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Abstract: In optical computing machines, many parameters of light beams can be used as data carriers.
If the data are carried by optical vortices, the information can be encoded by the vortex topological
charge (TC). Thus, some optical mechanisms are needed for performing typical arithmetic operations
with topological charges. Here, we investigate the superposition of a single-ringed (zero-radial-index)
Laguerre–Gaussian (LG) beam with an off-axis Gaussian beam in the waist plane. Analytically, we
derive at which polar angles intensity nulls can be located and define orders of the optical vortices
born around these nulls. We also reveal which of the vortices contribute to the total TC of the
superposition and which are compensated for by the opposite-sign vortices. If the LG beam has a TC
of m, TC of the superposition is analytically shown to equal [m/2] or [m/2] + 1, where [] means an
integer part of the fractional number. Thus, we show that the integer division of the TC by two can
be done by superposing the LG beam with an off-axis Gaussian beam. Potential application areas are
in optical computing machines and optical data transmission.

Keywords: optical vortex; topological charge; Laguerre–Gaussian beam; off-axis Gaussian beam

1. Introduction

In arithmetic, there are four basic operations: addition, subtraction, multiplication, and
division. In computers, these operations are implemented in the processor, in the Assembler
language, and are named ADD, SUB, MUL, and DIV, respectively. It is worth noting that
when performed on some specific operands, these operations, on the one hand, are more
often used in applications and, on the other hand, are easier to implement physically in
computing devices. These operations include adding/subtracting a unit value, changing
of sign, and multiplying/dividing by two. Therefore, these operations are implemented
by special, faster processor routines and in the Assembler language they are known by
separate commands: INC/DEC (add/subtract unit), NEG (change sign), and SHL/SHR
(multiply/divide by 2). Although division is the most difficult arithmetic operation, the
last two operations are implemented simply by shifting bits inside the byte, respectively, to
the left or right.

In optical data processing and transmission, data are carried by structured light beams,
with optical vortices showing promise. Research into the potential uses of OVs for data
transmission is currently under way for both wireless [1,2] and fiber [3,4] communications.
Because of its discreteness, one of the stable characteristics of optical vortices is the topo-
logical charge (TC) [5]. Even for scalar stochastic optical fields, the topological charge
current has been shown to obey a conservation equation [6]. Unlike a bit in the computer,
TC can theoretically have an infinite number of values. Therefore, possibilities have been
investigated, on the one hand, for generating large-TC beams [7], and, on the other hand,
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for sorting the registered beam into a large number of channels with different TCs [8]. TC is
often understood as the order of the optical vortex, but this is only correct for single-vortex
beams. In the general case, TC was earlier defined by M.V. Berry as an integral over an
infinite contour from the field phase derivative concerning the polar angle [5]. Methods
for measuring TC based on Berry’s definition are currently being developed. For example,
an optimal contour for the experimental measurement of TC by using a Shack–Hartmann
sensor was studied in Ref. [9].

Along with data transmission, possibilities have been investigated for completing
some operations with these data, including arithmetic ones. To perform addition/subtraction
with a fixed operand, it is enough for an optical vortex to pass through a spiral phase plate
(SPP). So, if an optical vortex with a TC of m passes through an nth order SPP, then the TC
of the outgoing beam becomes m + n. The summation of TCs of two light beams is more
difficult to implement. For example, the addition/subtraction of TCs is experimentally
demonstrated in [10] in the process of four-wave mixing of optical vortices. The doubling
of TC, as a partial case of TC summation, has been mentioned in the process of second har-
monic generation [11]. A change of TC sign (TC inversion) can be implemented simply by
reflecting the beam off the interface between the media (although the propagation direction
changes in this case). TC inversion was also shown by using, for example, coil [12] and
loop [13] resonators, as well as metasurfaces [14]. In our recent work [15,16], we showed
that in the superposition of several coaxial Laguerre–Gaussian (LG) beams, the operation
of choosing the maximum TC could be optically implemented, as the total TC of such a
superposition exactly equalled the absolute value of the maximum TC of the constituent
LG beams. To the best of our knowledge, no works dealing with dividing the TC of the
beam by 2 have been published so far.

