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Abstract: This work aims to provide a fundamental understanding on the dispersive behaviors of
shear horizontal (SH) surface waves propagating in a layered piezoelectric nanostructure consisting
of an elastic substrate and a piezoelectric nanofilm by considering the surface effects. Theoretical
derivation based on the surface piezoelectricity model was conducted for this purpose, and analytic
expressions of the dispersion equation under the nonclassical mechanical and electrical boundary
conditions were obtained. Numerical solutions were given to investigate the influencing mechanism
of surface elasticity, surface piezoelectricity, surface dielectricity, as well as the surface density upon
the propagation characteristics of SH surface waves, respectively. The results also reveal the size-
dependence of dispersive behaviors, which indicates that the surface effects make a difference only
when the thickness of the piezoelectric nanofilm stays in a certain range.

Keywords: shear horizontal surface wave; piezoelectric nanostructure; dispersive behavior; surface
effect; size-dependence

1. Introduction

Surface acoustic wave (SAW) devices, including sensors, oscillators, filters, photode-
tectors, etc., are widely employed in various fields for signal processing and sensing due
to their high sensitivity and low energy dissipation [1–3]. The typical structure for SAW
devices is a piezoelectric thin film deposited on a sublayer of another material. When an
alternating electric field is applied to the piezoelectric layer, the SAWs can be generated
because of the piezoelectric effect and then propagate along the surface either as Rayleigh
modes or shear horizontal (SH) modes. To better provide guidance for design and applica-
tions of the SAW devices, many efforts have been devoted to investigating the propagation
mechanisms of surface waves in layered piezoelectric composite structures. Wu et al.
analyzed SH and Rayleigh SAWs in (100) AlN film on (111) diamond substrate, and some
excellent acoustic properties were predicted theoretically [4,5]. Liu et al. investigated the
dispersive behaviors of SH surface waves propagating in a layered structure consisting of a
transversely isotropic piezoelectric film over an isotropic half-space, where the interface is
modeled by the shear-lag model to describe the imperfect bonding [6].

In recent years, the rapid development of nanoscience and assembly technology
makes it possible to fabricate novel nanoscale SAW devices with fast response and high
sensitivity. For example, a ball SAW hydrogen gas sensor employing a sensitive PdNi
nanofilm has the widest concentration detection region and short response time (less than
2 s) [7,8]. These advantages mainly attribute to the smaller dimensions combined with a
dramatically increased ratio of surface area to volume and strong binding properties of
atoms near the surface. Therefore, it is essential to understand the physical and mechanical
behaviors of SAW nanodevices with the consideration of surface effects. To date, the
methods used for studying the surface effects of nanomaterials and nanostructures can be
generally classified into three broad categories: experimental characterization, atomistic
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simulations, and theoretical analysis. In view of the fact that controlled experiments at
nanoscale are extremely difficult, and atomistic simulations are limited by computation
capabilities, many researchers have resorted to theoretical modeling through modifying the
conventional continuum models. The most famous one is the so-called surface elasticity
model established by Gurtin and Murdoch, in which a surface is regarded as a two-
dimensional continuum of vanishing thickness adhered to the underlying bulk material
without slipping [9]. The surface elasticity model has been successfully adopted to predict
the size-dependent characteristics of many elastic nanostructures [10–13]. However, it
fails to accurately describe the surface effects of piezoelectric nanostructures because the
surface piezoelectricity is ignored. For this purpose, Huang and Yu [14] first proposed
the surface piezoelectricity model, and Pan et al. [15] subsequently improved it. In this
model, surface piezoelectricity and surface dielectricity are first introduced besides the
surface elasticity and surface density involved in the surface elasticity model. Based on the
surface piezoelectricity model, increased efforts have been conducted to obtain the static
and dynamic responses of various piezoelectric nanostructures. To see concrete examples,
one can refer to the comprehensive reviews carried out by Yan and Jiang [16] and Zhao
et al. [17].

The design of SAW devices is mainly based on the propagation modes of Rayleigh
or SH surface waves according to different working mechanisms [1–3]. Very recently, the
authors examined the dispersion properties of Rayleigh-type surface waves propagating
in a piezoelectric nanofilm attached to an elastic substrate, and we found that the surface
effects have a considerable influence on the dispersion modes and phase velocity [18].
To enrich the studies on this topic, this work further investigates the propagation of SH
surface waves in a similar layered piezoelectric nanostructure. Explicit expressions of the
dispersion relationships are derived by using the surface piezoelectricity model, and the
impacts of several surface-related parameters upon the dispersive behaviors are discussed
in detail.

