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Abstract: Numerical simulations on the fin shape of a microchannel evaporator in a CO2 air condi-
tioning system were performed at the inlet evaporative temperature of 10 ◦C and the vapor quality of
0.61. Two types of fin shapes were dealt with: the straight fins and V-fins. The numerical results were
verified by the experimental data. For the system under consideration and for the same heat transfer
area and the heat transfer coefficient for the air side in the microchannel evaporator, the effect of the
fin shape on the heat transfer was not different; however, the solution time and the physical memory
for the straight fins were 1.3 and 1.45 times compared with the V-fins, respectively. Therefore, the
V-fin shape should be used for numerical simulation to compare it with the straight fin shape. In this
study, the evaporation of the refrigerant in the microchannel evaporator took place in four passes.
The normal heat flux from the air through the fins and tubes was almost reached at 1550 W/m2 at
the evaporative temperature of 10 ◦C. The results obtained from the experimental data were in good
agreement with those obtained from the numerical results, with a deviation of less than 10%.

Keywords: fin shape; CO2; microchannel evaporator; heat flux; temperature profile

1. Introduction

Heat exchangers, especially fin tube heat exchangers, are widely used in industrial and
domestic applications, such as air conditioners, heat pumps, refrigeration systems, cooling
systems, etc. In the fin tube heat exchangers, the geometries of the fin, including the pitch,
thickness, shape and angle, are important parameters, which strongly affect their capacities.
Recently, many types of research related to the effect of the fin shape on the performance
of the exchanger have been reported [1–6]. For instance, Hsieh et al. [5] optimized the
louver finned-tube heat exchangers using the Taguchi method. The results indicated that
three main factors, including fin collar outside diameter, transverse tube pitch and fin pitch,
significantly influence the thermal hydraulic performance of the heat exchanger [5].

Recently, the application of CO2 as a refrigerant in the fin tube heat exchangers has
attracted particular attention due to its non-toxicity, safety and environmental friendliness.
Unfortunately, the previous report showed that the use of CO2 in an air conditioning
system led to its low performance [7]. Thus, to increase the efficiency of heat exchange in
the CO2 systems and reduce their size as well, lately, the microchannel or minichannel heat
exchangers have been installed in the systems [8–11]. Moreover, to develop the new CO2
microchannel system in a short time and at a lower cost, the numerical simulation has been
extensively used [9,12–15]. For example, based on the finite volume method, Jin et al. [11]
developed and predicted the performance of a CO2 transcritical system. The model had a
mean deviation with the experimental cooling capacities of 1.9% and with refrigerant-side
pressure drops of 12.3%. Using numerical analysis, Yun et al. [12] developed a microchannel
evaporator for a CO2 air conditioning system. The performance of the developed model
can be improved by changing the mass flow rate and varying the fin pitch to expand
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the two-phase region. Furthermore, also applying the finite volume method, Kim and
Bullard [13] developed a two-slab microchannel evaporator for a CO2 air conditioning
system. However, the results in Refs [7–15] did not mention the solution time for numerical
simulation in the microchannel evaporator.

To verify the theoretical calculation and the numerical simulation or to find the physical
rules for the models, the corresponding experimental results are needed for developing
the fin tube heat exchangers. Patino et al. [16] used experimental data to demonstrate
heat transfer correlations in a CO2 evaporator model, which was developed using a finite
volume method. For both numerical and experimental methods, Yang and Ning [17]
studied a CO2 double pipe evaporator to find out the effects of the tube diameters and the
operation parameters on its performance. The experimental data yielded a good correlation
with the evaporator heat transfer and pressure drop, verified by the relative errors of 5.21%
and 3.78%, respectively.

From the literature above, it is found that numerical simulation is a strong method
for developing a fin tube microchannel evaporator using CO2 as a refrigerant. Moreover,
the corresponding experiments are needed to enhance the system’s reliability. The review
results did not deal with the fin shape and solution time in more detail. Herein, we
numerically investigate the effect of the fin shape and the solution time on the heat transfer
of a microchannel evaporator in a CO2 air conditioning system. There are two types of
fin shapes: V-shaped fins and straight fins. Moreover, experiments are also carried out to
demonstrate the numerical simulation results.

