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Abstract: Convection in fluids produced by temperature and solute concentration differences is
known as thermosolutal convection. It has valuable utilization in wide industrial and technological
procedures such as electronic cooling, cleaning, and dying processes, oxidation of surface materials,
storage components, heat exchangers, and thermal storage systems. In view of such prominent
physical significance, focus is made to explicate double (thermal and solutal)-diffusive transport in
viscoelastic fluid characterized by the Casson model enclosed in a curved enclosure with corrugations.
An incliningly directed magnetic field is employed to the flow domain. A uniformly thermalized
and concentrated circular cylinder is installed at the center of the enclosure to measure transport
changes. Dimensionally balanced governing equations are formulated in 2D, representing governed
phenomenon. Finite element-based open-sourced software known as COMSOL is utilized. The
domain of the problem is distributed in the form of triangular and quadrilateral elements. Transport
distributions are interpolated by linear and quadratic polynomials. The attained non-linear system is
solved by a less time and computation cost consuming package known as PARDISO. Convergence
tests for grid generation and validation of results are executed to assure credibility of work. The
influence of involved physical parameters on concerned fields are revealed in graphical and tabular
manner. Additionally, heat and mass fluxes, along with, kinetic energy variation are also evaluated.

Keywords: convective thermosolutal transport; Casson fluid; curved corrugated enclosure; MHD; FEM

1. Introduction

The bulk movement of liquids due to diversified distribution of densities is known
as convection, and the joint effect of such variations on thermal and solutal behavior of
involved material is termed thermosolutal convection. The pervasive utility of dual (ther-
mal and solutal) diffusion is evidenced in various industrial and environmental processes,
e.g., nuclear waste storage, oceanography, solidification and petrochemical processes, re-
moval of contaminants from water, purification of air from pollutants, and so forth. The
capitalization of double-diffusive transport in different procedures is also evidenced in
refs. [1–11]. Recently, a recommendable survey has been commenced to evaluate diffusive
transport in multiple flow problems, for instance convective current generated in air by
opposing and assisting buoyancy driven forces was elucidated by Beghein et al. [12]. The
effectiveness of buoyancy forces on solutal and energy transmission was comprehendingly
disclosed by Gobin and Benacaer [13]. The influence of inertial forces on thermal and
solutal diffusions by providing mixed convection to water in closed configuration was
manifested by Amiri et al. [14]. Nithyadevi and Yang [15] examined the generation of flux
in heat and mass distributions in an enclosure with provision of isothermal and concen-
tration distributions at extremities. Numerical simulations were executed to determine
change in heat and mass transfer by providing thermally buoyant flow in a vertical annulus
by Chen et al. [16]. A finite difference scheme was utilized by Qin et al. [17] to adum-
brate convective transport with diffusion aspects due to inertial and potential temperature
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differences. Some outstanding works quantifying diffusive thermosolutal transport are
enclosed in refs. [18–23]. To highlight the behavior of critical shear-dependent materials,
fluid models have been proposed. In this regard, the Casson fluid was proposed by Casson
in [24], which is assumed to be the fittest one because it illuminates viscosity behavior at
infinite shear stress. Viscoelastic liquids are given more physical significance because they
depict the properties of blood. So, characterizing the flow of blood in arteries utilizing
the Casson model is preferred. For the last 20 years, the Casson model has been taken
into account in different computational domains and in various physical circumstances.
Likewise, Rao et al. [25] determined physical and mathematical aspects to restrict Casson
fluid to Newtonian by providing surface drag then yield stress. Kashif et al. [26] executed
the unsteady flow of Casson fluid characterized by stretchable surface with mass and
heat transmission. Ali et al. [27] revealed the magnetized flow of Casson liquid with the
insertion of nanoparticles in a horizontally placed cylinder. The electroosmotic flow of
Casson liquid in a channel with sinusoidal boundaries was scrutinized by Saleem et al. [28].
For the sake of readers’ interest, some topical work has been cited in refs. [29–35].

