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Abstract: The process parameters chosen for high-performance machining in the milling of a thin-
walled workpiece are determined by a stability prediction model, which needs accurate modal
parameters of the machining system. However, the in-process modal parameters are different from
the offline modal parameters and are difficult to precisely obtain due to material removal. To address
this problem, an accurate time-dependent autoregressive moving average with an exogenous input
(TARMAX) method is proposed for the identification of the modal parameters in the milling of a
thin-walled workpiece. In this process, a TARMAX model considering external force excitation is
constructed to characterize the actual condition in the milling of a thin-walled workpiece. Then,
recursive method and sliding window recursive method are used to identify TARMAX model
parameters under time-varying cutting conditions. Subsequently, a three-degree of freedom (3-DOF)
time-varying structure numerical model under theoretical milling forces and white-noise excitation
is established, and the computational results show that the predicted natural frequencies using the
proposed method are in close agreement with the simulated values. Finally, several experiments are
designed and carried out to validate the effectiveness of the proposed method. The experimental
results show that the predicted accuracy of the proposed method using actual cutting forces is 95.68%.
Good agreement has been drawn in the numerical simulation and machining experiments. Our
further research objectives will focus on the prediction of the damping ratios, modal stiffness, and
modal mass.

Keywords: milling; machining dynamics; modal identification; thin-walled parts; natural frequency

1. Introduction

Thin-walled workpieces such as aero-engine blades, casings, and impellers are widely
used in the aerospace industry [1] because of their light weight, high strength, and heavy
load-bearing characteristics [2,3]. However, machining chatter and dimensional error
caused by the problem of low rigidity occur in the milling of a thin-walled workpiece,
which can affect the surface quality, machining productivity, and tool life [4–6]. In the
milling of thin-walled workpieces, the methods of milling stability prediction are exten-
sively investigated for avoiding chatter [7–9]. Generally, accurate stability lobe diagrams
calculated by solving a time period delay differential equation are critical for milling sta-
bility [10–12]. In this process, the modal parameters of the pressing system are important
factors affecting accurate stability lobe diagrams. In particular, the modal parameters
are time-varying due to material removal and the tool–workpiece contact position in the
milling of a thin-walled workpiece [12–15], which will lead to low cutting process parame-
ters in milling and will reduce the machining productivity [10]. Therefore, it is necessary
to accurately identify the time-varying modal parameters of thin-walled workpieces in
milling in order to improve their efficiency and quality.
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For extracting the modal parameters, the common method that is used is the hammer
test. However, this method cannot be adopted to obtain modal parameters at in-process
machining [16,17]. To deal with this problem, operational modal analysis (OMA) is used
to identify the dynamic modal parameters in the milling of a thin-walled workpiece. For
the efforts of identifying the modal parameters in milling, OMA can be divided into two
categories: frequency domain modal identification and time domain modal identification.
For frequency domain modal identification, frequency response functions or power density
functions are used to obtain time-varying modal parameters, which are mainly applied in
large-scale bridge and building structure health monitor fields. Nevertheless, in milling,
excitation signals mainly contain strong harmonic excitation and white-noise excitation
due to spindle rotation and material removal [18], which may result in the harmonic com-
ponents being mistaken for structural modes in the OMA frequency domain identification
method. Liang et al. [19] eliminated the response generated by harmonic excitation by
the properties of white-noise excitation signals. Kiss et al. [20] employed a comb filter to
eliminate the response generated by harmonic excitation. Yuan et al. [21] used Kalman
filters, which effectively attenuate spindle frequency and its harmonics. However, if the
harmonic fundamental frequency cannot be determined before using these methods, even
a small error will be significantly amplified in the high-order harmonic components and
cause filter failure. For this, Liu et al. [18] proposed a modified least square method to fit
harmonics with multiple fundamental frequencies and to extract the modal parameters of
the workpiece–tool system. Weijtjens et al. [22] estimated the structural dynamics of the sys-
tem by using transfer functions that could be unaffected by periodic harmonic excitations.
Wan et al. [23] expressed the power spectral density matrix as a spectral decomposition
form with modal parameters and an extract damping ratio using inverse Fourier transform,
which ignored the natural frequency identification. These methods eliminated harmonic
components in machining signals and identified the modal parameters, but they relied on
time domain signals to decrease the conversion errors.

For the time domain modal identification, the modal parameters could be directly
identified in the time domain and avoid signal errors compared with the frequency domain
method. Li et al. [24] extracted machine tool modal parameters through the stochastic
subspace identification (SSI) method. Then, the effectiveness of the SSI method was vali-
dated by Yan et al. [25]. However, the identification accuracy and the time-varying tracking
ability of the SSI method need to be improved. Subsequently, Burney et al. [26] employed a
time-dependent autoregressive moving average (TARMA) model to estimate the machine
tool modal parameters. In addition, Kim et al. [27] applied TARMA to the milling oper-
ations. Then, Zaghbani et al. [28] adopted the TARMA approach to estimate the modal
parameters in real-time during machining. Ma et al. [29] proposed a kernelized TARMA
model that extended on the TARMA approach, and the computational efficiency was im-
proved. However, these methods only identified modal parameters through white-noise
signals. In the actual machining, Kang et al. [30] obtained the actual modal parameters by
removing the harmonic components based on the statistical characteristics of the response,
but the amount of calculations were too large, and the signal produced errors due to Fourier
transform. Zhuo et al. [31] adopted the TARMA method to identify the modal parameters
in the milling of a thin-walled workpiece, and false modes eliminated the convergence
properties of the stability lobe diagram.