Meanwhile, many works have investigated the interaction of optical vortices. For
example, the interference of LG modes with a plane wave and with LG modes carrying
equal but opposite TC was experimentally studied in [17]. However, this work focused
on the shape of the intensity pattern and on the number of petals rather than on the TC
itself (although the number of petals allow for determining TC). The interaction of two LG
beams with opposite TCs in a Sagnac interferometer was considered in [18], including in
curved space–time, but the work was rather concerned with the interferometer sensitivity
rather than with the TC. In [19], coherent Bessel vortex superposition with a linear charge
increase was studied. That work mainly focused on the TC-independence of the beam
radius and diffraction-free propagation. In [20], self-referenced interference of an optical
vortex in a Mach–Zehnder interferometer was studied and the sign and magnitude of the
TC were determined from the forks on the intensity pattern. In [21], elliptic perturbation
of the optical vortex was investigated. That work focused on splitting the vortex into
unit-strength vortices and their location.

In this work, we studied the TC of the superposition of an LG beam with zero radial
(lower) index and an off-axis Gaussian beam in the waist plane. It was analytically shown
that the intensity nulls in the transverse plane can reside only on a discrete set of polar
angles. Orders of the vortices around these nulls were also obtained analytically and it was
shown that TC carried by the superposed beam was defined only by vortices located in
one transverse half-plane. It was proven that the TC of the superposition could have only
two values: either TC of LG beam divided by 2 (integer part), or the next integer number.
Potential application areas for this work are in optical computing machines where data are
carried by vortex light beams and are encoded by the topological charges [22].

2. Topological Charge of Superposition of a Laguerre-Gaussian Beam with an Off-Axis
Gaussian Beam: General Theory

Here, we studied the superposition of a zero-radial-index LG beam and an off-axis
Gaussian beam with its center at the point (a, 0) (in the Cartesian coordinates) in the waist
plane. The waist radii w0 of both beams were supposed to be equal. Without loss of
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generality, we also supposed that a > 0. The complex amplitude of such superposition
reads as

E(x, y) =
(

x + iy
w0

)m
exp

(
− x2 + y2

w2
0

)
+ C exp

(
− (x− a)2 + y2

w2
0

)
, (1)

where (x, y) are the Cartesian coordinates, C is the relative weight coefficient of the Gaussian
beam, and m is the TC of the LG beam. We also suppose |C| 6= 0, otherwise, the case is
trivial. From now on, we use the normalized coordinates for brevity (ξ = x/w0, η = y/w0)
and denote α = a/w0:

E(ξ, η) = e−ξ2−η2
[
(ξ + iη)m + Ce−α2+2αξ

]
(2)

To derive the TC of such a superposition, we need to find the optical vortices present in
it. The coordinates (ξ0, η0) of nulls of the complex amplitude Equation (2) can be obtained
from the following equation:

(ξ0 + iη0)
m = |C|eimΨe−α2+2αξ0 (3)

where the quantity Ψ = (arg C + π)/m characterizes (but is not equal to) the phase delay
between the two interfering beams.

From Equation (3), we obtain

ξ0 + iη0 = |C|1/meiΨe−α2/m+2αξ0/me2πip/m (4)

with p = 0, . . . , m − 1. This equation is complex. Separating the real and imaginary
parts yields

ξ0 = |C|1/me−α2/m+2αξ0/m cos ϕp,
η0 = |C|1/me−α2/m+2αξ0/m sin ϕp,

(5)

where
ϕp = Ψ +

2π

m
p (6)

are the polar angles where the intensity nulls can reside. Note that these polar angles take
discrete values, as is the case with the coaxial superposition of LG and the Gaussian beams
considered in [21] (Figure 1a). The difference from [21] is that for each angle ϕp the intensity
nulls are at a different distance from the center (Figure 1b).
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Figure 1. Locations of the intensity nulls on the polar angles in the superposition of a LG beam and
an on-axis [21] (a) and off-axis (b) Gaussian beam.

In the second equation in (5), η0 is expressed explicitly. In the first equation, to simplify
the argument of the exponent, we replace ξ0 by ms/(2α), where s is a scaled horizontal



Micromachines 2022, 13, 1709 4 of 12

Cartesian coordinate of the sought-for intensity null (if this null resides in a certain point
(x0, y0), then s = 2αx0/(mw0)). Thus, the first equation in (5) takes the following form:

s = Aes (7)

where A = (eV)−1cos ϕp and

V =
m

2eα|C|1/m eα2/m (8)

is a “vorticity” parameter, because, as we show below, it affects the number of vortices in
the directions defined by the polar angles ϕp, given by Equation (6) (there can be zero, one,
or two vortices depending on what value is greater: V or cos ϕp).