For restricting flow in a laminar regime, the best technique is the application of a mag-
netic field in transversal direction. The interaction of flow distributions with a magnetic
field engenders a new class of liquids called electrically conducting fluids. These magne-
tized fluids play vital roles in numerous engineering disciplines. Even the joint execution
of magnetization with heat transfer will make it more effective in producing stratified
environments for producing or reducing the temperature of systems. Some remarkable
utilizations of magnetic fluid are seen in fusion/fission reactors, solar technology, crystal
growth, therapies, targeted drug delivery, and so many others. The magnetically influenced
flow of viscous fluid in confined geometry along with heat transfer was conducted by
Garandet et al. [36]. Rudraiah et al. [37] estimated the declining aptitude in flow distri-
butions and opposing aspects of magnetic force in flow and uplift in heat flux rate. The
dimensionless Hartmann number for flow in confined configurations by employing scaling
of parameters was manifested by Hadid et al. [38]. Piazza and Ciofalo [39] considered a
wide variation in Hartmann numbers from 100 to 10,000 and measured depreciation in
velocity and uplift in heat and mass distributions. It is also observed that skin friction at
the surface also enhances versus the Hartmann number. The unsteady MHD flow of 2D vis-
cous fluid among two orthogonally permeable plates was commenced by Kashif et al. [40].
Bayones et al. [41] delineated the magnetic flow of stagnant fluid over a stretched surface
by performing analytic and numerical solutions. Kashif et al. [42] examined the Soret
and Dufour effects, first-order chemically, reacting Maxwell fluid past a stretched sheet
concentrated, in a porous medium, and the series solution of magnetohydrodynamics.
The performance of nanoparticles’ addition in base liquid enclosed in a wavy cavity in
the presence of a magnetic field was divulged by Sheremet [43]. Khan [44] has made an
effort to enlighten the heat and mass transfer using a first-order chemical reaction incorpo-
rating the magnetic effect in a boundary-layer MHD stagnation point flow on an elastic
sheet through a porous medium. Hussain et al. [45] probed influence of magnetic field on
thermal and solutal convective flow of Casson fluid in an enclosure by performing finite
element computations.

The effectiveness of thermosolutal convection in the above-mentioned scientific re-
view acknowledges its importance. Although, for the prominence of this effort, it has
been utilized in indoor temperature management, building construction designs, efficient
automobile engines working, maintenance of shafts, and food processing. Additionally, the
considered versatile fluid (Casson) in the current effort also raises the importance of study
due to diversified and unique applications (paint industry, blood circulation, and emulsion
formations). So, as far as the novelty of this article is concerned, this work represents its
originality in the following ways:

1. The consideration of thermosolutal convection combinedly.
2. Considering curved corrugate domain to raise thermal performance of cavity.
3. Incorporation of Casson fluid in the study to perform the study in a more realistic approach.
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4. The inclusion of inclined magnetic field effects instead of transversal ones.

So, in the authors’ opinion, this work is enriched with novelty and will definitely
provide direction to researchers to work in this direction by considering different fluids
and changing the design and structure of enclosures. It is worthwhile to mention that
previously research has been performed with Newtonian fluids and enclosures without cor-
rugations, so this will immensely assist researchers in exploring thermosolutal convection
in complexed domains.

2. Mathematical, Modeling
2.1. Problem Formulation

We took into consideration the two-dimensional, steady, incompressible, and laminar
flow of Casson liquid inside a curved corrugated cavity with a middle circular cylinder.
The Boussinesq technique was used to formulate fluid density, taking into account shear-
rate-dependent viscosity and the assumption that the fluid density is impersistent. At
the bottom extremity and surface of the circular cylinder, uniform temperature (Th) and
concentration (Ch) are provided, whereas the curved surfaces are provided by cooled
temperature (Tc) and constant concentration (Cc). The vertical wall of the cavity is kept
insulated. The inclined, magnetic, field of strength B0 is employed, to the domain-making,
angle of γ. Figure 1 presents a schematic illustration of a domain.
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2.2. Governing, Equationss

