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Abstract: The main purpose of this study is to explore a surface roughness prediction model of Gas-
Solid Two-Phase Abrasive Flow Machining. In order to achieve the above purpose, an orthogonal
experiment was carried out. Q235 steel as processing material and white corundum with different
particle sizes as abrasive particles were used in the experiment. Shape and spindle speed were
the main reference factors. The range method and factor trend graph are used to comprehensively
analyze the experimental results of different processing stages of the detection point, and the optimal
parameter combination of A3B2C1D2 was obtained. According to the experimental results, a multiple
linear regression equation was established to predict the surface roughness, and the experimental
results were solved and significantly analyzed by software to obtain a highly reliable prediction
model. Through experiments, modeling and verification, it is known that the maximum error between
the obtained model and the actual value is 0.339 µm and the average error is 0.00844 µm, which can
better predict the surface roughness of the gas-solid two-phase flow abrasive pool.

Keywords: gas-solid two-phase flow principle; abrasive pool machining; orthogonal experiment;
surface roughness prediction model

1. Introduction

Abrasive Flow Machining (AFM) is a new finishing method for deburring and round-
ing workpieces by extruding fluid abrasives. The polishing technology was originally
developed according to the deburring needs of aerospace parts in the US aerospace in-
dustry, mainly for the finishing of narrow slits, tiny holes and special-shaped holes. After
successful research and development, its application range has gradually expanded [1].
Since the abrasive medium is fluid, AFM has a good application in micropores, complex
pores and other pore structures [2–5]. In the process of AFM, the abrasive particles are
relatively small, meaning less damage to the surface of the workpiece. The residual stress
on the surface of the workpiece can be reduced, and the concentrated stress on the surface
of the workpiece can be reduced while the machining quality is improved, and the wear
resistance and corrosion resistance of the workpiece can be increased [6,7]. However, the
fluid modulus used in some AFM technologies is usually viscous abrasives, which will en-
counter greater resistance when the abrasives move relative to each other, and the plasticity
and cohesion of some polymer media will cause the abrasives to avoid the processing area,
resulting in the surface processing quality of the material being poor. Therefore, in the field
of abrasive pools, new grinding media can be developed, and the reduction in media cost,
media sustainability, and waste generation still needs to be continuously explored [8].

In response to the exploration of new processing methods of AFM, Barletta [9] innova-
tively proposed the fluidized bed to assist the spindle-type tumbling finishing and found
that the fluidized abrasive grains can reduce the energy required to move the workpiece,
and the fluidized abrasive grains can machine the ductile metal with a better mirror finish;
for the study of new abrasive media for AFM, Pham et al. [10] explored an abrasive air jet
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technology to process alloy materials, which reduced the surface roughness Ra by 40 times.
The gas-solid two-phase flow abrasive flow processing proposed in this paper is to use
high-speed airflow to accelerate the solid-phase abrasive particles to realize the relative
motion between the gas-solid two-phase flow and the workpiece, so as to achieve the
purpose of finishing (and solid phase abrasive particles are innovative).

However, the flow state of gas-solid two-phase flow, workpiece shape and abrasive
grain shape will affect the machining quality of the workpiece surface, and the surface
roughness depends on many machining parameters. Therefore, many researchers try to
analyze and predict the roughness of the machined surface through modeling. For the
prediction of the surface roughness of machined workpieces, Artificial Neural Network
(ANN) [11–14], Adaptive Neuro-Fuzzy Inference System (ANFIS) [15,16], Multi-Objective
Genetic Algorithm (MOGA) [17], quadratic regression models [18], and other common tech-
niques are used [19]. Mirko Ficko et al. predicted the surface roughness of abrasive water
jet machining based on artificial neural network, and used k-fold cross-validation to verify
the ANN model, which greatly shortened the time of experimental verification [14]; Jain
et al. used the probabilistic simulation method to calculate the number of active abrasives
in the AFM process [19]. Liu et al. based their work on the crystal plasticity finite element
model and the coupled Eulerian–Lagrangian method to analyze the roughness evolution
of constrained surfaces [20]. However, there is currently no research on the application of
multiple linear regression to predict surface roughness. The advantages of multiple linear
regression are that the calculation is simple, the output is a linear relationship, the model is
stable and intuitive, and the correlation between factors can be accurately evaluated.

