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Abstract: Development of a G-band broadband continuous wave (CW) traveling wave tube (TWT)
for wireless communications is described in this paper. This device provides the saturation output
power over 8 W and the saturation gain over 30.5 dB with a bandwidth of 27 GHz. The maximum
output power is 16 W and the bandwidth of 10 W output power is 23 GHz. The 3 dB bandwidth is
greater than 12.3% of fc (center frequency). The gain ripple is less than 10 dB in band. A pencil beam
of 50 mA and 20 kV is used and a transmission ratio over 93% is realized. The intercept power of
the beam is less than 70 W and the TWT is conduction cooled through mounting plate and air fan,
which makes the device capable of operating in continuous wave mode. A Pierce’s electron gun and
periodic permanent magnets are employed. Chemical vapor deposition diamond disc is used in the
input and output radio frequency (RF) windows to minimize the loss and voltage standing wave
ratios of the traveling wave tube. Double stages deeply depressed collector is used for improving the
total efficiency of the device, which can be over 5.5% in band. The weight of the device is 2.5 kg, and
the packaged size is 330 mm × 70 mm × 70 mm.

Keywords: G-band broadband amplifiers; traveling wave tubes; folded waveguide

1. Introduction

G-band electromagnetic wave provides availability for the design of terrestrial and
satellite radio communication networks according to the radio regulations of International
Telecommunication Union.

The European Commission Horizon 2020 ULTRAWAVE, “Ultra-capacity wireless layer
beyond 100 GHz based on millimeter wave Traveling Wave Tubes”, aims to exploit portions
in the millimeter wave spectrum for creating a very high-capacity layer [1].

However, there are two problems. One problem is the atmospheric attenuation, which
directly influences using these frequencies for long range communication [2]. The high
atmosphere attenuation and the lack of enough transmission power limit the range to a
few tens of meters, even by using high gain antennas [3].

Another problem is that there is a frequency range called “Terahertz Gap” between
the highest frequency of microwave technology and the lowest frequency of photonic
technology [4].

Vacuum electronic devices (VEDs) exhibit the advantages of high average power, high
operation frequency, and high efficiency. Traveling wave tubes (TWTs), one of the most
widely used VEDs, exhibit the incomparable advantage of wideband, which is much higher
than that of the available solid-state devices [5]. In THz regime, TWTs are the most widely
used VEDs.

In recent years, great progress has been made in the development of G-band TWT.
Some TWTs operating at G-band have been demonstrated [6–11], and the performances of
the TWTs are shown in Table 1.
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Table 1. Some G-band TWTs performances in recent years.

No. Output
Power Bandwidth Gain Operational

Duty Cycles Organization

1 50 W 2.4 GHz — 50% Northrop Grumman

2 50 W 3.6 GHz 35 dB 5% BVERI

3 11 W 14 GHz 27 dB — UC Davis

4 9 W 10 GHz 25 dB CW China Academy of Engineering Physics

5 14.1 W 7 GHz 30.7 dB CW China Academy of Engineering Physics

6 15 W 7.6 GHz 32 dB CW BVERI

7
8 W (3 dB) 27 GHz (12.3% fc)

30.5 dB CW This TWT
10 W 23 GHz

The bandwidth of most of the TWTs have narrower bandwidth (≤10 GHz), and half
of them cannot operate at continue wave (CW) mode. These performances of these devices
limited the applications in wireless communications, which require wider bandwidth (3 dB
bandwidth ≥10%), higher operational duty cycles (100%), higher total efficiency (≥5%),
higher gain (≥30 dB), and lower gain ripple (≤10 dB in band).

In order to solve the problems of the above G-band TWT and fit the requirements
of terahertz communication applications, a G-band wideband continuous wave TWT is
designed by Beijing Vacuum Electronics Research Institute (BVERI) and described in this
article. The device is developed according to the following design routes, which is different
from normal.

(1) In order to realize wideband beam–wave interaction, phase shift beyond 540◦ is used
as the working points, where the coupling impedance is low, but the dispersion is flat.

(2) The highest frequency (230 GHz) in band is used as the reference frequency instead of
the center frequency, which is beneficial to the optimization of structure parameters
and electrical parameters to reduce the gain ripple.

(3) A double stages deeply depressed collector is used for improving the total efficiency
of the TWT.

By the above design routes, a G-band TWT with a continuous wave output power
of 8 W and a gain of 30.5 dB with 27 GHz bandwidth is realized. The maximum output
power is 16 W and the bandwidth of 10 W output power is 23 GHz. The 3 dB bandwidth is
greater than 12.3% of fc (center frequency). The gain ripple is less than 10 dB in band.

2. TWT Design and Simulation

The TWT primarily contains five parts: electron gun, focusing system, radio frequency
(RF) circuit, RF windows, and collector. The building blocks of the TWT are shown
in Figure 1.