Through the above analysis, it was found that a number of methods for modal pa-
rameter identification are used in a wide field of processing. However, for time-varying
processing conditions, especially the milling of thin-walled workpieces, the identification
of time-varying modal parameters relevant to the prediction of the system stability is
less well studied. To overcome this problem, a modified TARMAX modal parameters
identification method considering the actual cutting force excitation was proposed in this
paper. Taking the dynamic milling force and environment noise as excitation signals,
the TARMAX modal parameter identification algorithm was derived based on “frozen
time”, and the relationship between time-varying autoregressive coefficients and modal
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parameters was established. Subsequently, the white-noise excitation signal and the time-
varying autoregressive coefficients were estimated by the least square method, and then,
the time-varying modal parameters were determined. This paper is organized as follows.
In Section 2, the TARMAX model based on milling force excitation was established, the
recursive estimation of the TARMAX model parameters was identified, and recursive esti-
mation of the time-varying coefficient sliding windows was determined. Then, in Section 3,
a 3-DOF time-varying machining system numerical simulation model was established and
the modal parameter identifications were obtained and compared under different noise and
window numbers. Subsequently, the effectiveness and feasibility of the proposed method
were validated by several machining experiments in Section 4. Finally, some conclusions
are drawn in Section 5.

2. TARMAX Model Modal Identification Algorithm

TARMA methods are computationally small and can capture the time-varying proper-
ties of structures in real-time. In contrast with the identification methods in the frequency
domain, by continuously introducing new data, the TARMA methods only need to modify
the model parameters estimated in the previous step and can quickly model the system
at the current moment [32]. This section is divided into the TARMAX model considering
the actual milling force excitation, TARMAX model parameter recursive estimation, and
sliding window recursive estimation.

2.1. TARMAX Model Considering Actual Milling Force Excitation

From the probability statistical chart, it can be found that the dynamic milling force
signals were a superposition of the harmonic components and Gaussian white noise [18].
Therefore, the excitation exerted on the workpiece could be considered as a superposition
of the theoretical milling force and Gaussian white noise. Subsequently, the time-varying
dynamic equation of the machining system was expressed by an n-dimensional equation:

M(t)
..
x(t) + C(t)

.
x(t) + K(t)x(t) = u(t) (1)

where M(t) ∈ Rn×n, C(t) ∈ Rn×n, and K(t) ∈ Rn×n are the mass, damping, and stiff-
ness matrices of the machining system, respectively. t is continuous time.

..
x(t) ∈ Rn∗1,

.
x(t) ∈ Rn∗1, and x(t) ∈ Rn∗1 are acceleration, velocity, and displacement vectors, respec-
tively. u(t) ∈ Rn∗1 is the input excitation signals, which contain theoretical milling force
F(t) ∈ Rn∗1 and the environmental excitation e(t) ∈ Rn∗1, namely, u(t) is defined as

u(t) = F(t) + e(t) e(t) ∼ NID(0,σ2(t)) (2)

where e(t) is the environmental excitation, which can be treated as an uncorrelated white-
noise excitation signal when the expectation and variance of the environmental excitation
are 0 and σ2(t), respectively.

By continuously “freezing” the mass, damping, and stiffness matrices [33], the time-
varying dynamic equation of Equation (1) can be transformed into TARMAX [32], which is
given by

x[t] +
Na

∑
i=1

ai[t]x[t− i] =
Nb

∑
j=0

bj[t]u[t− j] =
Nb

∑
j=0

bj[t](F[t− j] + e[t− j]) (3)

where x[t] is the discrete displacement response; u[t] is the discrete excitation signal; F[t] is
the discrete milling force; e[t] is the white noise sequence; ai[t] and bi[t] are the time-varying
autoregressive coefficient and external excitation matrix, respectively; and Na and Nb are
the order of ai[t] and bi[t], respectively. Then, introducing backward shift operator z, and

zix[t] = x[t− i]zi (4)
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Substituting Equation (4) into Equation (3), Equation (3) can be rewritten in the state-
space form

A[z, t]x[t] = B[z, t]u[t] (5)

where 
A[z, t] = I +

Na
∑

i=1
ai[t]zi

B[z, t] =
Nb
∑

j=0
bj[t]zj

(6)

Subsequently, the time-varying transfer function is obtained from Equation (5) as

H[z, t] = A[z, t]−1 ◦ B[z, t] (7)

Defining z = e−jω∆t, the “frozen time” transfer function of TARMAX is expressed as
follows [34]

H[ω, t] = A[e−jω∆t, t]
−1 ◦ B[e−jω∆t, t] ≈ B[e−jω∆t, t]

A[e−jω∆t, t]
(8)

where j is an imaginary number and 4t denotes the sampling period. Considering
Equation (8), in every moment t, assume that

∣∣A[e−jω∆t, t]
∣∣ = 0, then, the “frozen time”

transfer function poles pr (r = 1, . . . , Na) are determined, so the natural frequency of the
continuous system Equation (1) can be calculated by [35]

fr[t] =
|ln pr[t]|
2π · ∆t

(9)

For
∣∣A[e−jω∆t, t]

∣∣ = 0, i.e.,

∣∣∣A[e−jω∆t, t]
∣∣∣ = ∣∣∣∣∣I + Na

∑
i=1

ai[t]zi

∣∣∣∣∣ = 0 (10)

To avoid a non-linear system of Equation (10), the roots of Equation (10) can be
transformed into a generalized eigenvalue problem [35], so Equation (10) can be rewritten as

(D[t]− pr[t]I)Vr[t] = 0 (11)

where Vr[t] is an eigenvector, D[t] is the eigenvalues matrix, which is defined as

D[t] =


0 I . . . 0
...

...
. . .