Generally, such an equation cannot be solved analytically. However, it is obvious
(Figure 2) that, depending on the coefficient A from Equation (7), it can have 0, 1, or 2 roots.
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If A < 0 [Figure 2a], there is only one negative root s < 0.
If A = 0 [Figure 2b], there is only one root s = 0.
If A > 0 [Figure 2c], there can be 0, 1, or 2 roots. The case with one root is easy to guess

as the equation es = es has the only root s = 1. So, there are no roots if A > 1/e (curve I in
Figure 2c), there is one root if A = 1/e (curve II in Figure 2c), and there are two roots if
0 < A < 1/e (curve III in Figure 2c), one of which is in the interval (0, 1), and the other are
in (1, ∞).

So, we obtain from Equation (5) the number of intensity nulls residing at each polar
angle ϕp.

If cos ϕp < 0, there is one intensity null (ξ0 < 0) in the direction ϕp.
If cos ϕp = 0, the intensity null is on the vertical axis (ξ0 = 0).
If 0 < cos ϕp < V, there are two intensity nulls, so that 0 < ξ0 < m/(2α) for one null and

ξ0 > m/(2α) for the other.
If cos ϕp = V, there is one null with ξ0 = m/(2α).
If cos ϕp > V, there are no intensity nulls in this direction.
Below, we study if there are optical vortices around these intensity nulls (ξ0, η0), and

which order these vortices have. To do this, we consider a point in the vicinity of the
intensity null, i.e., a point (ξ, η) = (ξ0 + r cos ϕ, η0 + r sin ϕ) with r being a small distance:

E(ξ, η) = e−ξ2−η2
[(

ξ0 + iη0 + reiϕ
)m

+ Ce−α2+2αξ0+2αr cos ϕ
]

(9)

Gaussian envelope exp(–ξ2 − η2) does not affect the phase distribution. In the square
brackets, doing the binomial expansion of the first term and series expansion of the expo-
nent exp(2αrcos ϕ) in the second term, after neglecting the terms r2, r3, etc., we obtain:

E(ξ, η) = e−ξ2−η2
[
(ξ0 + iη0)

m + m(ξ0 + iη0)
m−1reiϕ + Ce−α2+2αξ0(1 + 2αr cos ϕ)

]
. (10)
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As the amplitude is zero at the point (ξ0, η0), then

(ξ0 + iη0)
m + Ce−α2+2αξ0 = 0 (11)

and so Equation (10) reads as

E(ξ, η) = re−ξ2−η2
{

m(ξ0 + iη0)
m−1eiϕ + 2Ce−α2+2αξ0 α cos ϕ

}
. (12)

Using Equation (11) again, we replace in Equation (12) Ce−α2+2αξ0 by −(ξ0 + iη0)
m:

E(ξ, η) = re−ξ2−η2
(ξ0 + iη0)

m−1
[
meiϕ − 2(ξ0 + iη0)α cos ϕ

]
. (13)

The vortex order (local topological charge) at the point (ξ0, η0) is defined by the
expression in the square brackets, and (see Appendix A) it equals

TC = sgn{m− 2αξ0} (14)

Thus, the orders of the optical vortices in the superposition (1) are given in Table 1.

Table 1. Intensity nulls and their orders (local topological charges).

ϕp ξ0 TC

cos ϕp < 0 ξ0 < 0 +1

cos ϕp = 0 ξ0 = 0 +1

0 < cos ϕp < V 0 < ξ0 < m/(2α) +1

ξ0 > m/(2α) –1

cos ϕp = V ξ0 = m/(2α) 0

cos ϕp > V -

Table 1 suggests that the total TC of the whole superposition constitutes only those
intensity nulls that reside on the polar angles with π/2 ≤ ϕp ≤ 3π/2, i.e., in one transverse
half-plane (Figure 3). For other directions ϕp, either there are no intensity nulls, or there is
one intensity null without a vortex around it, or there are two nulls with optical vortices of
opposite orders so that they do not affect the total TC.