The novelty of this study is to analyze the influence of different parameters (such as
workpiece shape, abrasive flow state, rotational speed and abrasive quality) on the surface
roughness of the AFM-processed workpiece, and determine the priority of the effect of
machining parameters on the surface roughness. The optimal parameter combination
is obtained by designing an orthogonal test, and a prediction model based on the linear
regression equation is developed using the orthogonal test data. Finally, the model is tested
and analyzed to verify the reliability of the model.

2. Materials and Methods
2.1. Description of the Test Device

The experiment was conducted by using a self-made gas-solid two-phase flow abrasive
pool processing experimental platform, as shown in Figure 1. The processing principle of
the self-made abrasive pool processing platform used in this experiment is to mix solid-
phase abrasives with gas to obtain gas-solid two-phase flows with various flow states. The
abrasive contacts, rubs and collides with the surface of the workpiece, and micro-cuts the
surface of the workpiece with the abrasive to realize the finishing of the surface of the
workpiece by the gas-solid two-phase flow. Figure 2 is a schematic diagram of the gas-solid
two-phase flow abrasive pool finishing process.

Figure 1. Three-dimensional diagram of abrasive pool test bench.
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Figure 2. The principle of gas-solid two-phase flow finishing.

Figure 3 shows the cloud diagram of contact force between abrasive particles and
workpiece and between abrasive particles simulated by using EDEM software. Figure 3a is
the force when the abrasive grains contact the workpiece when no wind force is applied,
and the force of the abrasive grains is concentrated on the workpiece. Figure 3b is the force
diagram of the abrasive grains when the wind force is applied; it is seen that the force of the
abrasive particles on the workpiece gradually decreases. Figure 3c is the force diagram of
the abrasive particles after the stable gas-solid two-phase flow is formed. The result shows
that the force of the abrasive particles is no longer concentrated around the workpiece, the
polishing is more disordered, which can effectively reduce the stress concentration on the
surface of the workpiece, prevent the workpiece from rubbing for a long time at a certain
point during processing, and generate furrows or pits, so that the processing quality of the
workpiece surface is improved.

Figure 3. Abrasive contact with workpiece diagram. (a); not applied wind force (b) applied wind
power; (c) stable gas-solid two-phase flow is formed.

The workpiece material processed during the experiment was Q235 steel, and the
chemical composition of the material is shown in Table 1. The round tubular, square tubular
and cylindrical Q235 steel materials were selected for the experiment. The abrasive grains
used in the processing of the abrasive pool were white corundum with different particle
sizes (as shown in Figure 4). White corundum is suitable for grinding and polishing high
carbon steel, high-speed steel and hardened steel, and has excellent grinding and polishing
performance. The specific parameters are shown in Table 2.

Figure 4. Abrasive.



Micromachines 2022, 13, 1649 4 of 16

Table 1. Workpiece material properties.

Material Yield Strength
/MPa

Hardness
/HB Melting Point/◦C C/% Mn/% Si/% S/%

Q235 235 165 1600 0.12–0.20 0.3–0.65 0.3 0.05

Table 2. Physical properties of white corundum.

Material Hardness Shape Density (Bulk) g/cm3

Al2O3 9.0 spherical/irregular 1.53–1.99

In the test, five factors, such as workpiece shape, abrasive grain size, gas-solid two-
phase flow state, abrasive grain shape, and rotating speed were selected as the main
parameters. The parameter ranges are set in Table 3. The minimum air pressure required
by the air compressor is 0.735 MPa.

Table 3. Orthogonal experiment parameter range setting.

Processing Parameters

Workpiece Shape Gas-solid Two-Phase Flow Abrasive Shape Spindle Speed/rpm

1 round tube bulk fluidized bed spherical 600
2 square tube turbulent fluidized bed irregular 900
3 cylinder spouted fluidized bed / 1200

Since there were many factors involved, to reduce the number of experiments without
reducing the experimental effect, this paper adopts the orthogonal test to obtain the optimal
combination of experiments. The level of each factor was quite different; it was necessary
to select the orthogonal experiment method at different levels. Orthogonal experiments at
different levels are divided into two methods: the mixed orthogonal experiment method
and the quasi-horizontal method. Mixed orthogonal experiments are mostly suitable for
situations where there are many levels of a single factor and the levels of other factors are
the same, and its expression is as follows:

Ln
(

m1k1m2k2
)

, n = k1× (m1− 1) + k2× (m2− 1) + · · · kx× (mx− 1) + 1 (1)

where L is an orthogonal table, n is the number of experiments, k is a factor, and m is the
number of levels.

