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Abstract: The reliability instability of inhomogeneous Schottky contact behaviors of Ni/Au and
Pt/Ti/Pt/Au gate contacts on AlGaN/GaN high-electron-mobility transistors (HEMTs) was investi-
gated via off-state stress and temperature. Under the off-state stress condition, Pt/Ti/Pt/Au HEMT
showed abruptly reduced reverse leakage current, which improved the Schottky barrier height (SBH)
from 0.46 to 0.69 eV by suppression of the interfacial donor state. As the temperature increased, the
reverse leakage current of the Pt/Ti/Pt/Au AlGaN/GaN HEMT at 308 K showed more reduction
under the same off-state stress condition while that of the Ni/Au AlGaN/GaN HEMT increased.
However, with temperatures exceeding 308 K under the same off-state stress conditions, the reverse
leakage current of the Pt/Ti/Pt/Au AlGaN/GaN HEMT increases, which can be intensified using
the inverse piezoelectric effect. Based on this phenomenon, the present work reveals the necessity
for analyzing the concurrent SBH and reliability instability due to the interfacial trap states of the
MS contacts.

Keywords: AlGaN/GaN; critical voltage; degradation; off-state stress; inverse piezoelectric effect;
high temperature; Schottky barrier height; reliability instability

1. Introduction

Gallium nitride (GaN)-based high-electron-mobility transistors (HEMTs) have at-
tracted attention in microwave and power-switching applications due to their unparalleled
properties including wide direct bandgap, high-temperature operation, high breakdown
field, and high-saturation electron velocity [1–3]. Because of piezoelectric and spontaneous
polarizations in AlGaN/GaN, GaN-based HEMTs have been used to achieve high carrier
densities and high mobilities at the heterostructure without doping by the origination of
two-dimensional electron gas (2DEG) channels [4–6]. The electrical performances of GaN-
based HEMT devices show sturdy functions of both Schottky and Ohmic metal contacts
because the Schottky contact in AlGaN/GaN is controlled by the current conduction in the
channel [7]. The gate reverse leakage current still remains a key concern for GaN-HEMT
stability due to the interfacial trap states and strain-induced defects such as dislocations
and cracks from large lattice mismatches [8–12]. Severe limitations such as current collapse,
power slump, and poor long-term reliability are induced by the trapping effects at the
interfacial trap states, trap sites in the AlGaN barrier layer, and deep-level traps in the GaN
buffer layer [13–15].

In particular, trapping characteristics were evaluated to reduce the density of states for
the surface donors using different gate metals on the AlGaN/GaN heterostructure [16,17].
One of the solutions proposed for such GaN-based HEMTs is the improvement in the inter-
actions between the metal and semiconductor surfaces mediated by dangling bonds [18].
Schottky contacts on GaN and AlGaN/GaN heterostructures have been investigated for
various metals including Pt, Au, Ti, Ni, Au, and other highly heat resistant metals [19–21].
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Despite the excellent tuning of the Schottky barrier height (SBH) on a GaN-based HEMT,
the reliability instability remains a primary concern for device optimization due to the
relationships between the qualities of the AlGaN/GaN epitaxial layers and their geome-
tries [22]. In particular, the carriers in the GaN channel can achieve high energies at the
gate edge on the drain side, where the combined injection velocity from the lateral and
vertical directions is the maximum [23]. The degradation of the hot carriers may cause
a significant reduction in the drain current and transconductance (Gm) as well as shifts
in the threshold voltage (VT), resulting in decreased direct current (DC), radio frequency
(RF), and large-signal performances [24,25]. To quantitatively understand the electrostatic
characteristics of the AlGaN/GaN heterostructure, it is necessary to comprehensively ana-
lyze the concurrent SBH and reliability instability due to the interfacial trap states of the
metal–semiconductor (MS) contacts.