A Pierce’s electron gun is used to produce an electron beam with a current of 20 kV
and 50 mA. The type of the cathode is M-type and the cathode loading is 5 A/cm2. A
focus electrode modulates the beam providing a duty cycle from 0.1% to continuous wave.
The double anodes adjust the beam current and transmission. Opera 3D is used to design
the electron gun, and the simulation result is shown in Figure 2. The designed beam
voltage and current of the TWT are 20 kV and 50 mA with a beam radius of 0.06 mm and a
beam-shot of 10 mm, respectively.
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Figure 2. Simulation result of the electron gun.

Sm2Co17 periodic permanent magnet (PPM) is used as the focusing system. The
samarium cobalt magnets produce an on-axis Bz whose peak value is 0.5 T. The system is
simulated by opera 3D. Figure 3 shows the simulation model. According to the simulation
results, a high beam transmission ratio of 99% through the small diameter beam tunnel in
the slow wave circuit is essential.
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A folded waveguide is employed as the slow-wave structure in the TWT. It is fabricated
with CNC-machining. The material chosen was oxygen free copper. The fabricated circular
is shown in Figure 4.
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Figure 5 shows the dispersion curves of a traditional folded waveguide circuit. For
traditional fold waveguide slow-wave structure, n = −1 forward branch of the dispersion
curve was used for the circuit, which operated as usual.
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For the fully symmetric folded waveguide slow-wave structure, there is no stop band
at phase shift of 540◦ in theory. However, due to the machining, the actual slow wave
structure will have a certain asymmetry, which may result in a stopband at the phase shift
of 540◦ [12]. This stopband may affect the matching characteristics at the frequency, which
may depress the output power at this frequency. In addition, it may result in the undesired
3π oscillations. Therefore, phase shift of 540◦ is usually avoided to fall into the operating
frequency band when designing the folded waveguide slow-wave structure.
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According to the calculation formula of coupling impedance

Kc =
|Ez|2

2βP

for folded waveguide slow-wave structures, the closer to the cutoff frequency, the stronger
coupling impedance is. Here, Ez is the axial component of the electric field, β is the phase
constant of the electromagnetic wave, and P is the power flowing. Therefore, in order
to obtain greater power and higher interaction efficiency, the operating point is usually
selected within 540◦.

However, as shown in Figure 5, the phase shift within 540◦ means that the dispersion
is stronger, which directly affects the operating bandwidth of the TWT. As the dispersion
intensity of the folded waveguide slow-wave structure is positively correlated with the
proportion of the beam injection channel size to the waveguide, due to the limitations of
the performance of the current focusing system, it is difficult to further reduce the size of
the beam injection channel in the THz band.

One way to achieve broadband performance is selecting the operating point above
540◦, which is not usually used for its lower coupling impedance. The dispersion is more
flat, which is more conducive to the synchronization and interaction between beam and
wave. In addition, as the operating point moves away from the cutoff frequency, high
frequency loss can be reduced. The saved power from high frequency loss can be stored
in the beam and recovered by the deeply depressed collector with an efficiency of more
than 90%.

At the same time, the decrease of electronic efficiency can inhibit the dynamic defocus
of the beam, which is beneficial to improve the dynamic flow rate.

By the above design routes, the G-band broadband folded waveguide slow-wave
structure is designed, and its cold characteristics are calculated by CST Microwave Studio.
The simulation results are shown in Figures 6–9.
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Figure 9. Attenuation coefficient of the folded waveguide circuit.

Considering the effects of dispersion, coupling impedance, and attenuation, the work-
ing point is selected between 540◦ to 630◦. The beam line almost coincides with all frequency
points from 208 GHz to 233 GHz, which ensures excellent beam–wave synchronization in
the band and allows a wideband beam–wave interaction.

According to the results of Figures 7 and 8, the difference of phase velocity is less
than 1% of vpc (center) and the coupling impedance of the folded waveguide circuit is over
0.5 Ω in band. The effective conductivity of the circuit is empirically set as 2.6 × 107 S/m
considering the surface roughness. The attenuation coefficient of the folded waveguide
circuit is less than 150 dB/m, as shown in Figure 9.

The severed folded waveguide circuit consists of an input section and an output
section, which ensures the stable operation while providing a high gain over 30 dB with
low ripples.

The center frequency is usually selected as the reference frequency to find the operating
voltage when designing TWTs. The method is applicable when designing low frequency
TWTs or THz narrow band TWTs, as their variation of in-band coupling impedance is small.
However, for THz wideband TWT, the in-band coupling impedance varies strongly, and
the coupling impedance of which at the low frequency may be more than three times that
at the high frequency end, resulting in large gain ripple.

