# Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Theoretical Model and Working Principle

## 3. Electrical Output Performance of a Single Triboelectric Nanogenerator

#### 3.1. Influence of Structural Parameters on Electrical Output Performance

#### 3.2. Influence of Wave Parameters on Electrical Output Performance

#### 3.3. Results and Disscussion

## 4. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

TENG | Triboelectric Nanogenerator |

A-TENG | Annular Triboelectric Nanogenerator |

## References

- Wang, Z.L. Entropy theory of distributed energy for internet of things. Nano Energy
**2019**, 58, 669–672. [Google Scholar] [CrossRef] - Chen, H.Y.; Miao, L.M.; Su, Z.M.; Song, Y.; Han, M.D.; Chen, X.X.; Cheng, X.L.; Chen, D.M.; Zhang, H.X. Fingertip-inspired electronic skin based on triboelectric sliding sensing and porous piezoresistive pressure detection. Nano Energy
**2017**, 40, 65–72. [Google Scholar] [CrossRef] - Yang, W.Q.; Chen, J.; Zhu, G.; Wen, X.N.; Bai, P.; Su, Y.J.; Lin, Y.; Wang, Z.L. Harvesting vibration energy by a triple-cantilever based triboelectric nanogenerator. Nano Res.
**2013**, 6, 880–886. [Google Scholar] [CrossRef] - Yu, H.; Zhou, J.L.; Deng, L.C.; Wen, Z.Y. A Vibration-Based MEMS Piezoelectric Energy Harvester and Power Conditioning Circuit. Sensors
**2014**, 14, 3323–3341. [Google Scholar] [CrossRef] - Yang, W.Q.; Chen, J.; Jing, Q.S.; Yang, J.; Wen, X.N.; Su, Y.J.; Zhu, G.; Bai, P.; Wang, Z.L. 3D Stack Integrated Triboelectric Nanogenerator for Harvesting Vibration Energy. Adv. Funct. Mater.
**2014**, 24, 4090–4096. [Google Scholar] [CrossRef] - Rezaeisaray, M.; Gowini, M.E.; Sameoto, D.; Raboud, D.; Moussa, W. Low frequency piezoelectric energy harvesting at multi vibration mode shapes. Sens. Actuators A Phys.
**2015**, 228, 104–111. [Google Scholar] [CrossRef] - Kim, W.G.; Kim, D.W.; Tcho, I.W.; Kim, J.K.; Kim, M.S.; Choi, Y.K. Triboelectric Nanogenerator: Structure, Mechanism, and Applications. ACS Nano
**2021**, 15, 258–287. [Google Scholar] [CrossRef] [PubMed] - Dincer, I.; Rosen, M.A. Energy, environment and sustainable development. Appl. Energy
**1999**, 64, 427–440. [Google Scholar] [CrossRef] - Jenkinson, D.S.; Adams, D.E.; Wild, A. Model estimates of CO
_{2}emissions from soil in response to global warming. Nature**1991**, 351, 304–306. [Google Scholar] [CrossRef] - Marilena, K.; Elias, C. Human health effects of air pollution. Environ. Pollut.
**2008**, 151, 362–367. [Google Scholar] - Martinez, J.L. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environ. Pollut.
**2009**, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed] - Li, X.Y.; Tao, J.; Wang, X.D.; Zhu, J.; Pan, C.F.; Wang, Z.L. Networks of High Performance Triboelectric Nanogenerators Based on Liquid–Solid Interface Contact Electrification for Harvesting Low-Frequency Blue Energy. Adv. Energy Mater.
**2018**, 8, 1800705. [Google Scholar] [CrossRef] - Gong, Y.; Yang, Z.B.; Shan, X.B.; Sun, Y.B.; Xie, T.; Zi, Y.L. Capturing Flow Energy from Ocean and Wind. Energies
**2019**, 12, 2184. [Google Scholar] [CrossRef] - Wang, Z.L. New wave power. Nature
**2017**, 542, 159–160. [Google Scholar] [CrossRef] - Yao, Q.; Wang, S.M.; Hu, H.P. Development and Prospect of Wave Power Generation Devices. Ocean Dev. Manag.
**2016**, 33, 86–92. [Google Scholar] - Liu, Y.J.; Jia, R.; Zhang, J. Research status and development prospect of wave power generation technology. J. Ocean Technol.