The governing equations in dimensional form based on the aforementioned assump-
tions are as follows [45]:

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ

(
u

∂u
∂x

+ v
∂u
∂y

)
= −∂p

∂x
+ µ

(
1 +

1
β

)(
∂2u
∂x2 +

∂2u
∂y2

)
+ Λx, (2)

ρ

(
u

∂v
∂x

+ v
∂v
∂y

)
= −∂p

∂x
+ µ

(
1 +

1
β

)(
∂2v
∂x2 +

∂2v
∂y2

)
+ Λy, (3)

u
∂T
∂x

+ v
∂T
∂y

= αe

(
∂2T
∂x2 +

∂2T
∂y2

)
, (4)
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u
∂T
∂x

+ v
∂T
∂y

= αe

(
∂2T
∂x2 +

∂2T
∂y2

)
, (5)

where (u, v) denotes the components of velocity along the (x, y) directions and (β, µ, ρ,
αe, p, D) denotes the Casson parameter, kinematic viscosity, fluid density, thermal diffusiv-
ity, pressure, and diffusion coefficient, respectively. Λ =

(
Λx, Λy

)
denotes the force index

resulting from the magnetic field.
The force index generated in consideration of the Lorentz force and by using the

Boussinesq approximation, temperature, and concentration gradients are stated as follows:

Λx = σB2
0

(
vsinγcosγ− usin2γ

)
(6)

Λy = σB2
0

(
usinγcosγ− vcos2γ

)
+ ρg[βT(T − Tc) + βc(c− cc)] (7)

where, respectively, βT and βc represent the thermal and solutal expansions.

2.3. Boundary Conditions

n displays the normal vector on the boundary.

u = 0, v = 0, T = Th, c = ch (Hot side) (8)

u = 0, v = 0, T = Tc, c = cc (Cold side) (9)

u = 0, v = 0,
∂T
∂n

=
∂c
∂n

= 0, (Remaining walls) (10)

The governing, equations are transformed into non-dimensional form using the fol-
lowing parameters.

(X∗, Y∗) =
(x, , y)

L
, (U∗, V∗) =

(u, , v)L
α f

, P∗ =
pL2

ρα2 , θ∗ =
T − Tc

Th − Tc
, C∗ =

c− cc

ch − cc
(11)

αe =
ke(

ρcp
)

f
, Ra =

ρ2βT gL3∆TPr
υ2 , Le =

αe

D
, Ha = BL

√
µ

σ
, Pr =

ν

α
. (12)

The governing equations are represented non-dimensionally as follows:

∂U∗

∂X∗
+

∂V∗

∂Y∗
= 0 (13)

(
U∗

∂U∗

∂X∗
+ V∗

∂U∗

∂Y∗

)
= − ∂P∗

∂X∗
+ Pr

(
1 +

1
β

)(
∂U∗

∂X∗
+

∂U∗

∂Y∗

)
+ ΛX∗ (14)(

U∗
∂V∗

∂X∗
+ V∗

∂V∗

∂Y∗

)
= − ∂P∗

∂Y∗
+ Pr

(
1 +

1
β

)(
∂V∗

∂X∗
+

∂V∗

∂Y∗

)
+ ΛY∗ , (15)

U∗
∂θ∗

∂X∗
+ V∗

∂θ∗

∂Y∗
=

∂2θ∗

∂X∗2 +
∂2θ∗

∂Y∗2 (16)

U∗
∂C∗

∂X∗
+ V∗

∂C∗

∂Y∗
=

1
Le

(
∂2C∗

∂X∗2 +
∂2C∗

∂Y∗2

)
, (17)

where
ΛX∗ = PrHa2

(
V∗sinγcosγ−U∗sin2γ

)
(18)

ΛY∗ = PrHa2
(

U∗sinγcosγ−V∗cos2γ
)
+ RaPr(θ∗ + NC∗) (19)

The associated dimensionless boundary conditions are

U∗ = 0, V∗ = 0, θ∗ = 1, C∗ = 1 (Hot, side) (20)
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U∗ = 0, V∗ = 0, θ∗ = 0, C∗ = 0 (cold, side) (21)