The design scheme in this paper does not follow the traditional design scheme, and
the highest frequency in band has been taken as the reference frequency to determine
the operation voltage. By adjusting the dispersion strength of the slow-wave structure,
the beam–wave interaction performance at the low-frequency can be adjusted, which can
bridge the gain ripple caused by the change of coupling impedance.

The performance of the circuit is simulated by using a large signal beam–wave interac-
tion software microwave tube simulator suite (MTSS). The saturation output power of the
circuit is over 12 W and the saturation gain is over 27.8 dB in 208–233 GHz at the designed
beam voltage and current, as shown in Figures 10 and 11.
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Figure 10. Saturation output power of the circuit.
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In order to increase the total efficiency, a double stage depressed collector with an
efficiency of over 90% is used in the TWT. The design voltage of the first stage is 17.5 kV,
and the voltage of the second stage is 18.5 kV. The simulation results are shown in Figure 12
and Table 2. According to the results, the total efficiency of the TWT can be over 8%
in band.
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Table 2. The simulation results of different frequency.

f (GHz) Collector Efficiency (%) Total Efficiency (%)

210 91.73 8.03
220 91.38 9.5
230 91.99 8.15

Diamond is used as window disk material because of its small dielectric constant, small
loss tangent, high thermal conductivity, and good broadband matching. Both the input
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and output RF windows of the TWT are pillbox windows, and the waveguide standard
WR-4 is selected according to the operating frequency. CST Microwave Studio was used
to optimize the S-parameters of the window. The measured S21 of a typical RF window is
about −1 dB and the S11 is lower than −10 dB in 200–240 GHz, as shown in Figure 13.
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3. TWT Performance

The block diagram of the experimental setup is shown in Figure 14, and the test system
is shown in Figure 15. A solid-state amplifier-multiplier chain (AMC) is used to provide
the input power for the TWT. Two directional couplers are used to sample the input and
output power of the TWT, respectively. The input and output power are measured with
two THz power meters simultaneously.
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Figure 15. Test system.

The TWT operates in continuous wave mode at an optimal voltage of 20 kV and a
beam current of 50 mA. The body current is 3 mA without RF and the worst body current
with RF is 3.5 mA. The corresponding electron transmission ratio is over 93%. The TWT is
conduction cooled through the mounting plate.

The measured output power and gain against input power for the TWT at different
frequencies are shown in Figures 16 and 17. The input and output segments of the slow-
wave structure have the same size in the design, and the AM (amplitude modulation) /AM
was not specifically considered. We plan to use anomalous dispersion to improve linearity
in the future.
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Figure 16. Measured output power against input power for the TWT at different frequencies.
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The measured saturation output power and gain of the TWT are shown in Figures 18 and 19.
The saturation output power is over 8 W and the saturation gain is over 30.5 dB in
204–231 GHz. The saturation output power is over 10 W in 205–228 GHz. The maxi-
mum output power is 16 W at 218 GHz. The 3 dB bandwidth is greater than 12.3% of fc.
The gain ripple is less than 10 dB in band.
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Comparing the measured saturation output power of the TWT with the simulation
results, the output power is lower than simulated. One reason for this is that the beam
current is set as 50 mA in the simulation, however, electrons of 3.5 mA are intercepted before
they research the output port of the TWT, which can depress the beam–wave interaction
efficiency. Another reason is that the insertion loose of the RF window is estimated as
1.5 dB in the simulation, which has been verified by the cold test of the RF window.

In addition, the maximum output power of the solid-stage source is less than 8 mW
beyond 228 GHz. This is why the output power beyond 228 GHz reduced significantly.

Comparing the measured gain of the TWT with the simulation results, the gain is
higher than simulated. A possible reason is that the input beam is thicker in the input part
than design. This can let the average coupling impedance in the beam cross section be
higher than the design. Stronger beam–wave interaction can occur, and the gain is higher.

The maximum efficiency of the TWT can research 10.2% and the total efficiency is
over 5.5% in band, corresponding to a power dissipation of less than 160 W, as shown
in Figure 20.
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Figure 21 is the photo of the packaged G-band TWT. The weight of the packaged TWT
is 2.5 kg and the size is 330 mm × 70 mm × 70 mm, respectively.
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4. Conclusions

This article presents the development of a G-band broadband continuous wave TWT
for wireless communications based on a slow-wave structure of fold waveguide. The device
provides the saturation output power over 8 W and the saturation gain over 30.5 dB with a
bandwidth of 27 GHz. The maximum output power is 16 W and the bandwidth of 10 W
output power is 23 GHz. The 3 dB bandwidth is greater than 12.3% of fc. The gain ripple is
less than 10 dB in band. A pencil beam of 50 mA and 20 kV is used and a transmission ratio
over 93% is realized. A double stages deeply depressed collector was used for improving
the total efficiency of the device, which can be over 5.5% in band. The weight of the device
is 2.5 kg, and the packaged size is 330 mm × 70 mm × 70 mm.
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version of the manuscript.
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