**2016**, 35, 100–104. [Google Scholar] - Wang, Z.L. Catch wave power in floating nets. Nature
**2017**, 542, 242–246. [Google Scholar] [CrossRef] - Jia, P.Y. Structure and principle analysis of triboelectric nanogenerator. South. Agric. Mach.
**2017**, 48, 42. [Google Scholar] - Wang, Z.L. Triboelectric Nanogenerator (A-TENG)—Sparking an Energy and Sensor Revolution. Adv. Energy Mater.
**2020**, 10, 2000137. [Google Scholar] [CrossRef] - Siddique, A.; Mahmud, S.; VanHeyst, B. A comprehensive review on vibration based micro power generators using electromagnetic and piezoelectric transducer mechanisms. Energy Convers. Manag.
**2015**, 106, 728–747, Nano Energy**2019**, 58, 669–672. [Google Scholar] [CrossRef] - Wang, Z.L. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science
**2006**, 312, 242–246. [Google Scholar] [CrossRef] - Suzuki, Y. Recent progress in MEMS electret generator for energy harvesting. IEEJ Trans. Electr. Electron. Eng.
**2011**, 6, 101–111. [Google Scholar] [CrossRef] - Li, X.; Lau, T.H.; Dong, G.; Zi, Y. A Universal Method for Quantitative Analysis of Triboelectric Nanogenerators. Mater. Chem. A
**2019**, 7, 19485–19494. [Google Scholar] [CrossRef] - Zhu, G.; Bai, P.; Chen, J.; Jing, Q.S.; Wang, Z.L. Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications. Nano Energy
**2015**, 14, 126–138. [Google Scholar] [CrossRef] [Green Version] - Fu, Y.M.; Zhang, M.Y.; Dai, Y.T.; Zeng, H.; Sun, C.; Han, Y.C.; Xing, L.L.; Wang, S.; Xue, X.Y.; Zhan, Y.; et al. A self-powered brain multi-perception receptor for sensory-substitution application. Nano Energy
**2018**, 44, 43–52. [Google Scholar] [CrossRef] - Dai, Y.T.; Fu, Y.M.; Zeng, H.; Xing, L.L.; Zhang, Y.; Zhan, Y.; Xue, X.Y. A Self-Powered Brain-Linked Vision Electronic-Skin Based on Triboelectric-Photodetecing Pixel-Addressable Matrix for Visual-Image Recognition and Behavior Intervention. Adv. Funct. Mater.
**2018**, 28, 1800275. [Google Scholar] [CrossRef] - Zi, Y.L.; Wu, C.S.; Ding, W.B.; Wang, Z.L. Maximized Effective Energy Output of Contact-SeparationTriggered Triboelectric Nanogenerators as Limited by Air Breakdow. Adv. Funct. Mater.
**2017**, 27, 1700049. [Google Scholar] [CrossRef] - Wang, S.H.; Xie, Y.N.; Niu, S.M.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Adv. Mater.
**2014**, 26, 2818–2824. [Google Scholar] [CrossRef] - Zheng, Y.; Liu, T.; Wu, J.P.; Xu, T.T.; Wang, X.D.; Han, X.; Cui, H.Z.; Xu, X.F.; Pan, C.F.; Li, X.Y. Energy Conversion Analysis of Multilayered Triboelectric Nanogenerators for Synergistic Rain and Solar Energy Harvesting. Adv. Mater.
**2022**, 34, 2202238. [Google Scholar] [CrossRef] - Zhang, D.; Lin, Z.H.; Yang, S.H.; Li, H.; Jiang, Q.S.; Xiao, G.H. Simulation study on output performance of point-absorbing wave energy triboelectric nano-power generation system. J. Ocean Technol.
**2021**, 40, 75–83. [Google Scholar] - Liu, Z.W.; Liu, K.; Yang, S.H.; Xiao, G.H.; Zhang, Q.J. Simulation analysis of submerged wave energy triboelectric nanogenerator. J. Guangzhou Inst. Navig.
**2021**, 29, 75−81+86. [Google Scholar] - Yin, W.Y.; Zhang, Y.N. Statistical analysis of wind and wave characteristics in the Bohai Strait. J. Dalian Marit. Univ.
**2006**, 4, 84–88. [Google Scholar] - Qiu, Y.; Pei, J.L.; Yang, D.C.; Li, B.; Wang, X.N. Power generation characteristics of spherical triboelectric nanogenerator based on COMSOL simulation. Phys. Exp.
**2017**, 37, 1−5+11. [Google Scholar] - Chen, W.X.; Gao, F.; Meng, X.D. Oscillating Body Design for A 3-DOF Wave Energy Converter. China Ocean. Eng.
**2018**, 32, 453–460. [Google Scholar] [CrossRef]