2. Methodology
2.1. Design of Evaporator Model

The flat tube evaporator was designed with a heat transfer area of 2.5 m2 and a cooling
capacity of 2.6 kW. Figure 1 displays the dimensions of the microchannel evaporator. The
evaporator is composed of 29 flat tubes and divided into 6 passes. There are 3, 4, 5, 6, 6 and
5 flat tubes in the first, second, third, fourth, fifth and sixth pass, respectively. Each flat tube
has 10 rectangular microchannels with dimensions of 1.2 mm × 0.6 mm.

There are two fin shapes being investigated with the same heat transfer area and the
heat transfer coefficient for the air side. The straight fins have a height of 4.1 mm, and
the V-fins have a height of 4.05 mm, as shown in Figure 1. Table 1 presents the detailed
evaporator specifications.

Table 1. Detailed geometries of the microchannel evaporator with the straight fins and the V-fins.

Name Specifications of Straight Fin Specifications of V-Fin

Heat transfer area of evaporator (m2) 2.5 2.5
Evaporator Size (L × H ×W) (mm) 330 × 285 × 16 330 × 285 × 16

Flat tube size (mm) 1.3 × 300 × 16 1.3 × 300 × 16
Number of microchannels in a flat tube 10 10

Microchannel size (mm) 0.6 × 1.2 0.6 × 1.2
Fin size (mm) 4.1 × 0.1 × 16 4.05 × 0.1 × 16

Fin pitch (mm) 1.1 1.1
Angle of fin (deg) 0◦ 13.8◦

Number of fins per flat tube 536 536
Heat transfer area of a flat tube (m2) 81.3 × 10−3 81.3 × 10−3

Number of flat tubes in each pass 3-4-5-6-6-5 3-4-5-6-6-5
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Figure 1. Dimensions of the microchannel evaporator: (a) Front view; (b) A flat tube drawing with 

the straight fins; (c) A flat tube drawing with the V-fins. 
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The momentum formulation is as follows: 

Figure 1. Dimensions of the microchannel evaporator: (a) Front view; (b) A flat tube drawing with
the straight fins; (c) A flat tube drawing with the V-fins.

2.2. Mathematical Model

In this study, a turbulent model was used for numerical simulation. The governing
equations are shown as follows [18].
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The momentum formulation is as follows:

ρu·∇(u) = ∇·
[
−p + (µ+ µT)

(
∇u + (∇u)T

)
− 2

3
(µ+ µT)(∇·u)I

]
+ F (1)

The conservation of mass equation

∇·(ρu) = 0 (2)

Heat transfer equations

ρCpu·∇T +∇·q = Q (3)

q = −k∇T (4)

where T is the absolute temperature (K), p is the pressure (Pa), u is the fluid velocity (m/s),
µT is the turbulence viscosity (Pa.s), F is the external forces applied to the fluid (N/m3), ρ
is the density (kg/m3), Cp is the specific heat capacity at constant pressure (J/(kg·K)), Q
contains additional heat sources (W/m3), and q is the heat flux (W/m2).

The phase change equations are as follows:

ρ = θ1ρ1 + θ2ρ2 (5)

The specific heat capacity is

Cp =
1
ρ

(
θ1ρ1Cp,1 + θ2ρ2Cp,2

)
+ L1−2

∂αm

∂T
(6)

The mass fraction is

αm =
1
2
θ2ρ2 − θ1ρ1
θ1ρ1 + θ2ρ2

(7)

The effective thermal conductivity is as follows:

k = θ1k1 + θ2k2 (8)

The velocity of the refrigerant in the microchannel is

uch =

.
m

nρAch
(9)

The relationship between the vapor quality and the phase indicator is

x = θ2 and 1− x = θ1 (10)

θ2 =
h− h1

L1−2
(11)

where indices 1 and 2 indicate a refrigerant in phase 1 (liquid) and in phase 2 (vapor),
respectively, h is the enthalpy (kJ/kg), L1-2 is the latent heat (J/kg), x is the vapor quality,
and θ is the phase indicator.