U∗ = 0, V∗ = 0,
∂θ∗

∂n
=

∂C∗

∂n
= 0 (Remaining walls ) (22)

The following are definitions of mathematical relations for local and average Nusselt
and Sherwood numbers and:

Nulocal =

(
− ∂θ∗

∂X∗

)
X∗=0

(23)

Shlocal =

(
− ∂C∗

∂X∗

)
X∗=0

(24)

Nuavg =
1
S

∫ 1

S
Nulocal dS (25)

Shavg =
1
S

∫ 1

S
Shlocal dS. (26)

Additionally, the total kinetic energy is stated as follows:

K.E =
1
2

∫
Ω
‖U2‖ dΩ (27)

where U = (U∗, V∗) is the velocity vector.

3. Solution Methodology

By using exact approaches, fluid flow behavior in non-confined boundaries can be
managed with ease, but using conventional techniques to extract the solution in a closed
enclosure with various types of obstacles might be challenging. Therefore, to describe
their findings, the majority of researchers use numerical schemes, and the most generous
techniques are FDM, FEM, and FVM. Among the aforementioned numerical approaches,
the finite element method is one of the most flexible since it can readily simulate com-
plicated and irregular shapes by discretizing the given domain with finite elements. So,
in view of complexity of current physical problems, a commercial software known as
COMSOL Multiphysics in the latest version 5.6 is used. The main steps involved during
the capitalization of the software are represented in Figure 2.

As a result, while computing velocity and temperature, we used stable quadratic
elements, while approximating pressure using linear elements. In the current pagina-
tion, a hybrid finite element mesh composed of rectangular and triangular components is
used. The coarse grid-level computational mesh is shown in Figure 3, and the associated
degrees of freedom at further levels of refinement are displayed in Table 1. The finite ele-
ment method’s steps are shown in Figure 4. For the purpose of linearizing non-linearized
expressions in FEM, Newton’s technique is utilized, and the resulting linear system of
equations is solved using a direct solver that relies on elimination and a unique rearrange-
ment of the unknowns. For the non-linear iterations, the following convergence condition
is established: ∣∣∣∣χn+1 − χn

χn+1

∣∣∣∣ < 10−6

where the general solution component is represented by the symbol χ.
In the finite element method, the basic step to resolve the problem solution is the

conversion of complex domains into small sub-domains called elements. To approximate
field variables in these elements, we use different types of interpolating functions. In
this work, pressure is approximated by linear function, and other distributions (velocity,
temperature, and mass) are approximated by quadratic elements. In addition, hp refinement
is obliged for meshing. There are two types of convergences in finite element analysis,
which are explained below:
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1. The first one is the convergence of solutions, which explains how the algorithm inside
the solver may find a problem solution that is accurate and stable enough. In the
finite element method, at last, we attain systems of equations which are solved by
Paradiso built-in Software in the backup of COMSOL, so a convergent solution is
attained when iterations are performed.

2. The second sort of convergence is mesh convergence, which entails systematically
reducing the size of elements close to areas of high gradients in order to obtain more
precise findings.

In COMSOL, we applied adaptive meshing and quantities of physical interest such as
Nusselt and Sherwood numbers, which are computed at different refinement levels. From
the table drawn for grid the convergence test (Table 2), which describes variation in heat
and mass flux at different refinement levels, no deviation in quantities at level 8 and 9 is
shown. The FEA grid convergence is a highly essential test to assure the credibility of work.
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Table 1. Mesh statistics for different levels of refinement.

Grid No. Elements Degree of Freedoms

1 390 2607
2 552 3630
3 878 5643
4 1476 9284
5 2130 13,189
6 3388 20,504
7 8092 48,224
8 20,002 117,161
9 27,678 159,379
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3.1. Grids, Convergence

Grid convergence tests are carried out at different grid levels to demonstrate the
validity of capitalized numerical schemes and by fixing β = 1, Ha = 25, Le = 2.5,
Pr, = 6.8, and Ra = 105, which are revealed in Table 2. Average heat and mass fluxes are
computed for this purpose, and an estimate of kinetic energy is also made. It can be shown
that the values of the engineering interest quantities described above are consistent at
levels 8 and 9.