...
0 0 . . . I
−aNa −aNa−1 . . . −a1

 (12)

Therefore, if the time-varying autoregressive coefficients ai[t] can be accurately esti-
mated, and the natural frequency fr[t] of the time-varying dynamic system can be solved
by combining Equations (9) and (11).

2.2. TARMAX Model Parameters Recursive Estimation

Based on the milling force model [36], the theoretical milling force can be predicted.
However, according to Equation (3), it can be seen that ai[t], bi[t], and e[t] are unknown,
and it is time-consuming to directly determine the ai[t] matrix based on the TARMAX model.
Therefore, in this section, the least square method is used to improve the calculation efficiency.

2.2.1. Theoretical Milling Force Model

The natural frequencies in the x and y directions are lower than the natural frequencies
in the z direction due to the clamping method and the machining mode. As the material is
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removed in milling, the workpiece is prone to chatter under the dynamic milling forces in
the x and y directions. Then, in this paper, milling forces in the x and y directions are mainly
considered and milling forces in the z direction are ignored. Therefore, in the milling of a
thin-walled workpiece, the time-varying dynamic milling system can be expressed by an
n-dimensional linear time periodic system, which is shown in Figure 1.
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According to Figure 1, the dynamic milling force F[t] is represented as follows [36]

F[t] = aKc(x[t]− x[t− T]) + a f0 (13)

where a is the depth of cut, T denotes the time delay period, f 0 expresses the static force
and Kc is the milling force coefficients. In addition, f 0 and Kc are defined as

Kc =
n1
∑

j=1
g
(
φj[t]

)[ kxx kxy
kyx kyy

]
kxx = −ktc sin

(
φj[t]

)
cos
(
φj[t]

)
− krc sin

(
φj[t]

)2

kxy = −ktc cos
(
φj[t]

)2 − krc sin
(
φj[t]

)
cos
(
φj[t]

)
kyx = ktc sin

(
φj[t]

)2 − krc sin
(
φj[t]

)
cos
(
φj[t]

)
kyy = ktc sin

(
φj[t]

)
cos
(
φj[t]

)
− krc cos

(
φj[t]

)2

(14)

f0 =
n1

∑
j=1

g
(
φj[t]

)


ft

(
−ktc sin

(
φj[t]

)
cos
(
φj[t]

)
− krc sin

(
φj[t]

)2

ktc sin
(
φj[t]

)2 − krc sin
(
φj[t]

)
cos
(
φj[t]

) )
+

(
−kte cos

(
φj[t]

)
− kre sin(φj(t))

kte sin
(
φj[t]

)
− kre cos

(
φj[t]

) )(
φj[t]

)
 (15)

where n1 is number of teeth; f t is feed per tooth in machining; ktc, krc, kte, and kre are the
milling force coefficients; g(φj[t]) is the cut-in function; and φj[t] is the angular position of
the j-th tooth; then, φj[t] and g(φj[t]) are

φj[t] = (2πΩ/60)t + 2π(j− 1)/N (16)

g
(
φj[t]

)
=

{
1 if φst < φj[t] < φex
0 otherwise

(17)
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where Ω is the spindle speed, and φst and φex are the entry and exit angles on the j-th cutter
tooth. For down milling, φst = arccos(2H-1) and φex = π, and for up milling, φst = 0 and
φex = arccos(1-2H). H is the radial immersion ratio.

2.2.2. Estimating Environmental Excitation ê1[t]

Substituting Equation (2) into Equation (5) yields the following equation

A[z, t]x[t] = B[z, t](F[t] + e[t])
⇔ G[z, t]x[t] = F[t] + e[t]

(18)

where
G[z, t] = B[z, t]−1 ◦A[z, t] (19)

Theoretically, the excitation can be represented by an infinite order inverse function
model [30], namely, Equation (18) can be rewritten as

∞

∑
i=0

gi[t]x[t− i] = F[t] + e[t] (20)

To estimate e[t], the Ng items of the inverse function model are taken as

Ng

∑
i=0

gi[t]x[t− i] = F[t] + e[t]

⇔
[

g0[t]g1[t] · · · gNg [t]
]

x[t]
x[t− 1]

...
x[t− Ng]

 = F[t] + e[t]
(21)

with  G[t]T =
[

g0[t]g1[t] · · · gNg [t]
]

ψ[t]T =
[
x[t− 1]Tx[t− 2]T · · · x[t− Ng]

T
] (22)

Then, Substituting Equation (22) into Equation (21), Equation (21) can be reduced to

GT [t]ψ[t] = F[t] + e[t] (23)

where GT[t] and e[t] are estimated using the least square method, and the estimation
function of the least square method is given by

min

[
1
2

t

∑
τ=1

∥∥∥GT[t]ψ[τ]− F[τ]
∥∥∥2
]

(24)

where ‖•‖ is the Euclidean norm. For this optimal problem, the solution of Equation (24) is
calculated by

Ĝ1[t] = (ψ̂1[t]ψ̂1[t]
T)
−1

ψ̂1[t]F̂1[t] (25)

where {
ψ̂1[t] = [ψ[1] ψ[2] · · ·ψ[t]]
F̂1[t] = [F[1] F[2] · · · F[t]]T (26)