Micromachines 2022, 13, x FOR PEER REVIEW 5 of 12 
 

 

       22 2
0

1 2
0 0 0 0, 1 2 cos .m m iE e i m i re Ce r                      (10)

As the amplitude is zero at the point (ξ0, η0), then 

  2
02

0 0 0mi Ce        , (11)

and so Equation (10) reads as 

    22 2
0

1 2
0 0, 2 cos .m iE re m i e Ce                (12)

Using Equation (11) again, we replace in Equation (12) 
2

02Ce     by  0 0
mi   : 

     2 2 1
0 0 0 0, 2 cos .m iE re i me i                  (13)

The vortex order (local topological charge) at the point (ξ0, η0) is defined by the ex-
pression in the square brackets, and (see Appendix A) it equals 

 0sgn 2TC m   . (14)

Thus, the orders of the optical vortices in the superposition (1) are given in Table 1. 

Table 1. Intensity nulls and their orders (local topological charges). 

φp ξ0 TC 
cos φp < 0 ξ0 < 0 +1 
cos φp = 0 ξ0 = 0 +1 

0 < cos φp < V 0 < ξ0 < m/(2α) +1 
 ξ0 > m/(2α) –1 

cos φp = V ξ0 = m/(2α) 0 
cos φp > V -  

Table 1 suggests that the total TC of the whole superposition constitutes only those 
intensity nulls that reside on the polar angles with π/2 ≤ φp ≤ 3π/2, i.e., in one transverse 
half-plane (Figure 3). For other directions φp, either there are no intensity nulls, or there is 
one intensity null without a vortex around it, or there are two nulls with optical vortices 
of opposite orders so that they do not affect the total TC. 

 
Figure 3. Contribution of the intensity nulls of the superposition (1) into the topological charge. 
Red circles are the intensity nulls, an orange star is the off-axis Gaussian beam, and the grey 
half-plane is the one where the intensity nulls contribute to TC (other nulls do not contribute). 

Therefore, if the LG beam carries a TC of m, then, after interfering with a Gaussian 
beam, the TC becomes either [m/2] or [m/2 + 1] ([] is the integer part of a fractional num-
ber). This means that the off-axis Gaussian beam can be used to implement the operation 
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circles are the intensity nulls, an orange star is the off-axis Gaussian beam, and the grey half-plane is
the one where the intensity nulls contribute to TC (other nulls do not contribute).
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Therefore, if the LG beam carries a TC of m, then, after interfering with a Gaussian
beam, the TC becomes either [m/2] or [m/2 + 1] ([] is the integer part of a fractional number).
This means that the off-axis Gaussian beam can be used to implement the operation of the
integer division by 2 of the TC of the LG beam (optical analogue of shifting all bits in a byte
to the right, Assembler command SHR).

We note that the angles ϕp are independent of the Gaussian beam amplitude |C|.
Thus, TC depends only on the phase delay arg C between the beams. It seems strange
enough, as in the absence of the Gaussian beam (|C|→ 0), there is no way to change the
TC of the LG beam. However, the apparent collision is explainable. According to Table 1,
when |C|→ 0, there are two intensity nulls for each angle ϕp with cos ϕp > 0. However,
the second null goes to infinity at |C|→ 0 and disappears completely at |C| = 0, making
TC equal to m instead of [m/2] or [m/2] + 1.

Further on, we consider particular simple cases of superposition (m = 1, 2, 4).

3. Topological Charge of Superposition of a LG Beam and an Off-Axis Gaussian Beam:
Particular Cases

If m = 1, the intensity nulls can reside only at the polar angle ϕ0 = Ψ. If the absolute
phase delay between the beams |arg C| is less than π/2, then the TC of the LG beam
remains equal to 1, independently of the Gaussian beam power. Otherwise, TC becomes
equal to zero, although the beam can have up to two intensity nulls, depending on the sign
of the quantity cos ϕp − exp(α2)/(2eα|C|1/m). For example, for α = 1 (shift of the Gaussian
beam equals its waist radius), arg C = π (antiphase superposition), a number of intensity
nulls depend on the sign of |C| − 1/2. If C = −1, there are no intensity nulls (bottom row
in Table 1). If C = −1/2 (next-to-last row in Table 1), there is an intensity null, but without
the vortex (phase on a contour around the null increases and decreases without 2π jumps).
If C = −1/10, the Gaussian beam affects the intensity distribution of the LG beam weakly,
but two intensity nulls simple with optical vortices of the opposite sign.