Table 2. Study of grid convergence for average mass and heat fluxes.

Grid Nuavg Shavg K.E.

1 8.1634 5.6851 192.96
2 8.3042 5.8191 175.23
3 8.7013 5.8818 171.68
4 9.2243 5.9220 166.59
5 9.5047 5.9208 166.28
6 9.7831 5.9269 166.41
7 10.755 5.9313 165.48
8 11.6091 5.9204 164.88
9 11.6095 5.9204 164.85
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3.2. Validation of Results

By computing the average Nusselt number against the Casson fluid parameter β and
fixing Ha = 25, Le, 2.5, Pr = 6.8, and Ra = 105, as given in Table 3, the results are
assured by comparing them with those reported by Hussain et al. [45]. A perfect match is
discovered among the outcomes using the obtained data.

Table 3. Comparison of results with the published work of Hussain et al. [45] for various values of β.

β Hussain et al. [45] Present

0.1 2.389863 2.390235
1.0 3.811945 3.811682
5.0 4.275872 4.275113
10 4.355561 4.354701

4. Results and Discussion

This section is provided to understand the results based on stream lines, isotherms,
and isoconcentration patterns against different parameters such as (β), (Ra), (Le), and
(Ha). In addition, measurements are conducted for kinetic energy as well as mass and
heat fluxes. Additionally, some parametric variables, i.e., heat, capacity (cp = 1), isotropic
thermal conductivity (κ = 1), density (ρ = 1), and ratio-specific heat (γ = 1), are given
particular values in order to provide flow distribution variations.

Figure 5 illustrates the influence of the Casson parameter (β) on momentum, tem-
perature, and concentration distribution. The changes in velocity distribution via stream
lines against (β) is exclusively discussed in Figure 5a–c. In this instance, it is noted that
greater values of the non-Newtonian parameter result in resistance to fluid motion. That
is the fact that the velocity profile and the thickness of the boundary layer decrease for
greater values of (β). Figure 5d–f reveals the change in the thermal field in relation to the
Casson parameter (β). It is revealed that isotherms at (β)=10 isotherms magnitude exhibit
greater. response because, at higher values of (β) fluid velocities, average kinetic, energy
increases and the temperature profile exhibits a positive trend. It is significant to note that
the installation of a localized heat source at the bottom wall and the creation of convective
thermal potential cause heat to move from the lower portion of the enclosure to the higher
portion. The effect of the Casson fluid parameter (β) on the concentration field is revealed
in Figure 5d–f. As can be observed, when the (β) factor is less, less fluid particle dispersion
is produced, which improves fluid concentration as a result. However, at increasing Casson
magnitudes, the fluid exhibits more Newtonian fluid behavior, and its viscosity decays,
causing more fluid disturbance and a decrease in the concentration field, since the base wall
and circular cylinder in the current work are uniformly concentrated to produce buoyancy
forces. According to the illustration, viscosity is maximum at lower magnitudes of (β) and
fluid molecules gather close to the base wall. In addition, the squeezing of the regions at
higher magnitudes of (β) is observed.

Changes in stream lines, isotherms, and isoconcentrations relative to (Ra) varying
from Ra = 105 − 107 are shown in Figure 6. In Figure 6a–c, it is evident that the amplitude
of the stream function, as interpreted by the stream lines, mounts. against the growing
magnitude of the Rayleigh number (Ra). It is supported by the mathematical relationship

that exists for the dimensionless Rayleigh number coefficient, i.e., Ra = ρ2βTgL3∆TPr
υ2 . This