Subsequently, substituting Equation (25) into Equation (23), the environmental excita-
tion ê1[t] can be estimated by

ê1[t] = Ĝ1[t]
Tψ[t]− F[t] (27)
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With the increase in iterative steps, the computational complexity of (ψ̂1[t]ψ̂1[t]
T)
−1

progressively enlarges. To improve the computational efficiency of Equation (25), define
the following

P1[t] = (ψ̂1[t]ψ̂1[t]
T)
−1

(28)

Next, the following equation can be received

P1[t]
−1 = ψ̂1[t]ψ̂1[t]

T = ψ̂1[t− 1]ψ̂1[t− 1]T + ψ[t]ψ[t]T

= P1[t− 1]−1 + ψ[t]ψ[t]T
(29)

Based on the matrix inverse theorem [34], P1[t] can be rewritten as

P1[t] =

(
P1[t− 1]− P1[t− 1]ψ[t]ψ[t]TP1[t− 1]

I + ψ[t]TP1[t− 1]ψ[t]

)
(30)

Substituting Equation (30) into Equation (25), we can obtain

Ĝ1[t] =
(

P1[t− 1]− P1[t−1]ψ[t]ψ[t]TP1[t−1]
I+ψ[t]TP1[t−1]ψ[t]

)(
ψ̂1[t− 1]F̂1[t− 1] + ψ[t]F[t]T

)
= Ĝ1[t− 1] +

P1[t−1]ψ[t]
(

F[t]T−ψ[t]TĜ1[t−1]
)

I+ψ[t]TP1[t−1]ψ[t]
= Ĝ1[t− 1] + K1[t]

(31)

where

K1[t] =
P1[t− 1]ψ[t]

(
F[t]T −ψ[t]TĜ1[t− 1]

)
I + ψ[t]TP1[t− 1]ψ[t]

(32)

From Equation (31), it is found that the relationship between Ĝ1[t-1] and Ĝ1[t] can
be established. Therefore, the calculation volume of Equations (31) and (27) is reduced by
iterative calculations.

2.2.3. Estimating Coefficient Matrices ŵ1[t]

Substituting Equation (27) into Equation (3), the time-varying TARMAX dynamic
equation can be expressed as

x[t] +
Na
∑

i=1
ai[t]x[t− i] =

Nb
∑

j=0
bj[t](ê1[t− j] + F[t− j])

⇔ x[t] = wT[t]ϕ[t]
(33)

where{
w[t] =

[
a1[t] · · · aNa [t]b0[t] · · · bNb [t]

]T
ϕ[t]T =

[
−x[t− 1]T · · · − x[t− Na]

TF[t]T + ê1[t]
T · · · F[t− Nb]

T + ê1[t− Nb]
T
] (34)

Then, the coefficient matrices ŵ1[t] can be estimated using the least square method, and

ŵ1[t] = (ϕ̂1[t]ϕ̂1[t]
T)
−1

ϕ̂1[t]X̂1[t] (35)

where {
ϕ̂1[t] = [ϕ[1] ϕ[2] · · ·ϕ[t]]
X̂1[t] = [x[1] x[2] · · · x[t]]T (36)



Micromachines 2022, 13, 1581 8 of 21

Subsequently, combining Equations (34) and (35), the time-varying coefficient matrices
ai[t] and bi[t] in the TARMAX model are obtained. Using the same simplified method in
Equation (25) for Equation (35), defines the following

P2[t] = (ϕ̂1[t]ϕ̂1[t]
T)
−1

(37)

Simplified in the same way as Equation (31), Equation (35) can be reduced to

ŵ1[t] = ŵ1[t− 1] + K2[t] (38)

where

P2[t] =
(

P2[t− 1]− P2[t−1]ϕ[t]ϕ[t]TP2[t−1]
I+ϕ[t]TP2[t−1]ϕ[t]

)
K2[t] =

P2[t−1]ϕ[t]
(

x[t]T−ϕ[t]Tŵ1[t−1]]
)

I+ϕ[t]TP2[t−1]ϕ[t]

(39)

2.3. TARMAX Model Parameters Sliding Windows Recursive Estimation

According to Equations (26) and (36), it can be found that the dimensions of ψ̂1[t] and
ϕ̂1[t] gradually increase with time, and the amount of calculations for e[t] and ai[t] will
multiply. Therefore, to simplify the calculation process, a sliding window N is introduced.
When t > N, the estimation of e[t] and ai[t] only depends on the latest data. Then, e[t] and
ai[t] are calculated using the following method.

2.3.1. Estimating Environmental Excitation ê2[t]

To improve the calculation efficiency, the latest data N are applied for the least square
estimation function. Therefore, the estimation function of the sliding window least square
method is used for ê2[t] and is defined as

min

[
1
2

t

∑
τ=t−N+1

∥∥∥GT[t]ψ[τ]− F[τ]
∥∥∥2
]

(40)

For Equation (40), the solution is given by

Ĝ2[t] = (ψ̂2[t]ψ̂2[t]
T)
−1

ψ̂2[t]F̂2[t] (41)

where {
ψ̂2[t] = [ψ[t− N + 1] ψ[t− N + 2] · · ·ψ[t]]
F̂2[t] = [F[t− N + 1] F[t− N + 2] · · · F[t]]T (42)

Subsequently, considering Equations (23) and (41), the environmental excitation ê2[t]
can be expressed by

ê2[t] = Ĝ2[t]
Tψ[t]− F[t] (43)