2. Problem Statement and Formulation

The schematic of a layered piezoelectric nanostructure is depicted in Figure 1 along
with the spatial rectangular coordinate system ox1x2x3. A transversely isotropic piezoelec-
tric nanofilm poling along the x3-axis is perfectly bonded on an elastic substrate, which is
modeled as an isotropic half-space in the theoretical analysis. The film thickness is h, and
the surface at x2 = h is denoted by plane Γ. When SH waves propagating in the x1x2-plane
are considered, all field variables are independent of x3, and only the out-of-plane mechan-
ical displacement u3 and the electric potential φ exist. Without the body forces and volume
electric charges, the governing equations can be written as

cE
44∇2u3 + e15∇2φ = ρ

..
u3, (1)

e15∇2u3 − κε
11∇2φ = 0, (2)

for the piezoelectric film and

µ∇2^u 3 =
^
ρ

..
^
u 3, (3)

∇2^φ = 0, (4)

for the elastic substrate. In Equations (1)–(4), cE
44, e15, κε

11, and ρ are, respectively, the
elastic stiffness measured at constant electric field, the piezoelectric constant, the dielectric
permittivity measured at constant strain, and the mass density of the piezoelectric nanofilm;
µ is the shear modulus of the elastic substrate, and ∇2 = ∂2/∂x2

1 + ∂2/∂x2
2 is the two-

dimensional Laplacian operator. Throughout this paper, the overline is adopted to represent
the substrate.
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Using the separation of variables, the solutions to
^
u 3 and

^
φ satisfying Equations (3)

and (4) take the form

^
u 3(x1, x2, t) = A1

[
cosh

(
k
^
λ x2

)
+ sinh

(
k
^
λ x2

)]
eik(x1−ct), (5)

^
φ (x1, x2, t) = A2[cosh(kx2) + sinh(kx2)]eik(x1−ct), (6)

where Ai is the unknown amplitudes, k is the wave number, c is the phase velocity, and
^
λ =

√
1−

(
c/

^
c sh

)2
, with

^
c sh =

√
µ/

^
ρ being the bulk shear wave velocity of the elastic

substrate. It is required that
^
λ > 0 in view of the attenuation condition lim

x2→−∞
(
^
u 3,

^
φ ) = 0,

so the phase velocity must satisfy
c <

^
c sh, (7)

which implies that the substrate with a large velocity should be chosen in the high-frequency
applications of SAW devices.

For the piezoelectric film, the out-of-plane displacement field is coupled with the
in-plane electric field. Thus, ψ = φ− γu3 with γ = e15/κε

11 is introduced to decouple the
governing Equations (1) and (2) as

c44∇2u3 = ρ
..
u3, (8)

∇2ψ = 0, (9)

in which c44 = cE
44 + e15γ is the stiffened elastic constant due to the piezoelectric effect. The

solutions of the above equations can be determined through the same procedure as that for
the elastic substrate:

u3(x1, x2, t) = [A3 cosh(kλx2) + A4sinh(kλx2)]eik(x1−ct), when c < csh <
^
c sh, (10)

u3(x1, x2, t) = [A3 cos(kλx2) + A4 sin(kλx2)]eik(x1−ct), when csh < c <
^
c sh, (11)

ψ(x1, x2, t) = [A5 cosh(kx2) + A6sinh(kx2)]eik(x1−ct), (12)
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where λ =

√∣∣∣1− (c/csh)
2
∣∣∣, and csh =

√
c44/ρ is the bulk shear wave velocity of the

piezoelectric media. Then, the non-zero stress tensor σ and electric displacement vector D
in the present case are obtained by

σ23 = c44u3,2 + e15ψ,2, (13)

D2 = −κε
11ψ,2, (14)

^
σ 32 = µ

^
u 3,2, (15)

^
D2 = −η

^
φ ,2, (16)

with η being the dielectric coefficient of the substrate.
Next, the surface effects are considered through utilizing the surface piezoelectricity

model, which assumes that a surface possesses its own material properties and constitutive
relationships different from those of its bulk counterpart. For the current formulation, the
existing surface stress σs

31 and surface electric displacement Ds
1 obey

σs
31 = σ0 + cs

44u3,1 + es
15ψ,1, at x2 = h, (17)

Ds
1 = D0 + es

15u3,1 − κs
11ψ,1, at x2 = h, (18)

with
cs

44 = cs
44 + es

15γ, es
15 = es

15 − κs
11γ, (19)

where σ0 and D0 are the residual surface stress and surface electric displacement, and cs
44,

es
15, and κs

11 are the surface elastic, surface piezoelectric, and surface dielectric constants,
respectively.