After substituting the data, the number of mixed orthogonal experiments was calcu-
lated as 15 times. The quasi-horizontal rule is to complete the factors with fewer levels
through repeated levels or other methods to ensure that each factor can meet the same
level, and then design a standard orthogonal experiment. After the orthogonal table was
quasi-horizontal transformation, generally the table that has been transformed into a quasi-
horizontal column is listed as a quasi-horizontal column. According to Table 3, after the
shape of the abrasive grains was filled by the pseudo-horizontal method, the standard
orthogonal experiment table of four factors and three levels L9 (43) can be obtained. The
orthogonal experiment table is shown in Table 4.

The gas-solid two-phase flow state, workpiece shape and abrasive particle shape are all
dimensionless factors. To simplify the orthogonal experiment, the above three parameters
were digitized, and the gas-solid two-phase flow state can be replaced by the Reynolds
number; the value range was set to 2000, 4000, and 6000. The shape of the workpiece can be
replaced by the contact surface between the workpiece and the abrasive flow; the contact
between the workpiece and the abrasive flow is generally the entire curved surface, the
contact of the square tube is four planes, and the contact of the cylinder is the bottom plane.
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Process these three values into data and use 1/3, 4/3, and 1/2 instead. There were two
shapes of abrasives, spherical and irregular, and numbers 1 and 2 can be used to represent
spherical and irregular shapes. For testing the overall effect of the abrasive pool processing,
it was necessary to ensure the continuity of the experiment. Therefore, the same workpiece
was divided into three stages for experimental testing, that is, the orthogonal experiment
of the workpiece under 24, 80 and 120 mesh abrasives, respectively. The roughness of
the workpiece will be measured in each stage of the experiment, and the experimental
workpiece will not be replaced during the period, but the experimental measurement was
still required for each stage of processing. After the experiment, the surface roughness of
the workpiece was measured with a roughness meter, and the measurement points are
shown in Figure 5.

Table 4. Orthogonal experiment table.

Experiment Number Factors

Spindle Speed/rpm Gas-Solid Two-Phase Flow Workpiece Shape Abrasive Shape

1 600 2000 1/3 1
2 600 4000 4/3 2
3 600 6000 1/2 2
4 900 2000 4/3 2
5 900 4000 1/2 1
6 900 6000 1/3 2
7 1200 2000 1/2 2
8 1200 4000 1/3 2
9 1200 6000 4/3 1

Figure 5. Workpiece diagram: (a) round tube; (b) square tube; (c) cylinder.

2.2. Analysis of Orthogonal Experiment Results

Firstly, the surface roughness of each marked point of the round tube workpiece under
24-mesh abrasive was analyzed by the intuitive analysis method. Figure 6 shows the
average of five measurement roughness values of the same marked points of the round
tube under the orthogonal experimental conditions.

To fully analyze the polishing effect of the workpiece, it is necessary to analyze the
results of each point. Take the analysis of point 1 as an example. Table 5 shows the
average and range of surface roughness changes at point 1. K represents the sum of
surface roughness changes measured by different factors at the same level, K1–K3 are
rust removal experiments, K4–K6 are rough polishing experiments, and K7–K9 are fine
polishing experiments. k represents the average value of different factors at the same level.
R represents the extreme difference, R = Kmax − Kmin, the larger the extreme difference,
the greater the influence of this factor on finishing. A, B, C and D are used to replace the
spindle speed, gas-solid two-phase flow, workpiece shape and abrasive particle shape in
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the processing factors, respectively. The subscripts 1, 2, and 3 are the level 1, level 2, and
level 3 corresponding to the factor, respectively.