In addition, a general k—εmodel was selected for the turbulent flow in the present
simulation. The equations of the k—εmodel are shown below.

The turbulent viscosity is modeled as

µT = ρCµ
k2

T
ε

(12)
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The transport equation for k reads

ρ(u·∇)k = ∇·
[(
µ+

µT
σk

)
∇k

]
+ pk − ρε (13)

where the production term pk is

pk = µT

[
∇u :

(
∇u + (∇u)T

)
− 2

3
(∇·u)2

]
− 2

3
ρk∇·u (14)

The transport equation for ε is as follows:

ρ(u·∇)ε = ∇·
[(
µ+

µT
σε

)
∇ε

]
+ Cε1

ε

kT
pk −Cε2

ε2

kT
(15)

where kT is the turbulent viscosity. For the superheated passes, the phase indicator θ1
(liquid) equals zero. The steady-state method was used to solve the CO2 microchannel
evaporator.

2.3. Numerical Simulation

It is very difficult and complex to simulate the microchannel evaporator at one time
because the evaporator has thin fins and microchannels. Therefore, there are six simulation
times corresponding to six passes of the evaporator. This approach is used to reduce the
computing resources. The input conditions for the first pass are the parameters in Table 2.
The input conditions for the second pass are the numerical simulation results of the first
pass and so on, until the numerical simulation of the sixth pass is completed. Table 2 shows
some inlet parameters and outlet parameters. The inlet parameters include some initial
values. The unknown parameters were calculated using Engineering Equation Solver
(EES) [19], REFPROP [20] and DORIN [21] software.

Table 2. Inlet parameters and measured parameters.

Pass Number Inlet Parameter Outlet Parameter

1
T1_i = 10 ◦C, p1_i = 45 bar;

Ta = 25 ◦C, ha = 110 W/(m2K)
x1_i = 0.61, mp_1 = 30/3 = 10 g/s

T1_o, p1_o, x1_o

2
T1_o, p1_o

Ta = 25 ◦C, ha = 110 W/(m2K)
x2_i = x1_o, mp_2 = 30/4 = 7.5 g/s

T2_o, p2_o, x2_o

3
T2_o, p2_o

Ta = 25 ◦C, ha = 110 W/(m2K)
x3_i = x2_o, mp_3 = 30/5 = 6 g/s

T3_o, p3_o, x3_o

4
T3_o, p3_o

Ta = 25 ◦C, ha = 110 W/(m2K)
x4_i = x3_o, mp_3 = 30/6 = 5 g/s

T4_o, p4_o, x4_o

(where indices 1, 2, 3 and 4 indicate a refrigerant in pass 1, 2, 3 and 4, respectively. Indices i and o indicate an inlet
and outlet of the flat tube, respectively. Ta is the air room temperature, m is the CO2 mass flow rate, x is the vapor
quality, and ha is the air convective heat transfer coefficient).

Figure 2 shows two flat tube models of the CO2 microchannel evaporator. The CO2
flows inside the flat tube, and the air is outside with the convective heat transfer. To
determine the variations of the vapor quality at the evaporator inlet, the EES software [19]
was used based on some initial conditions and the pressure–enthalpy diagram of R744.
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Figure 2. Two flat tube models of the CO2 microchannel evaporator: (a) a model of straight finned
flat tube; (b) a model of V-finned flat tube.

In Figure 3, the finite elements in the grid meshes of the straight fin model were
partitioned to be triangular. For the fluid flow, the boundary layer was divided into 5 layers
to investigate the characteristics of the wall, as shown in Figure 3a. For important parts,
the finer mesh level was used, i.e., the edges of the corners in the microchannels were
surveyed on 4 different levels (1, 10, 20, 30), as shown in Figure 3b. For the V-fin model, the
method and the meshing level are the same as in the straight fin model. The model consists
of approximately 610,000 domain elements and 122,000 boundary elements. The average
number of degrees of freedom (DOF) was 11,300,000 (plus 134,000 internal DOFs). The
parallel sparse direct solver (PARDISO) algorithm is a solver that was developed based on
the linear equation system. The relative tolerance was set at 10−6. For numerical simulation
in this study, the COMSOL Multiphysics software-version 6.0 was used with the PARDISO
solver.
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Figure 3. Grid mesh diagram of the straight fin model. (a) The boundary layer; (b) The edge of
the corners.

