9.02% 25.15%

Proposed method

Sudden load increase Sudden load removal Rectifier load

THD (%) THD (%) THD (%)

0.91% 0.56% 0.05%
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Table 3. Experimental AC output voltage total harmonic distortion (THD).

Methods Results (%THD)

Traditional SMRL

Sudden load
increase

Sudden load
removal Rectifier load

THD (%) THD (%) THD (%)

10.01% 8.89% 26.82%

Proposed method
Sudden load increase Sudden load removal Rectifier load

THD (%) THD (%) THD (%)

1.21% 0.74% 0.06%
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5. Conclusions

Through the proposed method, the PSO-CE algorithm can be used to detect the global
maximum power point of the solar array under partial shading. At the same time, the
unique benefits of the ISMRL can provide quick convergence of the system state under the
conditions of uncertain interference to realize tracking control. The method developed in
this way can enable the maximum power output from the solar panel and maintain the
highest energy conversion efficiency in the case of partial shading. Under the conditions
of sudden load increase, sudden load removal, and rectifier load, the proposed control
method shows good steady-state behavior in terms of total harmonic distortion, and the
waveform is close to the required sinusoidal reference voltage. However, under the same
test load conditions, the output voltage of the traditional SMRL solar system suffers from
more than 5% total harmonic distortion. Therefore, the proposed solar power generation
system actually produces promising steady-state and transient performance under partial
shielding. In final summary, the proposed inverter uses a dSPACE digital signal processor,
which has the advantages of fast modeling and suitability for control design. However,
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the cost of the device is a little higher; in the future, it can be replaced by FPGA (Field
Programmable Gate Array) to reduce the overall inverter system cost.
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