It is seen in Table 5 that the range of the D factor is the smallest when the abrasive
pool is processed, indicating that the shape of the abrasive grains has the smallest influence
on the surface roughness; the range of C is the largest, indicating that the shape of the
workpiece has the greatest influence on the surface roughness of the workpiece. With the
reduction in the abrasive and the improvement of the polishing quality, the influence of
the gas-solid two-phase flow on the workpiece gradually increases, and the range value
gradually increases from 0.401 µm at the beginning to 0.9397 µm at the end. With the
improvement of the processing quality, the influence of the particle shape of the abrasive
on the workpiece gradually increases. From the range, it is seen that the four factors act on
the workpiece at the same time, the optimal combination of roughness is always A3B2C1D2,
that is, the spindle speed is 1200 rpm, the gas-solid two-phase flow state is turbulent, the
shape of the workpiece is a circular tube, and the shape of the abrasive particles is irregular,
which shows that the workpiece shape has the greatest influence on the machining effect
until the final polishing experiment.

However, it is impossible to quantitatively judge which factor has the greatest impact
on the surface processing effect of the workpiece at which level by only using the average
value and the range. To more intuitively determine which factor has a comparatively large
influence on the roughness, it is necessary to make a factor trend graph for the orthogonal
result. Continue to take point 1 as an example, and evaluate it according to the average
value of roughness. Under the same factor, which type of surface roughness is the smallest,
indicating that this level is the optimal level. The abscissa represents the different levels of
different factors, the ordinate represents the surface roughness value during processing,
and the final trend graph of the factors is formed, as shown in Figure 7.

Figure 6. The roughness height of circular tube marking point by orthogonal experiment: (a) 120 mesh
abrasive; (b) 80 mesh abrasive; (c) 24 mesh abrasive.
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Table 5. Range analysis results at point 1.

Spindle Speed (A) Gas-Solid Two-Phase
Flow (B)

Workpiece Shape
(C) Abrasive Shape(D)

K1 15.336 15.036 14.288 15.105
K2 15.248 15.156 16.251 15.419
K3 14.979 15.437 15.09 15.105
K4 5.0754 5.0377 4.6318 5.4249
K5 4.9896 4.9491 5.9825 5.1204
K6 5.4938 5.572 4.9445 5.0135
K7 2.0646 2.2013 1.4946 2.3848
K8 2.2904 1.7729 3.482 2.0438
K9 2.332 2.7128 1.7104 2.2584
k1 5.122 5.012 4.763 5.035
k2 5.095 5.052 5.417 5.140
k3 4.933 5.146 5.03 5.035
k4 1.6918 1.6792 1.5439 1.8083
k5 1.6632 1.6497 1.9941 1.7068
k6 1.8312 1.8573 1.6481 1.6711
k7 0.6882 0.7337 0.4982 0.7949
k8 0.7634 0.5909 1.1606 0.6812
k9 0.7773 0.9042 0.5701 0.7528
R1 0.387 0.401 1.963 0.314
R2 0.4184 0.6229 1.3507 0.3045
R3 0.2672 0.9397 1.9872 0.3408

The biggest influencing factor in
the rust removal stage C B A D

The biggest influencing factor in
rough throwing stage C B A D

The biggest influencing factor in
the polishing stage C B D A

Rust removal
experiment

Rough throwing
experiment

Fine polishing
experiment /

The best combination of
processing quality A3B2C1D2 A3B2C1D2 A3B2C1D2 /

Figure 7. Factor trend of point 1 by test.

It is presented in Figure 7 that the trend of the C factor in the same experimental stage
changes greatly, indicating that the shape of the workpiece has the greatest influence on the
processing of the abrasive pool. With the gradual precision of the experimental processing
and the decrease in the number of abrasive grains, the influence of the gas-solid two-phase
flow on the processing effect was more and more obvious. The influence of the abrasive
shape on the roughness of the machined workpiece was gradually increasing. The slope
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of factors B1-B3 gradually increases, indicating that 120-mesh abrasive grains may still
be relatively large abrasive grains for abrasive pool processing, and were not the most
suitable abrasive grains for processing. It can be speculated that the most suitable abrasive
pool processing may be a more precise finishing. It can be seen from Figure 7 that the
optimal combination of the rust removal experiment at point 1 is A3B1C1D2, the optimal
combination of the rough polishing experiment is A2B2C1D3, and the optimal combination
of the fine polishing experiment is A1B2C1D2.