2.4. Experimental Setup

Figure 4 shows a schematic diagram of the test apparatus used in the study. It consists
of a CO2 DORIN compressor, a throttle valve, a gas cooler, a V-fin tube evaporator and an
internal heat exchanger. The pressure sensors and the thermocouples were installed at the
inlet and the outlet of each component to measure the pressure and temperature. Their
ranges and accuracies of measurement are displayed in Table 3. The mass flow rate of the
refrigerant was measured by a digital volumetric flow rate meter or determined by the
DORIN software based on the suction temperature, the evaporative temperature and the
gas cooler pressure. The experimental data of the microchannel evaporator with a V-finned
flat tube will be used to validate the numerical simulation results for the flat tube with
straight fins and V-fins. From Figure 5, the experimental data were imported to the EES
software; the vapor quality was determined by x = 0.61; the value was used to import the
numerical simulation. The uncertainty values of several parameters, such as the vapor
quality and the normal heat flux, were 3.17% and 6.2%, respectively. The evaporator with
the V-finned flat tube for the CO2 air conditioning system is shown in Figure 6.
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Table 3. Accuracies and ranges of testing devices.

Testing Apparatus Accuracy Range

Infrared thermal camera, Fluke Ti9 2% −20~250 ◦C
Thermometer, Extech 421,509 0.75% of rdg −20~250 ◦C

Thermocouples, T—Type ±0.1 ◦C 0~100 ◦C
Digital volumetric flow rate meter ±0.5% FS 400 to 5000 l/h
Pressure sensor, SENSYS—Korea ±0.5 FS 0~100 bar

Micromachines 2022, 13, 1648 7 of 14 
 

 

 

Figure 4. Schematic of the test loop for CO2 air conditioning system: (a) a CO2 compressor; (b) a gas 

cooler; (c) a throttle valve; (d) a microchannel evaporator; (e) an internal heat exchanger; (f) a flow 

meter; (g) a gas–liquid separator. 

 

Figure 5. The experimental data presented on a p–h diagram. Figure 5. The experimental data presented on a p–h diagram.



Micromachines 2022, 13, 1648 8 of 13Micromachines 2022, 13, 1648 8 of 14 
 

 

 

Figure 6. A V-finned tube evaporator for the CO2 air conditioning system. 

3. Results and Discussion 

The experimental data obtained from the test loop were under the ambient (outdoor) 

temperature of 33 °C. The inlet evaporative temperature and inlet vapor quality were 

fixed at 10 °C and 0.61, respectively. The temperature slice of the straight finned flat tube 

is shown in Figure 7. The inlet and outlet refrigeration temperatures of the straight finned 

flat tube were the same in the first pass of the microchannel evaporator; this result is con-

sistent with the theory of evaporation. The temperature of the fins was about 1 °C higher 

than that of the CO2 refrigerant. 

  

(a) (b) 

Figure 7. The temperature slice of the straight finned flat tube in the first pass. (a) Inlet; (b) Outlet. 

With the same initial simulation conditions, the temperature slice on the V-finned flat 

tube was the same as that obtained from the straight finned flat tube, as shown in Figure 

8. The temperature profile obtained from the straight finned flat tube was also the same 

as that obtained from the V-finned flat tube, as shown in Figures 9 and 10. However, the 

arrows of the heat fluxes were different for these two types. The conductive heat flux of 

the V-finned flat tube model was more concentrated in the connection location between 

the fins and the flat tube. 

Figure 6. A V-finned tube evaporator for the CO2 air conditioning system.