To reduce the computational effort of Equation (41), use the following{
P3[t]

−1 = ψ̂2[t]ψ̂2[t]
T = P3[t− 1]−1 + U1[t]U1[t]

T

U1[t] = [ψ[t]jψ[t− N]]
(44)

Similarly, considering matrix inverse theorem [34], P3[t] can be converted to

P3[t] =

(
P3[t− 1]− P3[t− 1]U1[t]U1[t]

TP3[t− 1]

I + U1[t]
TP3[t− 1]U1[t]

)
(45)
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Then, substituting Equation (45) into Equation (41) yields

Ĝ2[t] =
(

P3[t− 1]− P3[t−1]U1[t]U1[t]
TP3[t−1]

I+U1[t]
TP3[t−1]U1[t]

)(
ψ̂2[t− 1]F̂2[t− 1] + U1[t]

¯
F[t]T

)
= Ĝ2[t− 1] + K3[t]

(46)

where  K3[t] =
P3[t−1]U1[t]

(
¯
F [t]T−U1[t]

TĜ2[t−1]
)

I+U1[t]
TP3[t−1]U1[t]

¯
F[t] = [F[t] jF[t− N]]

(47)

2.3.2. Estimating Coefficient Matrices ŵ2[t]

Based on Equations (3) and (43), the estimation method in this section is similar to that
of ŵ1[t]. Therefore, the parameter ŵ2[t] can be estimated using the least square method, and

ŵ2[t] = (ϕ̂2[t]ϕ̂2[t]
T)
−1

ϕ̂2[t]X̂2[t] (48)

where {
ϕ̂2[t] = [ϕ[t− N + 1] ϕ[t− N + 2] · · ·ϕ[t]]
X̂2[t] = [x[t− N + 1] x[t− N + 2] · · · x[t]]T (49)

Defined {
P4[t]

−1 = ϕ̂2[t]ϕ̂2[t]
T = P4[t− 1]−1 + U2[t]U2[t]

T

U2[t] = [ϕ[t] jϕ[t− N]]
(50)

Similarly, Equation (48) can be reduced to

ŵ2[t] = ŵ2[t− 1] + K4[t] (51)

where 

P4[t] =
(

P4[t− 1]− P4[t−1]U2[t]U2[t]
TP4[t−1]

I+U2[t]
TP4[t−1]U2[t]

)
K4[t] =

P4[t−1]U2[t]
(

¯
X[t]T−U2[t]

Tŵ2[t−1]]
)

I+U2[t]
TP4[t−1]U2[t]

¯
X[t] = [x[t] jx[t− N]]

(52)

In addition, during calculation, false modes may appear, which may lead to the natural
frequency estimation deviation. Therefore, to avoid false modes, a judging function J(·) is
defined as

J(f̂r[t]) =
{

f̂r[t− 1] if
∣∣(f̂r[t]− f̂r[t− 1]

)
/f̂r[t]

∣∣ > ζ

f̂r[t] otherwise
(53)

where ζ is the threshold value. If the relative error between the natural frequency at
moment t and that at the moment t-1 is greater than the threshold value, then, the output
natural frequency at moment t will be replaced by that at moment t-1.

From above calculation, when t < N, the environment excitation ê1[t] can be determined
by Equations (27) and (31), and the time-varying coefficient ŵ1[t] can be obtained by
Equation (38). Nevertheless, when t > N, the environment excitation ê2[t] be determined
by Equations (43) and (46), and the time-varying coefficient ŵ2[t] can be obtained by
Equation (51). In addition, the time-varying autoregressive coefficient ai[t] can be extracted
from ŵ1[t] or ŵ2[t] by Equation (34). Finally, the system modal parameters can be calculated
by Equation (9), and Equations (11) and (53). Then, the flow chart of the proposed algorithm
in milling is shown in Figure 2.
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Figure 2. Flow chart of the algorithm for estimating the modal parameters.

3. Numerical Simulation Verification

In this section, several numerical simulation experiments were used to verify the
effectiveness of the proposed method. As the natural frequency of the first few orders of
a thin-walled part has a large influence on the milling stability, the same three-degree-of-
freedom structure as shown in the literature [18,37,38] was used to calculate the response
of a thin-walled part subjected to a milling force excitation, which is shown in Figure 3.
Then, the parameters were selected for numerical simulation and are shown in Table 1.
To analyze the system dynamic characteristics, three theoretical cutting forces were calcu-
lated, and 30 sets of white-noise signals were generated for simulation using the Monte
Carlo method according to the parameters in Table 1. Subsequently, based on the “frozen
time” method, the simulated time-varying frequency response functions and the natu-
ral frequencies of the 3-DOF time-varying structure were obtained, which are shown in
Figures 4 and 5, respectively.
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Table 1. Simulation parameters for the 3-DOF time-varying structure [39].

Parameters Values

Mass, stiffness and damping
m1 = 3 − 0.3t, m2 = 3 − 0.1t, m3 = 2

k1 = 5 × 107 − 107t, k2 = 3 × 107 − 5 × 106t, k3 = 107 − 106t,
c1 = 200, c2 = 100, c3 = 50,

Variances of white noise signal σ2
1 = 4, σ2

2 = 2, σ2
3 = 1

Process parameters Ω = 1500, m = 40, φex = 0, φts = π,
n1 = 2, a = 2 × 10 − 4, f t = 10 − 3

Milling force coefficients
ktc1 = 6 × 107, krc1 = 2 × 107, kte1 = 3 × 103, kre1 = 103,

Ktc2 = ktc3 = 8 × 107, kte2 = kte3 = 6 × 103,
Krc2 = krc3 = 3 × 107, kre2 = kre3 = 4 × 103

Micromachines 2022, 13, 1581 12 of 23 
 

 

Table 1. Simulation parameters for the 3-DOF time-varying structure [39]. 