Unlike the classical situation, the presence of surface effects induces the jumps of
stresses and electric displacements across the surface, which, under the anti-plane deforma-
tion, can be described by the nonclassical mechanical and electrical boundary conditions
as [16,19,20]

σs
31,1 − σ32 = ρs

..
u3, at x2 = h, (20)

Ds
1,1 − D2 = 0, at x2 = h, (21)

where ρs denotes the surface density. To be noted, these two equations may become the
classical traction-free and electrically open-circuited case by vanishing all the surface-related
quantities.

In principle, there exists interface effects at x2 = 0, which also can be modeled by
a method similar to the surface effects mentioned above. However, a class of unknown
interface-related parameters needs to be introduced with the consideration of the interface
effects, and it will unavoidably bring many difficulties to the computation and analysis.
Accordingly, this paper focuses on examining the impacts of surface effects, while the
interface effects are ignored. Consider that the mechanical and electric quantities are
continuous along the interface, which requires

u3 =
^
u 3, at x2 = 0, (22)

σ32 =
^
σ 32, at x2 = 0, (23)

φ =
^
φ , at x2 = 0, (24)

D2 =
^
D2, at x2 = 0. (25)



Micromachines 2022, 13, 1711 5 of 15

Inserting the expressions of corresponding variables into Equations (20)–(25) results
in the following system of homogeneous linear equations:

Q11 A3 + Q12 A4 + Q13 A5 + Q14 A6 = 0, (26)

Q21 A3 + Q22 A4 + Q23 A5 + Q24 A6 = 0, (27)

A1 − A3 = 0, (28)

µ
^
λ A1 − c44λA4 − e15 A6 = 0, (29)

A2 − γA3 − A5 = 0, (30)

ηA2 − κ11 A6 = 0, (31)

where

Q11 = k
(
cs

44 − ρsc2) cosh(kλh) + c44λsinh(kλh),
Q12 = k

(
cs

44 − ρsc2)sinh(kλh) + c44λ cosh(kλh),
Q21 = es

15k cosh(kλh),
Q22 = es

15ksinh(kλh),

when c < csh <
^
c sh, (32)

Q11 = k
(
cs

44 − ρsc2) cos(kλh)− c44λ sin(kλh),
Q12 = k

(
cs

44 − ρsc2) sin(kλh) + c44λ cos(kλh),
Q21 = es

15k cos(kλh),
Q22 = es

15k sin(kλh),

when csh < c <
^
c sh, (33)

and
Q13 = es

15k cosh(kh) + e15sinh(kh),
Q14 = es

15ksinh(kh) + e15 cosh(kh),
Q23 = −κs

11k cosh(kh)− κε
11sinh(kh),

Q24 = −κs
11ksinh(kh)− κε

11 cosh(kh).

(34)

By eliminating A1 and A2 from Equations (28)–(31), one obtains

A5 = ϑ11 A3 + ϑ12 A4, (35)

A6 = ϑ21 A3 + ϑ22 A4, (36)

in which
ϑ11 = µ

γη

^
λ − γ, ϑ12 = − c44

γη λ,

ϑ21 = µ
e15

^
λ , ϑ22 = − c44

e15
λ.

(37)

Then, substitution of Equations (35) and (36) into Equations (26) and (27) yields

∆1 A3 + ∆2 A4 = 0, (38)

∆3 A3 + ∆4 A4 = 0, (39)

with
∆1 = Q11 + Q13ϑ11 + Q14ϑ21,
∆2 = Q12 + Q13ϑ12 + Q14ϑ22,
∆3 = Q21 + Q23ϑ11 + Q24ϑ21,
∆4 = Q22 + Q23ϑ12 + Q24ϑ22.