expression shows that fluid viscosity reduces with an increase in (Ra), since (Ra) has an
inverse relationship with, viscous forces. It is important to note that four vortices arise and
that stream line deviations appear at larger magnitudes of (Ra). Additionally, it appears that
the fluid is moving in the upper and lower halves in the opposing directions. Figure 6d–f
uses isotherm patterns to express the change in temperature distribution relative to (Ra). It
has been noted that when the magnitude of (Ra) increases, fluid temperature rises, which
is supported by isothermals contours patterns. This fact is supported by the relationship
that shows that when (Ra) increases, the temperature differential between, hot and cold
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regions widens and thermal buoyancy forces are generated. Therefore, the region above
the cylinder widens and the maximum diffusion of the temperature distribution is seen
at Ra = 107. Figure 6 reveals the variation in the concentration profile against Rayleigh
number (Ra). It is adhered that fluid concentration is higher at lower magnitudes of (Ra)
than at higher magnitudes of (Ra).
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The cause of this behavior is that fluid accumulates, and the concentration field rises
for lower values of (Ra), i.e., Ra = 107, where a low solutal convective potential is generated
by a smaller concentration difference.

Figure 7 depicts the change in velocity, temperature, and concentration distributions
when the magnitude of the magnetic field parameter (Ha) is increased. Since, the Hartmann
number (Ha) is implicated in the current investigation due to the inclusion of a magnetic
field, which plays a role, in reducing the velocity profile and making the flow regime,
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laminar. The flow behavior of Casson fluid in curved corrugated structures against the
deployment of the Hartmann number (Ha) is explained in Figure 7a–c. At Ha = 80, the
velocity is at its lowest magnitude, while at Ha = 20, the velocity distribution is at its
highest value. It is because the opposing Lorentz force produced by the high Hartmann
number (Ha) causes resistance, to the fluid and stops the motion. Figure 7d–f depicts a
variation in thermal distribution based on isothermal contours vs. Hartmann number. The
Hartmann number (Ha) indicates the ratio of Ha = BL

√
µ
σ , in which it can be shown that

as the viscosity of a fluid increases against (Ha) due to which the fluid’s average kinetic
energy decreases, which has the effect of causing a decay in the temperature distribution.
Figure 7g–i shows that the concentration distribution improves as the Hartmann number
(Ha) increases. It is so because as (Ha) increases, viscosity improves, due to which fluid
concentration rises as a result. Additionally, with Ha = 80, a larger isoconcentration region
is generated. In Figure 8, we looked at the distributions of momentum, temperature, and
concentration as a function of Lewis number (Le), which varies from “01 to” 10. Figure 8a–c
analyzes velocity behavior change in relation to Lewis number (Le). Since (Le) has no direct
relationship to momentum diffusivity, no significant, changes in momentum distribution
are seen against it. The impact of the Lewis numbers (Le) on isothermal contours are shown
in Figure 8d–f by fixing, Pr = 6.8, Ha = 25, β = 1, Ra = 105, N = 1, and γ = 1. Similar to the
velocity profile, no discernible change in the temperature distribution is seen against Lewis
number (Le). Figure 8g–i examines the positive trend in the amplitude of the mass flux
versus (Le). Given that the Lewis number is the ratio of the thermal-to-mass diffusivities.,
increasing (Le) causes the thermal diffusion to rise, while causing the mass diffusivity
to fall. As a result, the optimized region is obtained at Le = 1, where there is less mass
dispersion, while the isoconcentration region is thinner at Le = 10. Near the hot surface, a
large concentration of fluid is present.

Table 4 shows numerical information about changes in the average Nusselt number
(Nuavg) and average Sherwood number (Shavg) in relation to the Hartmann number, and
Casson fluid, parameter (β) by fixation, Pr = 6.8, Ra = 105, Le = 2.5, N = 1, and γ = 30◦. As
can be shown, the highest mean Nusselt number and Sherwood number, with magnitudes
of 13.813 and 11.395, respectively, were found at β = 10 and Ha = 0. Because there is no
magnetic field at Ha = 0, there are no resistive forces, as a result, velocity and kinetic energy
are both very high, and temperature flux is enhanced. Average heat and mass fluxes are
growing because the fluid is approaching Newtonian behavior when the Casson parameter
(β) is increased. As a result, the fluid’s viscosity is decreasing, causing kinetic energy to
surpass and the two flux rates listed above to increase. However, average heat and mass
fluxes show a different pattern when measured against the Hartmann number. This fact
is demonstrated by the generation of resistive forces in the flow domain as a result of an
increase in (Ha) and a decrease in kinetic energy.