3. Results and Discussion

The experimental data obtained from the test loop were under the ambient (outdoor)
temperature of 33 ◦C. The inlet evaporative temperature and inlet vapor quality were fixed
at 10 ◦C and 0.61, respectively. The temperature slice of the straight finned flat tube is
shown in Figure 7. The inlet and outlet refrigeration temperatures of the straight finned flat
tube were the same in the first pass of the microchannel evaporator; this result is consistent
with the theory of evaporation. The temperature of the fins was about 1 ◦C higher than
that of the CO2 refrigerant.
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With the same initial simulation conditions, the temperature slice on the V-finned flat
tube was the same as that obtained from the straight finned flat tube, as shown in Figure 8.
The temperature profile obtained from the straight finned flat tube was also the same as
that obtained from the V-finned flat tube, as shown in Figures 9 and 10. However, the
arrows of the heat fluxes were different for these two types. The conductive heat flux of the
V-finned flat tube model was more concentrated in the connection location between the
fins and the flat tube.
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Figure 10. The temperature and conductive heat flux of the V-finned flat tube of the first pass.
(a) Temperature profile; (b) Conductive heat flux.

Figure 11 shows the vapor quality of the straight finned flat tube evaporator model
and the V-finned flat tube evaporator model at the evaporative temperature of 10 ◦C. Due
to the same heat transfer area (2.5 m2), the straight fins had a height of 4.1 mm, and the
V-shaped fins had a height of 4.05 mm (Figure 1). Therefore, the simulated vapor qualities
in these two cases were the same. Each microchannel pass of the evaporator had a length
of 300 mm. The evaporation of the refrigerant took place in four passes, so the normal
heat flux from the air through the fins and tubes was almost reached at 1550 W/m2. It was
observed that the saturated vapor state (dry state) was achieved at the outlet of the fourth
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pass. When the CO2 was superheated, the normal heat flux rapidly declined from 1550
to 700 W/m2. From Figures 7–11, with the same heat transfer area and the heat transfer
coefficient for the air side, the effect of the fin shape on the heat transfer of a microchannel
evaporator was no different between the straight fin model and the V-fin model.

Micromachines 2022, 13, 1648 10 of 14 
 

 

pass. When the CO2 was superheated, the normal heat flux rapidly declined from 1550 to 

700 W/m2. From Figures 7–11, with the same heat transfer area and the heat transfer coef-

ficient for the air side, the effect of the fin shape on the heat transfer of a microchannel 

evaporator was no different between the straight fin model and the V-fin model. 

 

Figure 11. The vapor quality and the heat flux along the length of the flat tube. 

Figure 12 shows the velocity field of the refrigerant along the length of the flat tube 

at the evaporative temperature of 10 °C. At the inlet, the velocity rose sharply because the 

refrigerant from the manifold entered the microchannel with a smaller cross-section. The 

velocity increased gradually in the microchannel; this was due to the mixture density de-

creasing. At the outlet, the velocity fell rapidly due to the refrigerant leaving the micro-

channel to enter the manifold, which saw the cross-section increase suddenly. 

 

(a) 

Figure 11. The vapor quality and the heat flux along the length of the flat tube.

Figure 12 shows the velocity field of the refrigerant along the length of the flat tube
at the evaporative temperature of 10 ◦C. At the inlet, the velocity rose sharply because
the refrigerant from the manifold entered the microchannel with a smaller cross-section.
The velocity increased gradually in the microchannel; this was due to the mixture den-
sity decreasing. At the outlet, the velocity fell rapidly due to the refrigerant leaving the
microchannel to enter the manifold, which saw the cross-section increase suddenly.

The comparison between the numerical simulation results and the experimental data
is shown in Figure 13 at the evaporative temperature of 10 ◦C. The experimental temper-
ature profile was captured by an infrared thermal camera and then compared with the
numerical simulation results. The experimental temperatures were also obtained from
the thermocouples. It could be observed that they had similarities at the first four passes,
and the refrigerant was superheated at the fifth and sixth passes. From the figure, the
deviation between the numerical results and the experimental data was less than 10% at
the hottest spot.