(40)

To obtain the nontrivial solutions of Equations (38) and (39), the determinant of
coefficient matrix must vanish, i.e.,∣∣∣∣∆1 ∆2

∆3 ∆4

∣∣∣∣ = ∆1∆4 − ∆2∆3 = 0. (41)
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The dispersion relationships between the phase velocity c and the wave number k can
be further determined by solving Equation (41) numerically. It is worth noting that both the
residual surface stress σ0 and surface electric displacement D0 are absent in Equation (41),
which means that these two residual fields have no effect on the dispersion behaviors
of SH-type surface waves. This is consistent with the theoretical results given earlier by
Gurtin and Murdoch [21]. Specifically, when the surface effects are excluded by setting
all the surface-related parameters equal to zero, Equations (20) and (21) are reduced to the
conventional traction-free and electrically open-circuited boundary conditions, under which
Equation (41) takes the following form since the solutions exist only if csh < c <

^
c sh, i.e.,

c44λ tan(λkh) = µ
^
λ +

γ2ηtanh(kh)
tanh(kh) + η/κε

11
, (42)

which corresponds to classical Love waves and is identical to that obtained by Li et al. [22].
Consider the two limit cases of wave number below. First, setting k→ 0 , both of

Equations (41) and (42) are simplified to

c =
^
c sh, when csh < c <

^
c sh, (43)

and the surface effects in Equation (41) are invalid at this point. This is because the waves
mainly propagate in the semi-infinite substrate at very low frequencies, and apparently, the
surface effects of piezoelectric film have no impact on the wave characteristics of the substrate.
Next, taking the limit k→ ∞ in Equation (41) under the case of c < csh <

^
c sh results in

λ =
k
(
ρsc2 − cs

44
)(

κs
11k + κε

11
)
− es

15k
(
es

15k + e15
)

c44
(
κs

11k + κε
11
) . (44)

3. Numerical Results and Discussion

As a case study, consider a piezoelectric nanofilm of PZT-5H on an elastic substrate
of diamond, whose material constants used for the numerical calculation are listed in
Table 1 [23,24]. For the piezoelectric surface, since the material properties that can be
determined from atomistic simulations or experiments are not completely available in the
literatures owing to lack of such work, a simple but reasonable method is proposed to
define each surface material constant as a scaled version of its bulk counterpart. Therefore,
the following relationships are introduced, i.e.,

cs
44 = fccE

44, es
15 = fee15, κs

11 = fκκε
11, ρs = fρρ, (45)

where fc, fe, fκ , and fρ are the nanoscaled characteristic lengths representing the magnitudes
of surface elasticity, surface piezoelectricity, surfacedielectricity, and the surface density,
respectively. The dimensionless frequency K = kch/csh and phase velocity c/csh are
adopted for simplicity, and both of them are assumed to be real and positive. That is to say,
this paper only involves the time-harmonic traveling waves that are not attenuating. To be
noted, we take h = 2 nm in the following analysis unless otherwise stated.
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Table 1. Material constants of PZT-5H and diamond used for the numerical calculation [23,24].

Material Constants Symbol PZT-5H Diamond

Elastic constants
(109 N/m2)

cE
44 23 —
µ — 533.3

Piezoelectric constants
(C/m2) e15 17 —

Dielectric constants
(10−11 C/Vm)

κε
11 1505 —
η — 5.02

Density
(kg/m3) ρ 7500 3512

Following Equations (41) and (42), respectively, the dispersion curves of the lowest
six modes for SH-type surface waves are plotted in Figure 2, where the 1st mode, known
as fundamental mode, exists under arbitrary low frequency, while the high-order ones
propagate only above the individual cut-off frequency corresponding to c→ ∞ . It is
evident that the presence of surface effects results in a marked departure from the classical
case, and this implies the necessity of incorporating surface effects into the wave analysis
of piezoelectric nanostructures. Whether the surface effects are included or not, the phase
velocities of all modes descend rapidly from