Table 4. Changes in the average Nusselt and Sherwood numbers in relation to the Casson parameter
(β) and the Hartmann number (Ha).

Nuavg Shavg

Ha β = 0.1 β = 1 β = 10 β = 0.1 β = 1 β = 10
0 10.208 12.511 13.813 7.2124 10.467 11.395

25 10.133 11.609 12.312 7.6856 9.9592 10.721
50 10.021 10.565 10.802 7.6880 9.0789 9.5956
75 9.9600 10.134 10.207 7.6435 8.5659 8.8763
100 9.9301 9.9959 10.020 7.5533 8.1425 8.3254

The averages kinetic energy varies for several Hartmann numbers, and Casson pa-
rameter (β) values, as seen in Table 5. The findings showed that the kinetic energy was
enhanced 26.5 times at β = 10 and Ha = 0 compared with β = 1.0 and Ha = 0. It can be
observed that as the Casson parameter (β) is increased, Casson fluid begins to behave like
Newtonian fluid, which results in a decrease in fluid viscosity. This reduction in viscosity
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increases fluid velocity while also increasing kinetic energy. In contrast, decreasing aptitude
in kinetic energy is observed versus (Ha) because of the creation of Lorentz forces, which
provides resistance to fluid particle motion and restricts increases in kinetic energy.
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Table 5. Average kinetic variation for different Hartmann numbers (Ha) and Casson parameters (β).

Kinetic Energy

Ha β = 1 β = 5 β = 10
0 25.956 327.11 661.12
25 19.325 164.88 268.93
50 10.831 57.068 80.792
75 6.0996 23.557 31.014

100 3.4479 10.630 13.474
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5. Concluding Remarks

The current communication examines the Double-Diffusive Natural, Convection
(DDNC) regime in Casson fluid flow in a curved corrugated enclosure, for uniform tempera-
ture and concentration distributions and by putting a heated and concentrated cylinder. The
mathematical representation of the problem is carried out in the form of a dimensionless
partial differential system by capitalizing the governing law. The finite element approach
is used to perform numerical simulations. The accompanying momentum, temperature,
and concentration distributions vary in response to steam lines, isothermal, and isocon-
centration patterns. Engineering, quantities such as kinetics energy, local Nusselt, and
Sherwood number are also assessed against dimensionless involved physical parameters.
The following are the key findings of the current study:

• By, increasing the Lewis number, the mass distribution decreases, as justified by the
isoconcentration pattern.

• The temperature distribution improves while the concentration profile deteriorates as
the Rayleigh number increases.

• Intensification of kinetic energy is noticed against the Hartmann number, while the
opposite feature is exhibited against (β).

• Heat and mass flux coefficients decrease in relation to the Hartmann number (Ha).
• Heat and mass flux distributions exhibit an upsurging tendency when measured

against the Casson parameter (β).
• Because of the heat and concentrated circular obstacle, considerable heat and mass,

diffusions are detected in its surroundings.
• A significant factor in convective heat and mass transmission is the Rayleigh number (Ra).
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Nomenclature

g Gravitational acceleration B0 Magnetic field strength
y Vertical coordinate µ Dynamic viscosity
Sh Sherwood number T Temperature
ν y-coordinate velocity P Fluid pressure
Le Lewis number ke Thermal conductivity
Pr Prandtl. number αe Thermal diffusivity
x Horizontal. coordinate Nu Nusselt number
Ra Rayleigh, number Cp Specific heat
Ha Hartmann number u x-coordinate velocity
c Concentration
Greeks Symbols
ρ Fluid density θ Temperature
β Casson fluid parameter
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