Figure 4 shows the intensity and phase distributions of the superposition of the LG
beam and an off-axis Gaussian beam for the following parameters: wavelength λ = 532 nm,
waist radius w0 = 0.5 mm; azimuthal index of LG beam m = 1; a transverse shift of the
Gaussian beam a = w0; Gaussian beam weight coefficients of C = 10 (Figure 4a–c), C = 0.1
(Figure 4d–f), C = −1 (Figure 4g–i), C = −0.5 (Figure 4j–l), and C = −0.1 (Figure 4m–o);
calculation domain –R ≤ x, y ≤ R (R = 2 mm); and number of points N = 1024 (along both
coordinate axes).

In Figure 4a–c, the Gaussian beam is much brighter compared with the LG beam,
in contrast with Figure 4d–f, but the TC of the LG beam in both cases is unaffected by
the Gaussian beam and remains equal to 1. If the beams have a phase difference of π
(Figure 4g–o), then, regardless of their amplitudes, the TC is zero: either there are no
intensity nulls (Figure 4g–i), or there is one intensity null (x = w0/2 = 0.25 mm) without an
optical vortex (Figure 4j–l), or there are two opposite-sign vortices (Figure 4m–o).

If m = 2, the only possibility for TC to remain equal to 2 is when there is no phase delay
between the beams (Ψ = π/2). If there is even a small phase difference, one of the angles ϕ0,
ϕ1 is in the range (−π/2, π/2) and thus TC becomes equal to 1. The number of intensity
nulls can also be different, e.g., at α = 1 and arg C = π, it depends on the sign of |C| − 1/e.
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Figure 4. Distributions of intensity (a,d,g,j,m) and phase (b,e,h,k,n), as well as normalized-to-
maximum horizontal intensity cross-sections (c,f,i,l,o) of the superposition of the LG beam with
an off-axis Gaussian beam for the following parameters: wavelength λ = 532 nm; waist radius
w0 = 0.5 mm; azimuthal index of LG beam m = 1; transverse shift of the Gaussian beam a = w0;
Gaussian beam weight coefficient C = 10 (a–c), C = 0.1 (d–f), C = −1 (g–i), C = −0.5 (j–l), and C = −0.1
(m–o); calculation domain −R ≤ x, y ≤ R (R = 2 mm); and number of points N = 1024. TC was
computed along the dashed circle (b,e,h,k,n). The white scale mark in the left bottom area of each
Figure denotes 1 mm.

Figure 5 depicts the intensity and phase distributions of the superposition of the LG
beam with an off-axis Gaussian beam for the following parameters: wavelength λ = 532 nm;
waist radius w0 = 0.5 mm; azimuthal index of LG beam m = 2; a transverse shift of the
Gaussian beam a = w0; Gaussian beam weight coefficient C = 0.1 (Figure 5a–c), C = −0.1
(Figure 5d–f), C =−1/e (Figure 5g–i), and C =−0.5 (Figure 5j–l); calculation domain−R ≤ x,
y ≤ R (R = 2 mm); number of points N = 1024.
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Figure 5. Distributions of intensity (a,d,g,j) and phase (b,e,h,k), as well as normalized-to-maximum
horizontal intensity cross-sections (c,f,i,l) of the superposition of the LG beam with an off-axis
Gaussian beam for the following parameters: wavelength λ = 532 nm; waist radius w0 = 0.5 mm;
azimuthal index of LG beam m = 2; the transverse shift of the Gaussian beam a = w0; Gaussian beam
weight coefficient C = 0.1 (a–c), C = −0.1 (d–f), C = −1/e (g–i), and C = −0.5 (j–l); calculation domain
−R ≤ x, y ≤ R (R = 2 mm); and number of points N = 1024. TC was computed along the dashed
circle (b,e,h,k). The white scale mark in the left bottom area of each Figure denotes 1 mm. The inset
(b) shows the central area with 3× zoom.

According to Figure 5a–c, the Gaussian beam does not change the TC of the LG beam,
which remains equal to 2. If the beams have a phase difference of π (Figure 5d–l), then,
regardless of their amplitudes, TC equals 1: either there are three intensity nulls, but two of
them have opposite-sign vortices (Figure 5d–f), or there are two intensity nulls, but one
of them is without an optical vortex (x = w0 = 0.5 mm) (Figure 5g–i), or there is only one
vortex (Figure 5j–l).