^
c sh, with the frequency K increasing. Then,

they all approach csh as K grows high enough except in the 1st mode considering the surface
effects. Since the 1st mode propagates as in a piezoelectric half-space when K → ∞ , the
propagation of SH waves in such a structure is discussed in the Appendix A. In contrast
to the classical case that no SH-type surface waves exist, one observes that such waves
can occur under a particular condition (see Equation (A13)) due to the existence of surface
effects, and they are dispersive with a lower velocity than csh. The phase velocity curve
based on Equation (A8) is also depicted in Figure 3 to compare with the 1st mode. It is
seen that two curves converge at higher frequencies, and the velocities are asymptotic to a
certain value c0 that is completely determined by the surface-related material parameters
as K → ∞ . This phenomenon indicates the 1st mode may propagate in the form of SH
surface waves at a high-frequency range, which is also confirmed in theory because the
expression of Equation (A8) is identical to Equation (44). In addition, Figure 2 shows that
the surface effects have a greater influence on the high-order modes with the increase of
modes order.
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Figure 2. Dispersion curves of the lowest six modes for SH-type surface waves in a piezoelectric
film/elastic substrate structure. Dashed–dotted lines indicate the case of the nanostructure with fc =
fe = 0.5 nm and fκ = fρ = 1 nm, and solid lines indicate the case of the corresponding classical structure
with fc = fe = fκ = fρ = 0 nm.
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Within the surface piezoelectricity model, surface effects actually synthesize the im-
pacts of surface elasticity, surface piezoelectricity, surface dielectricity, and the surface
density. Each of these impacts on the dispersive modes will be provided individually with
selected surface parameters in what follows. Without loss of generality, the 2nd mode is
included to represent the high-order modes.
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Figure 3. Comparison of the 1st mode for the present nanostructure and the SH surface waves for a
piezoelectric half-space with surface effects.

Figures 4 and 5 depict the dispersion curves of the lowest two modes for different
surface elasticity and surface piezoelectricity, respectively. Regardless of the 1st or 2nd
mode, it is observed that the presence of surface elasticity causes the increase of phase
velocity, and the larger the value of fc, the higher the phase velocity becomes. A close
comparison of Figures 4 and 5 reveals that the influencing mechanism of surface piezoelec-
tricity upon the corresponding mode is like that of surface elasticity. If fc, fe = 2 or 3 nm, it
should be pointed out that the condition (A13) in Appendix A is unsatisfied, then the phase
velocity of the 1st mode tends to csh as K → ∞ , which is the same as the classical situation
shown in Figure 2. Similar events also occur in the following examples. Together with the
aforementioned results, it concludes that the 1st mode at high frequencies is SH bulk waves
or surface waves strongly depending on the relative value of surface material parameters.

Dispersion curves of the lowest two modes for different surface dielectricity are
illustrated in Figure 6. One can see that the phase velocity declines with the growing
value of fκ , and the variation is remarkable for the 1st mode, whereas it is slight for the
2nd mode. By inspection of Figures 4–6, it is found that these three surface parameters
making a difference in the phase velocity is more significant at higher frequencies than
that at lower frequencies. Similar plots for different surface densities are presented in
Figure 7. It is clear that a larger value of fρ produces a lower wave velocity, especially in the
low-frequency range, which is different from the influence of the former three parameters.
Another important finding from Figure 7b is that the cut-off frequency of the 2nd mode is
greatly lowered in the presence of surface density, while it remains constant as the other
surface parameters vary by itself, as shown in Figures 4b, 5b and 6b. It indicates that the
change of cut-off frequency attributed to the surface effects is completely dominated by
the surface density. The reduction of cut-off frequency extends the frequency domain of
high-order modes, which may provide useful guidance for selecting the frequency and
mode. For instance, if only the 1st mode is expected in practical application, the smaller
exciting frequency should be used in view of the above conclusion.
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The variation of the dispersion curves of the lowest two modes with different film
thickness is plotted in Figure 8, where the classical results for which curve remains un-
changed are also plotted for comparison. It is obvious that the presence of surface effects
gives rise to size-dependent dispersive behaviors, and a smaller film thickness corresponds
a larger deviation from the classical case. This coincides with the fact that the surface
effects become more significant as the size of nanostructure decreases. In addition, it can be
reasonably deduced from Figure 8 that the surface effects may disappear once the thickness
of piezoelectric nanofilm reaches a critical value.

It should be mentioned that in addition to the surface piezoelectricity theory, in recent
years, several higher-order continuum mechanics theories such as nonlocal theory [25,26],
coupled stress theory [27], flexoelectric theory [28], and strain gradient theory [29] also have
been developed to successfully capture the size-dependent wave properties of piezoelectric
nanostructures from different perspectives.
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4. Conclusions

Based on the surface piezoelectricity model, this paper investigates the dispersion
properties of SH-type surface waves propagating in a layered piezoelectric nanostructure
composed of a piezoelectric nanofilm and an elastic half-space. Numerical analysis is
performed to show the impacts of several surface-related material parameters on the
dispersion modes and wave velocity. The main findings are summarized as follows:

(1) As opposed to the surface dielectricity and surface density, the enhanced surface
elasticity and surface piezoelectricity increase the phase velocity. The expression of
c0 in Equation (A11) may provide some theoretic supports for this conclusion, in
which the former two parameters are located on the denominator and the latter on
the numerator.