Table 4 shows the results on the number of elements, the solution time and the physical
memory between the straight finned flat tube model and the V-finned flat tube model.
For the same method and meshing level, the V-fin tube model had more elements but
less solution time and physical memory compared with those obtained from the straight
fin tube model. The results showed that the fin shape affected the solution time and the
memory. The solution time and the physical memory for the straight fins were 1.3 and
1.45 times those of the V-fins, respectively. This could be due to the grid meshes and
the PARDISO solver in the V-fin tube model being more suitable than those obtained
from the straight fin tube model. Therefore, the V-fin tube model should be used for
numerical simulation to save the computing resources. These results will make additional
contributions to numerical simulation studies in microchannel evaporators, especially with
a CO2 refrigerant.
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the velocity discussed; (b) The velocity field in a microchannel.
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Table 4. The solution time and the physical memory.

Types All Domains
(Elements)

All Boundaries
(Elements)

Solution Time
(s)

Physical
Memory (GB)

Straight fins 601,833 121,428 1653 9.7
V-fins 618,006 122,592 1268 6.69

4. Conclusions

A numerical study of the effect of the fin shape on the heat transfer and the solution
time of a microchannel evaporator in a CO2 air conditioning system was completed at the
evaporative temperature of 10 ◦C. The two types of fin shapes were mentioned: V-shaped
fins and straight fins. The experimental data were used to verify the numerical results.
Some important contributions can be expressed as follows:

• The mathematical model, the boundary conditions, the meshing method and the
PARDISO solver were applied to numerically simulate a microchannel evaporator
model. The numerical results were in good agreement with those obtained from the
experimental results, with an error of less than 10%.

• For the system under consideration and for the same heat transfer area and the heat
transfer coefficient for the air side, the effect of the fin shape on the heat transfer of
a microchannel evaporator was not different. However, the solution time and the
physical memory for the straight fins were 1.3 and 1.45 times those of the V-fins,
respectively. Under the same conditions, the V-fin shape should be used for numerical
simulation and not the straight fin shape.

• The evaporation of the refrigerant in the microchannel evaporator took place in four
passes. The normal heat flux from the air through the fins and tubes was almost
reached at 1550 W/m2 at the evaporative temperature of 10 ◦C.
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3. Okbaz, A.; Pınarbaşı, A.; Olcay, A.B. Experimental investigation of effect of different tube row-numbers, fin pitches and operating

conditions on thermal and hydraulic performances of louvered and wavy finned heat exchangers. Int. J. Therm. Sci. 2020,
151, 106256. [CrossRef]

4. Ayad, F.; Benelmir, R.; Idris, M. Thermal-hydraulic experimental study of louvered fin-and-flat-tube heat exchanger under wet
conditions with variation of inlet humidity ratio. Appl. Therm. Eng. 2021, 183, 116218. [CrossRef]

5. Hsieh, C.T.; Jang, J.Y. Parametric study and optimization of louver finned-tube heat exchangers by Taguchi method. Appl. Therm.
Eng. 2012, 42, 101–110. [CrossRef]

6. Jang, J.Y.; Chen, C.C. Optimization of louvered-fin heat exchanger with variable louver angles. Appl. Therm. Eng. 2015, 91,
138–150. [CrossRef]

7. Kim, M.H.; Pettersen, J.; Bullard, C.W. Fundamental process and system design issues in CO2 vapor compression systems. Prog.
Energy Combust. Sci. 2004, 30, 119–174. [CrossRef]

8. Choi, K.I.; Pamitran, A.S.; Oh, J.T. Two-phase flow heat transfer of CO2 vaporization in smooth horizontal minichannels. Int. J.
Refrig. 2007, 30, 767–777. [CrossRef]

http://doi.org/10.1016/S0140-7007(01)00106-2
http://doi.org/10.1016/S0140-7007(01)00025-1
http://doi.org/10.1016/j.ijthermalsci.2019.106256
http://doi.org/10.1016/j.applthermaleng.2020.116218
http://doi.org/10.1016/j.applthermaleng.2012.03.003
http://doi.org/10.1016/j.applthermaleng.2015.08.009
http://doi.org/10.1016/j.pecs.2003.09.002
http://doi.org/10.1016/j.ijrefrig.2006.12.006