By analogy, the three-stage experiments of the remaining detection points were com-
prehensively analyzed. Table 6 shows the influence degree of each factor in all points and
the optimal parameter combination table [11].

Table 6. The influence degree of each factor and the optimal parameter combination table of each experiment.

Marked Point 1 2 3 4 5

Rust removal experiment
Influence level CBAD CABD CABD CBAD CBAD

Optimal
combination A3B1C1D2 A3B2C1D2 A1B1C1D1 A1B2C2D2 A3B2C1D2

Rough
throwing

experiment

Influence level CBAD CDBA CADB CBAD CBAD
Optimal

combination A2B2C1D3 A1B1C1D1 A3B2C1D2 A1B1C1D1 A1B1C1D1

Fine polishing experiment
Influence level CBAD CBAD CBDA CBAD CBAD

Optimal
combination A1B2C1D2 A3B2C1D2 A2B2C2D1 A3B2C1D2 A3B2C1D2

The analysis of the results in Table 6 shows that the more factors and levels in the opti-
mal combination, the greater the impact on the surface machining quality of the workpiece:

As the first influencing factor, A appears 0 times, B is 0 times, C is 15 times, and D is
0 times; as the second influencing factor, A appeared 3 times, B was 11 times, C was 0 times,
and D was 1 time; as the third influencing factor, A appeared 10 times, B was 3 times, C
was 0 times, and D was 2 times; as the fourth influencing factor, A appears 2 times, B is
1 time, C is 0 times, and D is 12 times.

From the results of all stages, the primary and secondary degrees of each factor
affecting the workpiece are workpiece shape, abrasive flow state, rotating speed, and
abrasive shape. In the same way, under the same factor, the one with the highest number
of levels is the optimal condition, and the results are specified in Table 7.

Table 7. Optimal level.

Factors Level 1 Level 2 Level 3

A 5 1 9
B 4 11 0
C 13 2 0
D 5 10 0

Therefore, the comprehensive optimal parameter combination for abrasive pool pro-
cessing is A3B2C1D2.

3. Roughness Prediction Model

The optimal parameter combination within a certain range was obtained through the
orthogonal experiment, and a surface roughness model was established on this basis to
predict the surface roughness of the workpiece, reduce the number of experiments and
save the experiment time. Based on the orthogonal experimental data, the multiple linear
regression analysis methods were used to establish the surface roughness prediction model
of abrasive pool machining as the basis of the surface roughness prediction of abrasive
pool machining.
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Prediction requirements for the surface roughness of abrasive pool processing: while
the surface quality of the workpiece meets the requirements, the processing efficiency was
maximized as much as possible. The processing parameters of the experiment, namely,
spindle speed, gas-solid two-phase flow state, workpiece shape, and abrasive shape are
used as the input end, and the surface roughness of the workpiece was used as the output
end, and the results should be more accurate, which can provide convenience for the
subsequent experimental progress. It can provide an important reference for subsequent
abrasive pool processing.

3.1. Multiple Linear Regression Prediction Models

Suppose there is a linear correlation between the random variable y and the p indepen-
dent variables x1, x2, . . . , xp, the actual sample size is n, and the observed value is xi1, xi2,
. . . , xip, yi (i = 1, 2, . . . , n). Then, the n observations can be expressed as Equation (2):

y1 = β0 + β1x11 + β2x12 + · · ·+ βpx1p + ε1
y2 = β0 + β1x21 + β2x22 + · · ·+ βpx2p + ε2

· · · · · ·
yn = β0 + β1xn1 + β2xn2 + · · ·+ βpxnp + εn

(2)

Among them, β0, β1, . . . , βn are position parameters, x1, x2, . . . , xp are p general
variables that can be accurately measured and controlled, and ε1, ε2, . . . , εp are random
errors. It is assumed that εi are independent random variables that obey the same normal
distribution N(0, σ). Equation (3) can be represented by a matrix:

y = Xβ + ε (3)

where

y =


y1
y2
...

yn

 X =


1 x11 x11 . . . x11
1 x11 x11 . . . x11

1
...

... . . .
...

1 x11 x11 . . . x11

 β =


β1
β2
...