(2) The effects of all surface parameters are considerable at higher frequencies, while only
the surface density plays a prominent role at lower frequencies.

(3) The cut-off frequencies of high-order modes are dependent on the surface density
rather than the other surface parameters.

(4) The 1st mode propagating at higher frequencies in the form of bulk waves or surface
waves is dominated by the relative value of surface material parameters.

(5) Size-dependent dispersion properties occurring with the surface effects are predicted,
and they may vanish when the film thickness exceeds a critical value.
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These results could help increase the understanding of the wave characteristics of
piezoelectric nanostructures and provide guidelines for the design and applications of
smart nanodevices.
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Appendix A. Existence of SH Surface Waves in a Piezoelectric Half-Space with
Considering Surface Effects

For a piezoelectric body occupying half-space x2 ≥ 0, when SH waves propagation
along the x1 direction is considered, the general solutions to Equations (1) and (2) are
given by

u3(x1, x2, t) = B1e−kλ̂x2eik(x1−ct), (A1)

ψ(x1, x2, t) = B2e−kx2eik(x1−ct), (A2)

where Bi(i = 1, 2) is unknown amplitude, and λ̂ =
√

1− (c/csh)
2 must remain positive in

view of the attenuation condition lim
x2→+∞

u3 = 0, which requires

c < csh. (A3)

With the consideration of surface effects, the boundary conditions along the surface
are expressed as

σs
31,1 + σ32 = ρs

..
u3, at x2 = 0, (A4)

Ds
1,1 + D2 = 0, at x2 = 0, (A5)

Substituting Equations (A1) and (A2) into (A4) and (A5) with the help of Equations
(13) and (14) as well as (17) and (18), one obtains

A
[
k
(

cs
44 − ρsc2

)
+ c44λ

]
+ B(es

15k + e15) = 0, (A6)

Aes
15k− B(κs

11k + κε
11) = 0, (A7)

The requirement that the determinant of the coefficient matrix of Equations (A6) and
(A7) vanish leads to

λ =
k
(
ρsc2 − cs

44
)(

κs
11k + κε

11
)
− es

15k
(
es

15k + e15
)

c44
(
κs

11k + κε
11
) , (A8)

whose expression is exactly the same to Equation (44). Clearly, Equation (A8) shows the
dependence of phase velocity on wave number; thus, these SH waves are dispersive. When
the surface effects are absent, Equation (A8) reduces to λ = 0 that requires c = csh, which
proves no SH surface waves exist in the classical case.

In view of λ > 0, one obtains from Equation (A8)

c >

√
cs

44 + g(k)
ρs

, (A9)
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where g(k) =
es

15(es
15k+e15)

κs
11k+κε

11
is the monotonically increasing function of k because dg/dk ≥ 0,

and its maximum is

max[g(k)] = lim
k→∞

g(k) =
es

15es
15

κs
11

. (A10)

We further let

c0 =

√
cs

44 + max[g(k)]
ρs

=

√√√√ cs
44 +

es
15es

15
κs

11

ρs
, (A11)

with c0 being the asymptotic solution of Equation (A8) to the phase velocity when k→ ∞ .
Then, together with Equations (A3), (A9), and (A11), this yields

csh > c > c0, (A12)

which means the SH waves possibly propagate along the surface only if

csh > c0. (A13)

Since c = csh corresponds to the limit k→ 0 , the dispersion curve governed by
Equation (A8) must start from csh to c0 as the wave number increases, as shown in Figure 3.

When the piezoelectric effect is neglected, i.e., setting e15 = es
15 = 0 in Equation (A13),

the existence condition of SH surface waves in an isotropic half-space with surface effects
is obtained as

ce
sh > ce

0, (A14)

which is identical to that obtained by Murdoch [30] with

ce
sh =

√
cE

44
ρ

, ce
0 =

√
cs

44
ρs

, (A15)

where ce
sh is the bulk shear wave velocity of the isotropic media.

It should be mentioned that the condition (A13) is invalid if all the surface material pa-
rameters are homogenized, i.e., fc = fe = fκ = fρ 6= 0 nm. For the isotropic case mentioned
above, Murdoch pointed out that a departure from homogeneity is to be expected in the
surface region for practical situations [30]. From this, the homogenized surface parameters
are excluded in the numerical analysis.
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