Micromachines 2022, 13, 1648 13 of 13

9. Brix, W.; Kærn, M.R.; Elmegaard, B. Modelling distribution of evaporating CO2 in parallel minichannels. Int. J. Refrig. 2010, 33,
1086–1094. [CrossRef]

10. Nguyen, T.; Dang, T.; Vo, K. Experimental Investigation on a Microchannel Evaporator of CO2 Air Conditioning System with an
Internal Heat Exchanger. Int. J. Emerg. Res. Manag. Technol. 2017, 6, 40–45. [CrossRef]

11. Jin, J.; Chen, J.; Chen, Z. Development and validation of a microchannel evaporator model for a CO2 air-conditioning system.
Appl. Therm. Eng. 2011, 31, 137–146. [CrossRef]

12. Yun, R.; Kim, Y.; Park, C. Numerical analysis on a microchannel evaporator designed for CO2 air-conditioning systems. Appl.
Therm. Eng. 2007, 27, 1320–1326. [CrossRef]

13. Kim, M.H.; Bullard, C.W. Development of a microchannel evaporator model for a CO2 air-conditioning system. Energy 2001, 26,
931–948. [CrossRef]

14. Dang, T.; Teng, J.T. Comparison on the heat transfer and pressure drop of the microchannel and minichannel heat exchangers.
Heat Mass Transf. 2011, 47, 1311–1322. [CrossRef]

15. Dang, T.; Teng, J.; Chu, J. A study on the simulation and experiment of a microchannel counter-flow heat exchanger. Appl. Therm.
Eng. 2010, 30, 2163–2172. [CrossRef]

16. Patiño, J.; Llopis, R.; Sánchez, D.; Sanz-Kock, C.; Cabello, R.; Torrella, E. A comparative analysis of a CO2 evaporator model using
experimental heat transfer correlations and a flow pattern map. Int. J. Heat Mass Transf. 2014, 71, 361–375. [CrossRef]

17. Yang, J.; Ning, S. Experimental and Numerical Study of Double-Pipe Evaporators Designed for CO2 Transcritical Systems.
Processes 2019, 7, 547. [CrossRef]

18. Comsol Software, M. Heat Transfer Module, Version 6.0, 2021, Inc. 100 District Avenue Burlington, MA 01803, USA. Available
online: https://www.comsol.com/heat-transfer-module (accessed on 30 June 2022).

19. EES. Engineering Equation Solver; F-Chart MdthaSoftware Inc.: Madison, WI, USA, 2005; Available online: https://fchartsoftware.
com/ees/ (accessed on 30 June 2022).

20. REFPROP. REFPROP. NIST Refrigerant Properties Database 23; Version 9; Gaithersburg, MD, USA, 2013. Available online:
https://www.nist.gov/srd/refprop (accessed on 30 June 2022).

21. Dorin. Mario Dorin innovation, Compiobbi (FI), Italy, Version 19.1. [Online]. Available online: https://www.dorin.com/en/
Software/ (accessed on 30 June 2022).

http://doi.org/10.1016/j.ijrefrig.2010.04.012
http://doi.org/10.23956/ijermt/V6N4/109
http://doi.org/10.1016/j.applthermaleng.2010.06.019
http://doi.org/10.1016/j.applthermaleng.2006.10.036
http://doi.org/10.1016/S0360-5442(01)00042-1
http://doi.org/10.1007/s00231-011-0793-9
http://doi.org/10.1016/j.applthermaleng.2010.05.029
http://doi.org/10.1016/j.ijheatmasstransfer.2013.12.027
http://doi.org/10.3390/pr7080547
https://www.comsol.com/heat-transfer-module
https://fchartsoftware.com/ees/
https://fchartsoftware.com/ees/
https://www.nist.gov/srd/refprop
https://www.dorin.com/en/Software/
https://www.dorin.com/en/Software/

	Introduction 
	Methodology 
	Design of Evaporator Model 
	Mathematical Model 
	Numerical Simulation 
	Experimental Setup 

	Results and Discussion 
	Conclusions 
	References