**Figure 1.**Structure, working principle, and potential distribution of the device based on an annular-shaped triboelectric nanogenerator (A-TENG). (

**a**) Schematic diagram of the structure of the A-TENG. (

**b**) Photo of the physical section of the fabricated A-TENG. (

**c**) The working principle of the A-TENG in the working mode. (

**d**) The potential distribution at different rolling angles.

**Figure 2.**(

**a**) The coordinate system of the A-TENG. (

**b**) The plane coordinate system of the A-TENG. (

**c**) The contour plot of the estimated marginal mean value of the annular swing angle corresponding to different levels of the four variables. (

**d**) The error bar of the swing angle plot (standard error).

**Figure 3.**(

**a**) Open-circuit voltage for different nylon ball diameters. (

**b**) Open-circuit voltage for different quantities of nylon balls. (

**c**) Open-circuit voltage for different electrode spacings. (

**d**) Open-circuit voltage for different amounts of electrodes.

**Figure 4.**(

**a**) Six degrees of freedom of the A-TENG under wave force (1. surge, 2. sway, 3. heave, 4. roll, 5. pitch, 6. yaw). (

**b**) Schematic diagram of experimental platform and platform structure (1. glass platform, 2. connecting structure, 3. two electric push rods, 4. push rod base, 5. linear module slide table and slide rail, 6. master control platform). (

**c**,

**d**) Open-circuit voltage at different wave frequencies and different wave amplitudes under heave degrees of freedom.

Horizontal Velocity Vx (m/s) | Vertical Velocity Vy (m/s) | Frequency f (Hz) | Ring Size S (Major * Minor Radii/mm) |
---|---|---|---|

0.1 | 0.25 | 0.5 | 30 * 15 |

0.2 | 0.5 | 1 | 50 * 25 |

0.3 | 0.75 | 1.5 | 70 * 35 |

0.4 | 1 | 2 | 90 * 45 |

Origin | Type III Sum of Squares | Degrees of Freedom | Mean Square | F | Salience |
---|---|---|---|---|---|

Corrected model | 3.066 ${}^{a}$ | 12 | 0.255 | 10.086 | 0.041 |

Intercept | 4.965 | 1 | 4.965 | 196.013 | 0.001 |

Vx | 1.525 | 3 | 40.508 | 20.063 | 0.017 |

Vy | 0.889 | 3 | 0.296 | 11.7 | 0.037 |

f | 0.316 | 3 | 0.105 | 4.156 | 0.136 |

A | 0.336 | 3 | 0.112 | 4.425 | 0.127 |

Error | 0.076 | 3 | 0.025 | ||

Total | 8.107 | 16 | |||

Corrected total | 3.142 | 15 | |||

a. R-square = 0.937 (Adjusted R-square = 0.686) |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wang, C.J.; Meng, F.; Fu, Q.; Fan, C.H.; Cui, L.
Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. *Micromachines* **2022**, *13*, 1619.
https://doi.org/10.3390/mi13101619

**AMA Style**

Wang CJ, Meng F, Fu Q, Fan CH, Cui L.
Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure. *Micromachines*. 2022; 13(10):1619.
https://doi.org/10.3390/mi13101619

**Chicago/Turabian Style**

Wang, Chun Jie, Fan Meng, Qiang Fu, Chen Hui Fan, and Lin Cui.
2022. "Research on Wave Energy Harvesting Technology of Annular Triboelectric Nanogenerator Based on Multi-Electrode Structure" *Micromachines* 13, no. 10: 1619.
https://doi.org/10.3390/mi13101619