βn

 ε =


ε1
ε2
...

εn

 (4)

Solving the multiple linear regression equation is to establish the multiple linear
regression equation by solving the estimated value b of β:

ŷ = b0 + b1x1 + b2x2 + · · ·+ bp (5)

There is a linear relationship between milling and the surface roughness of the work-
piece. Through the similarity principle, it can be inferred that the abrasive pool machining
also has this relationship with the workpiece. Tipnis et al. established an empirical model
of surface roughness for cutting speed, feed and depth of cut. Based on this, scholars
established a general model of milling and surface roughness:

Ra = cab1
p ab2

e nb3 f b4
z (6)

where c is the correction coefficient of the workpiece material, ap is the cutting depth, ae
is the cutting width, f is the feed amount, and b1, b2, b3, and b4 are to be estimated. By
the second law of similarity, for similar physical quantities, the similarity criterion should
be the same. After substituting the abrasive pool processing parameters into the above
equation, we can get:

Ra = cmb1Repm f
b2nb3Mb4 (7)

where m represents the shape of the workpiece, Repmf is the Reynolds number of the abrasive
in the abrasive pool, that is, the flow state after the gas-solid two-phase flow is formed, M
is the shape of the abrasive, and n is the spindle speed. Since the output value is a linear
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function, it is necessary to linearize the nonlinear function of the above equation, take the
logarithm of both sides, and Equation (8) can be obtained:

lgRa = lgc + b1lgm + b2lgRepm f + b3lgn + b4lgM (8)

Suppose that:

lgRa = y, lgc = b0, lgm = x1, lgRepm f = x2, lgn = x3, lgM = x4 (9)

transform it into:
y = b0 + b1x1 + b2x2 + b3x3 + b4x4 (10)

In Equation (10), y is a statistical variable. The regression coefficient b can be obtained
using Equation (11):

b =
(
X′X

)−1X′Y (11)

First, solve the model. The least-squares method was used to find b, and the surface
roughness prediction model of the rust removal stage was first calculated. To optimize the
data, the surface roughness measurements were performed on multiple points of different
workpieces in the previous test, each factor level corresponds to five roughness results. The
points with the same factor and level were taken as the average surface roughness. It can
be obtained by calculation:

X =



2.778 3.301 −0.476 0
2.778 3.602 0.125 0.301
2.778 3.778 −0.301 0.301
2.954 3.301 0.125 0.301
2.954 3.602 −0.301 0
2.954 3.778 −0.476 0.301
3.079 3.301 −0.301 0.301
3.079 3.602 −0.476 0.301
3.079 3.778 0.125 0

Y =



0.6784
0.7118
0.7436
0.7218
0.7023
0.6890
0.6958
0.6627
0.7197

(12)

The multiple linear regression equation can be solved by using the regress command
of Matlab. The regression coefficient b, residual r, and F value can be obtained by the code:

[b, bint, r, rint, stats] = regress (Y, X).

b =
[

1.6487 −0.0265 0.0208 0.0562 −0.0083
]T (13)

Then, conduct residual analysis. Randomness and unpredictability are key compo-
nents of all regression models, and random error needs to be random and unpredictable.
After obtaining the regression model, it is necessary to ensure that the residuals are un-
traceable, usually based on residual plots to analyze the reliability of the data and whether
the model is correct.

As can be seen from Figure 8, the residual distribution of the model is close to the
normal distribution and belongs to the standardized residual. It shows that the model is
not disturbed by specific factors, which ensures the correctness of the model. Therefore,
the surface roughness prediction model in the rust removal stage is:

Ra = e1.7071m−0.0348Repm f
0.0230n0.0898M0.0146 (14)

In the same way, the residual analysis of the surface roughness prediction model in the
rough polishing stage and the fine polishing stage was conducted. The residual distribution
diagram of the rough throwing stage is shown in Figure 9.
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As can be seen from Figure 9 the residual distribution in the rough throwing stage is a
normal distribution, so the roughness prediction model in the rough throwing stage is:

Ra = e0.0599m0.0275Repm f
0.0424n0.1429M−0.0074 (15)

As can be seen from Figure 10, the residual distribution is a normal distribution, so
the roughness prediction model in the fine polishing stage is:

Ra = e−1.3465m0.0808Repm f
0.1019n0.6812M−0.0597 (16)

y = β0 + β1x1 + β2x2 + · · ·+ βpxp (17)

Figure 8. Distribution of surface roughness residuals in the rust removal stage.