Similar to the cases considered above, if m = 4, then the intensity nulls can reside only
at the polar angles ϕp = Ψ + πp/2 (p = 0, 1, 2, 3).

If there is no phase delay between the beams (arg C = 0 and Ψ = π/4), there are two
angles ϕp, such that cos ϕp ≤ 0 and thus the TC of the whole superposition equals 2. TC
can be made equal to 3 if the beams have a phase delay of π (arg C = π and Ψ = π/2), as in
this case, there are three angles ϕp, such that cos ϕp ≤ 0: ϕ0 = π/2, ϕ1 = π, ϕ2 = 3π/2.

Figure 6 illustrates the intensity and phase distributions of such superpositions for the
following parameters: wavelength λ = 532 nm, waist radius w0 = 0.5 mm, azimuthal index
of LG beam m = 4, a transverse shift of the Gaussian beam a = w0, Gaussian beam weight
coefficient C = 0.1 (Figure 6a–c) and C = −0.1 (Figure 6d-f), calculation domain −R ≤ x,
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y ≤ R with R = 2 mm in Figure 6a,b,d,e and R = 5 mm in Figure 6c,f, and number of points
N = 1024.
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Figure 6. Distributions of intensity (a,d) and phase (b,c,e,f) of the superposition of the LG beam
with an off-axis Gaussian beam for the following parameters: wavelength λ = 532 nm, waist radius
w0 = 0.5 mm, azimuthal index of LG beam m = 4, a transverse shift of the Gaussian beam a = w0,
Gaussian beam weight coefficient C = 0.1 (a–c) and C = −0.1 (d–f), calculation domain −R ≤ x, y ≤ R
with R = 2 mm (a,b,d,e) and R = 5 mm (c,f), and number of points N = 1024. TC was computed along
the dashed circle (b,c,e,f). The white scale mark in the left bottom area of each Figure denotes 1 mm.
Black digits in phase distributions (b,c,e,f) denote vortices.

As seen in Figure 6a,d, the intensity ring is weakly distorted by a Gaussian beam and
in Figure 6b,e, TC can be estimated to remain equal to 4. The calculation along the dashed
circles in Figure 6b,e also yields 4. However, for a wider domain, R = 5 mm, it is seen that
there are six vortices in Figure 6c: four vortices that carry TC +1 (vortices 1–4) and two
vortices that carry TC −1 (vortices 5,6). Therefore, the TC of the whole beam becomes
equal to 2. Similarly, there are five vortices in Figure 6f: four vortices with TC + 1 (vortices
1–4) and one vortex with TC −1 (vortex 5). Thus, the TC of the whole beam is 3. Figure 6
confirms the theory, i.e., that the TC is contributed by the vortices residing in the left side of
the transverse plane. For instance, in Figure 6c, the TC is contributed by vortices 1 and 4,
whereas the vortices 2 and 3 are compensated by the vortices 5 and 6, respectively. Similarly,
in Figure 6f, TC is contributed by vortices 1, 3, and 4, whereas vortex 2 is compensated by
vortex 5.