Parameters Values 

Mass, stiffness and damping 
m1 = 3−0.3t, m2 = 3−0.1t, m3 = 2 

k1 = 5 × 107−107t, k2 = 3 × 107−5 × 106t, k3 = 107−106t, 
c1 = 200, c2 = 100, c3 = 50, 

Variances of white noise signal σ2 
1

 = 4, σ2 
2

 = 2, σ2 
3 = 1 

Process parameters 
Ω = 1500, m = 40, ϕex = 0, ϕts = π, 

n1 = 2, a = 2 × 10−4, ft = 10−3 

Milling force coefficients 
ktc1 = 6×107, krc1 = 2 × 107, kte1 = 3 × 103, kre1 = 103, 

Ktc2 = ktc3 = 8 × 107, kte2 = kte3 = 6 × 103, 
Krc2 = krc3 = 3 × 107, kre2 = kre3 = 4 × 103 

 
Figure 4. Frequency response functions of the 3-DOF time-varying structure. 

 
Figure 5. Natural frequencies of the 3-DOF time-varying structure. 

From Figure 3 and Table 1, it can be seen that the system is excited by the 
independent milling force signals (theoretical milling force signal and Gaussian white 
noise signal). From Figure 4, the frequency response functions are obtained under excited 
conditions, but the natural frequency values of the system are approximately equal. In 

Figure 4. Frequency response functions of the 3-DOF time-varying structure.

Micromachines 2022, 13, 1581 12 of 23 
 

 

Table 1. Simulation parameters for the 3-DOF time-varying structure [39]. 

Parameters Values 

Mass, stiffness and damping 
m1 = 3−0.3t, m2 = 3−0.1t, m3 = 2 

k1 = 5 × 107−107t, k2 = 3 × 107−5 × 106t, k3 = 107−106t, 
c1 = 200, c2 = 100, c3 = 50, 

Variances of white noise signal σ2 
1

 = 4, σ2 
2

 = 2, σ2 
3 = 1 

Process parameters 
Ω = 1500, m = 40, ϕex = 0, ϕts = π, 

n1 = 2, a = 2 × 10−4, ft = 10−3 

Milling force coefficients 
ktc1 = 6×107, krc1 = 2 × 107, kte1 = 3 × 103, kre1 = 103, 

Ktc2 = ktc3 = 8 × 107, kte2 = kte3 = 6 × 103, 
Krc2 = krc3 = 3 × 107, kre2 = kre3 = 4 × 103 

 
Figure 4. Frequency response functions of the 3-DOF time-varying structure. 

 
Figure 5. Natural frequencies of the 3-DOF time-varying structure. 

From Figure 3 and Table 1, it can be seen that the system is excited by the 
independent milling force signals (theoretical milling force signal and Gaussian white 
noise signal). From Figure 4, the frequency response functions are obtained under excited 
conditions, but the natural frequency values of the system are approximately equal. In 

Figure 5. Natural frequencies of the 3-DOF time-varying structure.

From Figure 3 and Table 1, it can be seen that the system is excited by the independent
milling force signals (theoretical milling force signal and Gaussian white noise signal).
From Figure 4, the frequency response functions are obtained under excited conditions,
but the natural frequency values of the system are approximately equal. In addition, from
Figure 5, the first, the second, and the third natural frequencies are extracted, and we can
see that the natural frequencies gradually reduced with time.
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Subsequently, for the numerical simulation system, the response under a theoretical
cutting force and Gaussian white noise was obtained in order for identifying the system
modal parameters. In this process, 30 sets of displacement responses were obtained, then,
to closely simulate the actual cutting condition, white noise signals with signal-to-noise
ratios (SNR) of 15 dB, 20 dB, and 30 dB were added to contaminate the obtained displacement
response signals; a set of displacement response signals with SNR = 15 dB is shown in Figure 6.
Then, the cutting displacement responses contaminated with 15 dB, 20 dB, and 30 dB were
used to calculate and determine the modal parameters of the simulated system.
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Figure 6. Displacement response of the 3-DOF time-varying structure.

To reduce the effect of initialization errors on the calculation results, the initial 500 sam-
ples (0.2 s) were discarded. Subsequently, the TARMAX model for the sliding window
lengths of N = 50, N = 100, and N = 200 was used to estimate the system modal parameters,
which were compared with the benchmark theoretical frequency and are shown in Figure 7.

From Figure 7, it was found that the estimated natural frequency presented good
tracking results. As the SNR decreased, many scattered points deviated from the theoretical
value. Under the constraint of Equation (53), the estimated natural frequencies fluctuated
within the allowable error range, which validated the effectiveness of the proposed method.
Then, when the sliding window length was relatively small, the natural frequencies were
well estimated compared with the theoretical value, but fluctuated obviously. When the
sliding window length was large, all of the estimated natural frequencies agreed well with
the theoretical value, and fewer false modals appeared. In addition, it could be seen that
the second-order natural frequency was not adequately tracked at SNR = 15 due to the
large sliding window length, and the existence of some errors.
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To further validate the proposed method, the mean absolute error (MAE) was intro-
duced and is defined as

MAE =
1
R

R

∑
i=1

1
L

L

∑
t=1

∣∣f[t]− f̂i[t]
∣∣. (54)

where f [t] is the theoretical natural frequency, f̂i[t] denotes the estimated natural frequency
in the i-th Monte Carlo experiment, and L is the data length. Based on this, the different
mean absolute error (MAE) was calculated and is shown in Table 2. From Table 2, with the
increase in sliding window length, the prediction accuracy of the proposed method was
obviously improved. Especially, when N = 200, the estimated accuracy was higher at the
different SNR, and the MAE of the proposed method was also significantly smaller than
that of the other sliding window lengths, which could indicate that the noise pollution
was robust. Therefore, the proposed method could be widely used to identify the modal
parameters under the data noise pollution, and be applied to practical conditions.
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Table 2. Modal parameter identification errors under different external excitations.