Figure 9. Distribution of surface roughness residuals in the rough polishing stage.

Figure 10. The residual distribution of the fine throwing stage.
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3.2. Significance Test of Prediction Model

Firstly, use the F-test to test the overall significance level of the model. The signifi-
cance test for the multiple linear regression equation is to test whether the parameters in
Equation (18) are significantly different from 0.

y = b0 + b1x1 + b2x2 + b3x3 + · · ·+ bnxn (18)

suppose that: {
H0 : b1 = b2 = · · · = bk = 0 F ≤ Fα

H1 : bj(j = 1, 2, . . . , k) not all 0 F > Fα
(19)

Since y obeys the normal distribution, the sum of the squares of the samples corre-
sponding to y still obeys the square of the normal distribution, so:

ESS =
n

∑
1
(ŷt − y)2/σ2 ∼ x2(k) (20)

RSS =
n

∑
1
(y− ŷt)

2/σ2 ∼ x2(n− k− 1) (21)

The equation for the F-test is:

F =
ESS/k

RSS/(n− k− 1)
(22)

Among them, RSS is derived from the regression sum of squares, and ESS is derived
from the residual sum of squares, both of them follow the square of the normal distribution,
n represents the amount of data, and k is the number of calculation parameters. Calcu-
lated by Matlab, the F value of the rust removal stage is 15.352 greater than 15.22 [F (4,5)
(α = 0.01)], that is, the assumption H1 is accepted, which means that bj (j = 1, 2, . . . , k) is
not all 0, indicating that the prediction model of the rust removal stage is significant.

T-test uses t-distribution theory to infer the probability of differences, that is, to test the
significance of the independent variables in the equation. Provided the independent variables
in each group show a normal distribution, it means that there are consistent differences
between groups, that is, the rejection H0 can be maximized. The Equation T-test is:

T =
X− µ

σX√
N

(23)

where X is the mean value of each factor, N is the number of samples, and T needs to
follow a normal distribution. The significance test is conducted between the factors. If
T < Tα, hypothesis H0 is accepted, indicating that the two data are similar and there is
no discrimination; if T > Tα, hypothesis H1 is accepted, indicating that the two dates
are from different distribution data, and differentiated. Check the T value distribution
table, when α = 0.01, Tα is 2.8214. After substituting the orthogonal experimental data into
Equation (23), the T value of each coefficient is obtained as shown in Table 8. It can be
seen that the absolute value of T of each factor is greater than Tα, so the assumption H0 is
accepted, and there is a clear distinction between independent variables. It shows that each
factor in the prediction model has a significant effect on the surface roughness.

Similarly, the F value of the rough throwing stage is 32.156 greater than 15.22 [F (4,5)
(α = 0.01)], the absolute value of T is greater than Tα (2.8214), the F value of the fine
throwing stage is 50.317 greater than 15.22 [F (4,5) (α = 0.01)], and the absolute value of T is
greater than Tα (2.8214).

In summary, the surface roughness models of each polishing stage have good signifi-
cance, high reliability and data fit.
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Table 8. Distribution of T value in each stage of abrasive pool processing.

Regression Coefficients b1 b2 b3 b4

Derusting stage T value 3.42 4.28 3.46 6.84
Rough throwing stage T value 5.68 −3.51 9.67 −4.85

3.3. Significance Test of the Prediction Model

Abrasive pool processing is most effective in fine polishing. To verify the accuracy
of the surface roughness prediction model, 120-mesh abrasive particles were selected to
conduct the precision polishing experiment on the cylindrical workpiece. Five combi-
nations were randomly selected for the experiment. The feature points were measured,
and the above experimental conditions were substituted into the prediction model. The
experimental results and the predicted results are shown in Table 9. Figure 11 illustrated a
comparison diagram of the predicted value and the measured value:

Table 9. Parameter settings of surface roughness prediction experiment.