4. Conclusions

Thus, we have proven theoretically and confirmed numerically that the TC of a single-
ringed (zero-radial-index) LG beam can be optically divided by 2 through interference with
an off-axis Gaussian beam. We considered only a simple case when the waist radii of the
perturbed LG beam and of the off-axis Gaussian beam were the same. The proof is based
on determining the positions of the intensity nulls and the orders of the vortices around
them (local topological charges). It has been shown analytically that only the intensity nulls
located in the half-plane perpendicular to the propagation direction contribute to the TC of
the superposition. If the TC of the LG beam is even and equal m, then after perturbing by
an off-axis Gaussian beam, the TC of a superposition is equal to m/2 + 1 (if the phase delay
between the beams is arg C = πm/2 ± π) or m/2 (for other phase delays). If the TC m of the
LG beam is odd, then the TC of a superposition is equal to (m + 1)/2 (if the phase delay
arg C between the beams is in the interval [πm/2 − π, πm/2]) or (m − 1)/2 (for the phase
delays in the interval (πm/2, πm/2 + π)). The amplitude |C| of the perturbing Gaussian
beam does not affect the TC of the superposition, but affects the position of the optical
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vortices and, thus, the radius of the correct TC computation. The numerical simulation
confirmed our theory and demonstrated in simple cases the integer division of TC by 2. In
the numerical simulation, it was the most difficult to calculate the amplitude and phase in
the regions of a very low intensity (in the math software we used, the intensity in those
regions was assumed to be zero); therefore, we were unable to demonstrate the division
by 2 of high TC values. In the real experiment, there is the same measurement problem,
which, in addition, becomes more complicated due to noises. However, we derived the
TC value only in the initial plane, whereas in other planes, this derivation would be more
cumbersome, if it was even possible. Nevertheless, upon propagation, optical vortices can
move to infinity or come back from it [23]. Thus, the optical vortices from low-intensity
areas in one plane can become measurable in other transverse planes, for instance in the
focal plane, or at a certain specific distance in space, but we did not investigate determining
such planes in this work. In the future, we are going to extend this study, as it is unknown
yet how TC changes if the LG beam with a zero radial index is replaced by a LG beam of an
arbitrary radial order, or if the Gaussian beam is replaced by another field. The behavior of
the optical vortices in the considered superposition upon free-space propagation has also
remained unstudied. The potential application area is in optical computing machines where
data are carried by vortex light beams and are encoded by the topological charges [24,25].
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Appendix A

We suppose that (r, ϕ) are the polar coordinates in the vicinity of a null of some
function, and this function is approximately equal to

f (ϕ) = a cos ϕ + b sin ϕ

with a and b being some complex coefficients.
Along some contour around this null of the function, the phase changes the following

number of 2π (local topological charge):

TC =
1

2π
Im

2π∫
0

∂ f /∂ϕ

f
dϕ =

1
2π

Im
2π∫
0

b cos ϕ− a sin ϕ

a cos ϕ + b sin ϕ
dϕ

This integral can be represented as an integral over a unit-radius circle in the complex
plane (z = eiϕ):

TC =
1

2π
Im

2π∫
0

b
(
z + z−1)+ ia

(
z− z−1)

a(z + z−1)− ib(z− z−1)

dz
iz
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Multiplying the numerator and denominator by z, we obtain the integral

TC =
1

2π
Im

2π∫
0

(a− ib)z2 − (a + ib)
(a− ib)z2 + (a + ib)

dz
z

which depends on the number of poles inside the unit-radius circle. There can be either
one pole (z = 0), or this pole and two additional poles, such that

z2 = − a + ib
a− ib

The second case occurs if |a + ib| < |a − ib|, which is similar to the condition

Ima · Reb < Rea · Imb

Thus, if Im a·Re b > Re a·Im b, there is only pole (z = 0) and the integral is easily
obtained:

TC =
1

2π
Im
{

2πi
−(a + ib)
(a + ib)

}
= −1

If Im a·Re b < Re a·Im b, there are two poles, z1 and z2 (z1 + z2 = 0 and z1·z2 = (a + ib)/
(a − ib)). So,

TC =
1

2π
Im

2π∫
0

(z− iz1)(z− iz2)

(z− z1)(z− z2)

dz
z

Adding the values given by all three poles, we obtain

TC = −1 +
1

2π
Im
{

2πi
(z1 − iz1)(z1 − iz2)

(z1 − z2)z1
+ 2πi

(z2 − iz1)(z2 − iz2)

(z2 − z1)z2

}
.

Simplification yields

TC = −1 + Im
{

i(1− i)
z2 − z1

[−(z1 − iz2) + (z2 − iz1)]

}
= −1 + Im{i(1− i)(1 + i)} = 1.

Finally, if Ima ·Reb = Rea · Imb, then b/a is a real number and f (ϕ) = a(cos ϕ + (b/a) sin ϕ),
i.e., the amplitude changes around the null, while the phase does not change. Thus, the
local TC is zero.

To summarize the three considered cases, we conclude that the local topological charge
in the vicinity of the null of a function f (ϕ) = a cos ϕ + b sin ϕ is equal to

TC = sgn{Rea · Imb− Ima · Reb}

with sgn being the sign function (sgn ξ = 1 at ξ > 0, sgn ξ = −1 and ξ < 0, and sgn 0 = 0).
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