Noise
Mean Absolute Error/Hz

N = 50 N = 100 N = 200

SNR = 30 18.9807 16.3046 10.2242
SNR = 20 22.2530 20.2492 16.0250
SNR = 15 26.1829 22.6237 19.0390

4. Experimental Validation and Discussion

In order to verify the effectiveness of the proposed method in the milling of thin-walled
plates, several experiments were conducted. In the experiments, the materials of the plate
and cutter were TC4 and cemented carbide, respectively, and the material parameters are
shown in Table 3. The size of the plate used in the experiments was 80 × 40 × 3 mm. In
addition, all of the experiments were carried out on a three-axis machine center (VMC-
850E), the dynamic cutting forces in the milling were measured using a Kistler9257B, and
the modal parameters were measured using a model hammer (500 N), an acquisition
instrument DH5981, and acceleration sensors (ref. sensitivity 10.25 mV/g). The machining
and modal test setups are shown in Figure 8.

Table 3. Workpiece and tool parameters.

Workpiece
Density Poisson Ratio Young’s Modulus Materials

4.6 g/cm3 0.34 108 GPa TC4

Cutter
Diameter Number of teeth Spiral angle Length

12 mm 2 30◦ 75 mm
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4.1. Milling Force Coefficients Identification

To validate the effectiveness of the proposed method, the predicted cutting forces
were needed. Therefore, the cutting force coefficients needed to be calibrated. Then, five
slotting tests were carried out with a spindle speed of 1000 r/min and an axial depth of cut
of 0.5 mm, while the feed rates were 40 mm/min, 80 mm/min, 120 mm/min, 160 mm/min,
and 200 mm/min. Then, the milling force coefficient and the average milling force were
obtained [36,39]. 

Fx = − na
4 krc ft − na

π kre
Fy = na

4 ktc ft +
na
π kte

Fz =
na
π kac ft +

na
2 kae

(55)

Forces in the x and y directions were mainly considered in the model. In addition,
the actually tested milling forces in the z-direction were small and easily contaminated
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by noise. Therefore, the cutting force coefficient in the z direction was not identified.
Subsequently, the cutting force coefficients in the x and y directions were identified as
follows ktc = 1120.8 N/mm2, krc = 2285.6 N/mm2, kte = 9.16 N/mm, and kre = 13.21 N/mm.

4.2. Modal Parameters Evolution Considering Material Removal

To analyze the evolution of the modal parameters caused by the material removal,
different impact experiments were conducted after five milling stages. In the experiments,
the impact tests were conducted to assess the workpiece modal parameters before and
after each machining stage. The experimental setups contained the acquisition apparatus
DH5981, the accelerometer (5000 g, sensitivity 10.25 mV/g, and mass 5 g), and the modal
hammer (500 N, sensitivity 1 mV/N). Then, the dynamic responses were changing at
different impact positions and machining stages. Therefore, taking into account the fixture
constraints, three points (point 1, point 2, and point 3) on a thin plate were selected for the
tests, which are shown in Figure 9a, where it can be seen that point 2 is located in the middle
of the edge of the plate, and point 1 and point 3 are symmetrical with respect to point 2.
Subsequently, the frequency response functions on different impact measured points can be
obtained under different machining stages, and it was found that the frequency response
functions were almost the same for point 1 and point 3. However, considering the position
of point 1 and point 3 on the plate, an unstable vibration signal caused by low rigidity
would be generated. Therefore, point 2 was chosen for the measured response. Then, the
sensor position and the machining region were determined and are shown in Figure 9b,c.
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Figure 9. Experimental design. (a) Distributed points 1, 2, and 3 on the thin-walled plate for the
impact experiments. (b) Position of the sensor and point 2 used to measure the response. (c) Position
of the sensor and tool region for machining.

Next, five groups of milling experiments were conducted and the material removal
patterns are shown in Figure 10. The selected cutting parameters were a spindle speed
of 2000 rpm, axial depth of cut of 5 mm, radial depth of cut of 0.2 mm, feed rate of
120 mm/min, down milling, and the vibration responses in different cutting stages were
obtained and are shown in Figure 11. After every cut, each impact test after milling
was carried out, and the frequency response functions were obtained, which are shown
in Figure 12. Then, from Figure 11, it can be seen that the acceleration response of the
workpiece was unstable in the cut-in and cut-out stages due to the structural properties
and rigidity. When the tool was fully cut into a workpiece, the coupled effect of workpiece–
tool was weak, so the vibration was stable. As the number of cutting layers increased,
the acceleration response was progressively reduced. The possible reasons for this are
as follows: In the first cut, chatter occurred, which caused a larger acceleration response.
However, as the material was removed, the modal parameters were time-varying in the
milling and used the same machining parameters for the next milling, the chatter gradually
decreased, which led to a low acceleration response. Subsequently, from Figure 12, we can
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find that with the workpiece material removal, the modal parameters of the machining
system were significantly reduced from 525 Hz, 501 Hz, 504 Hz, 482 Hz, 465 Hz, to 453 Hz.
Therefore, it is necessary to investigate the time-varying modal parameters for improving
the stability.
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4.3. Model Validation and Discussion

To identify the modal parameters of a machining system, a displacement response
should be used for the proposed method. Therefore, a program by MATLAB was applied
to convert the vibration acceleration responses measured in the milling to the vibration
displacement responses, and the process is as follows.