Experiment
Number

Experimental Parameters

A B C D

1 600 6000 1/2 2
2 900 4000 1/2 1
3 900 6000 1/3 2
4 1200 2000 1/2 2
5 1200 6000 4/3 1

Figure 11. The measured and predicted values of the finishing polish.

The average error ratio calculation equation is:

δ =
1
n

n

∑
1

∣∣∣∣Mm −M f

Mm

∣∣∣∣× 100% (24)

where Mm is the measured value and Mf is the predicted value. It can be seen from Table 10
that the maximum error between the predicted value and the actual value of the surface
roughness processed by the abrasive pool is 0.068 µm, the minimum error is 0.0094 µm, the
error ratio is basically below 10%, and the average error is only 6.44%, indicating that in
the fine polishing experiment stage, the roughness prediction model is basically consistent
with the actual value, and the established surface roughness prediction model can predict
the surface roughness of the abrasive pool well.

The roughness prediction model of the rust removal and rough polishing experiments
is the same as the roughness prediction model of the fine polishing experiment. The results
are shown in Table 11. Experiments 1–5 are rust removal experiments, and 6–10 are rough
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polishing experiments. R1 is the mean value of the rust removal stage, and R2 is the mean
value of the rough throwing stage.

Table 10. The measured and predicted values of the finishing polish.

Experiment Measured Value Predictive Value Difference Error Ratio

1 0.7013 0.6333 0.068 9%
2 0.5912 0.6545 −0.0633 10%
3 0.5525 0.4961 0.0664 11%
4 0.5895 0.5989 −0.0094 1.5%
5 1.3521 1.3616 −0.0095 0.7%
R 0.75732 0.74888 0.00844 6.44%

Table 11. The measured and predicted values of rust removal and rough polishing.

Experiment Measured Value Predictive Value Difference Error Ratio

1 5.135 5.063 0.072 1.4%
2 5.036 4.967 0.069 1.3%
3 4.87 4.8 0.07 1.4%
4 4.955 4.833 0.122 2.4%
5 5.365 5.256 0.109 2%
6 1.645 1.658 0.013 0.7%
7 1.987 1.648 0.339 17%
8 1.612 1.574 0.038 2.3%
9 1.693 1.605 0.088 2.1%
10 2.115 1.944 0.171 8.0%
R1 5.0736 4.9978 −0.0758 1.4%
R2 1.8104 1.6858 −0.1246 6.8%

From the perspective of error ratio, the prediction model of workpiece surface rough-
ness during rust removal is more accurate, with an error ratio of only 1.4%, followed by
the fine polishing experiment with an error ratio of 6.44%, and the last rough polishing
experiment with an error ratio of 6.8%. Observing the error value, it can be found that the
error value during fine polishing is only 0.00844 µm. From the point of view of the error
value, the average error of the surface roughness prediction model during fine polishing is
the smallest, and the surface roughness model is more accurate. In general, the errors of the
surface roughness prediction models for rust removal, rough polishing and fine polishing
are all within an appropriate range, and these three surface roughness models can predict
the surface roughness of the actual abrasive pool machining.

4. Conclusions

The influence of the parameters involved in the abrasive pool machining on the
workpiece machining quality was evaluated by designing an orthogonal test, and the
optimal parameter combination was determined by using the range method and factor
trend diagram. The surface roughness prediction model was established in three stages,
and the accuracy of the model was verified. The specific conclusions are as follows:

(1) The results of the orthogonal test show that the abrasive pool machining has the
advantages of high machining efficiency and small surface loss, and the optimal
machining parameter combination of A3B2C1D2 was obtained.

(2) The surface roughness prediction model of abrasive pool machining was obtained
through multiple linear regression equations, residual analysis and significance analysis
were carried out on the model, and MATLAB was used for solution analysis to determine
the randomness and the randomness of the surface roughness prediction model.

(3) The actual surface roughness was obtained through the experiment and compared
with the predicted value of the model. As a result, the maximum value of the average
error between the predicted value of the surface model and the actual value was 0.339
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µm, and the minimum value was 0.008 µm. Predict surface roughness for abrasive
pool machining.

In future research, the influence of other process parameters on the grinding and
polishing accuracy should be discussed in more detail, and the flow regime of the abrasive
pool should be systematically analyzed through hydrodynamic simulation to better predict
the surface roughness of the machined workpiece.
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