Without a loss of generality, the acceleration signal
..
x(t) in the frequency domain can

be expressed as follows
..
x(t) = Aejωt (56)

where A is the coefficient corresponding to
..
x(t). Based on the inverse Fourier transform

theory, assuming that the initial velocity and displacement of the system are 0, the displace-
ment signal x[t] can be obtained using Equation (56).

x[t] =
N−1

∑
k=0
− 1

(2πk∆ f )2 H[k]x[k]e2jπkr/N (57)

where X[k] = −A/ω2
k, ωk = k∆ f , H[k] denotes the cut-off frequency, which is defined as

H[k] =
{

1 ( fd ≤ k∆ f ≤ fu)
0 (otherwise)

(58)

Based on Equations (56)–(58), the displacement response of the machining system
after five cuts was calculated and is shown in Figure 13.
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From Figures 11 and 13, the vibration responses obviously fluctuated in the cut-in
and cut-out stages, with the reason for this being that the dynamic cutting force was
higher and the rigidity of the plate was lower in the cut-in and cut-out stages, respectively.
For example, at the beginning and end of the fourth group of experiments, there was
a significant change in the displacement signal. Therefore, to avoid anomalous data
interference, the relatively stable response data over a 16 s period (from 3.3 s to 19.3 s) was
chosen to identify the system modal parameters. Considering the actual milling process, the
first order natural frequencies were closely associated with the system machining stability,
which was validated by many references. In addition, as the modal parameters during
machining were not available in real time, it was assumed in the paper that the natural
frequency of the workpiece varied linearly during each experiment. Finally, the first order
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natural frequencies were calculated by TARMAX (N = 200) in different states, and the
predicted results are shown in Figure 14.
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From Figure 14, it was found that the predicted natural frequencies using the proposed
method agreed well with the experimental values. The experimental average of the five
tests was 513, 502.5, 493, 473.5, and 459 Hz and the predicted average of the five tests was
516.16, 506.24, 496.45, 479.31, and 462.71 Hz. The predicted values were all higher than
the experimental values due to the coupling benefits of the tool and the workpiece during
machining, which is consistent with the experimental phenomena in the literature [15]. In
addition, several scatter points offset the baseline under the machining start and end stage.
The reason for this is that the milling was at the beginning or end of cut at this time, and
the vibration displacement response obviously changed, which caused a large deviation
between the predicted values and the experimental values.

To further demonstrate the validity of the proposed method, the mean absolute error
(MAE) and mean relative error (MRE) were introduced, and are defined as

MAE = 1
L

L
∑

t=1

∣∣f[t]− f̂[t]
∣∣

MRE = 1
L

L
∑

t=1

|f[t]−f̂[t]|
f[t]

(59)

where f [t] is the theoretical natural frequency, f̂[t] denotes the estimated natural frequency,
and L is the data length. Based on this, MAE and MRE were calculated and shown in
Figure 15.

From Figure 15, the average absolute error of the TARMAX method was around 20
Hz and the relative error was around 4.3%, and the prediction results were relatively
stable. The third group experiments had the highest prediction accuracy because smoother
displacement signals were chosen. Next, there were some non-smooth signals in the
displacement signals in the other sets of experiments. As the number of milling experiments
increased, the relative error of the TARMAX method showed an upward trend. The possible
reasons for this are as follows. As the number of experiments increased, the tool wore
out and the dynamic milling forces changed, thus causing fluctuations in the vibration
response, which is consistent with the observation that the displacement signals in the
fourth and fifth experiment included some non-stationary components. In addition, the
calculation time and complexity of the TARMAX method are mainly relevant to the sliding
window length, which makes the proposed method handle vibration responses online
better. Overall, the TARMAX method can commendably predict the modal parameters in
the milling of a thin-walled workpiece.
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5. Conclusions

In the milling of a thin-walled workpiece, the dynamic characteristics of the thin-
walled workpiece-fixture system are time-varying due to material removal. To investigate
the time-varying characteristics of the modal parameters in milling, an accurate TARMAX
identification method under external excitation was proposed. The proposed method
can rapidly and precisely identify the modal parameters in the milling of thin-walled
workpieces. Thus, the contributions of the paper are as follows.

(1) The TARMAX modal parameter identification method under external excitation was
proposed. In this process, the dynamic modal parameters are estimated through the
measured vibration response in milling using the recursive estimation method or
sliding windows recursive estimation.

(2) A 3-DOF time-varying structure model under milling forces and white noise excitation
was established. The predicted natural frequencies using the proposed method were
in close agreement with the simulated values.

(3) The proposed model is validated by the numerical simulation and machining experi-
ments. Moreover, the prediction accuracy of the TARMAX identification method was
95.68%, and good agreement was drawn in the numerical simulation and machining
experiments. Our further research objectives will focus on the prediction of damping
ratios, modal stiffness, and modal mass.
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