In this study, we investigated the comprehensive SBH and temperature as well as
device degradation of Ni/Au and Pt/Ti/Pt/Au contacts on AlGaN/GaN HEMTs. The
Schottky behavior characteristics for the Ni/Au and Pt/Ti/Pt/Au gate were compared, and
the thermal reliability instability was examined at elevated temperatures. There are many
studies [26–31] on the reliability of the Ni and Pt gated structure, but our experimental
method is unique and revived the property of Pt metal into its original condition.

2. Materials and Methods

The epitaxial layer structures were grown via the low-pressure metal-organic chemical
vapor deposition (MOCVD) technique on 3-inch p-type Si wafers. This epitaxial structure
consists of an Al0.21Ga0.79N barrier (28.5 nm), a Ga-polarity GaN channel layer (50 nm),
and an AlGaN intermediate buffer layer (200 nm) atop the 3-inch p-Si substrate. Hall
measurements revealed the mobility (µn_Hall) and the sheet charge density (2DEG) to be
1300 cm2·V−1·s−1 and 9× 1012 cm−2, respectively. The device fabrication involved mesa
isolation etching, source/drain ohmic contact formation, and gate patterning. The mesa
isolation etching was performed using a reactive ion etching (RIE) system; thereafter, the
ohmic contacts were formed by standard Ti/Al/Ni/Au (25/160/40/100 nm) metallization
on the source and drain regions, followed by rapid thermal annealing (RTA) at 830 ◦C
for 30 s in ambient N2 to allow for the formation of the contacts on the AlGaN/GaN epi-
structure. The contact resistance (Rc) and sheet resistance (RSH) extracted by transmission-
line-method (TLM) measurements were 1.2 Ω·mm and 320 Ω/�, respectively. Metallization
was performed via the lift-off technique. The Schottky gate contacts were next patterned by
photolithography; the Ni/Au (20/300 nm) and Pt/Ti/Pt/Au (8/20/20/300 nm) Schottky
gate contacts were fabricated by e-beam evaporation, and Al2O3 (3 nm) was deposited as
the surface passivation layer. A schematic cross-sectional structure and two different gate
metals are shown in Figure 1a,b respectively. To understand the roles of the temperature
and Schottky behavior characteristics, the electrical performance, I–V (current-voltage)
characteristics, and C–V (capacitance–voltage) measurements were evaluated using a
Keithley 4200SC semiconductor parameter analyzer and 4210-CVU, which were connected
to a probe station with a temperature-controlled (Temptronic TP03000) heating plate.

The critical voltage was determined via incrementally stepped stress values of the
VG from −10 V, with the source and drain terminals grounded to avoid self-heating. At
each stress step, similar gate length devices from each wafer were stressed for 1 min. To
verify the degradation of the SBH under the off-state stress, a constant stress condition
(VD = 50 V, VG = −7 V) was applied over a duration of 1 h to the gate and drain regions,
with the source being grounded. To investigate the temperature dependence under the
off-state stress, both devices, with the same gate length of Lg = 10 µm, were stressed at
constant voltage (VD = 50 V, VG = −7 V) for 1 h by increasing the temperature from 298 K
to 368 K in steps of 10 K. In our study, due to high gate leakage current, the calculation of
the ideality factor did not provide satisfactory results for a gate length of 14 µm. Therefore,
we considered a lower gate length of 10 µm to investigate the Schottky barrier degradation



Micromachines 2022, 13, 84 3 of 10

effect in both the temperature and stress related experiments. More than 35 devices with
different gate lengths (10 µm, 11 µm, and 14 µm) were used in this study.
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Figure 1. (a) Schematic cross section showing Ni/Au and Pt/Ti/Pt/Au gate contacts on the Al-
GaN/GaN HEMT. The Schottky gate contact on the AlGaN/GaN HEMT controls the current conduc-
tion in the GaN channel. (b) Gate metal stack for two different HEMTs.

3. Results and Discussion
3.1. Impact of Schottky Contact Electrodes on Electrical Properties

Figure 2a–c shows the I–V characteristics of both the forward and reverse region,
and Schottky characteristics (J–V characteristics) of the Ni/Au and Pt/Ti/Pt/Au Schottky
contacts on the AlGaN/GaN HEMTs, respectively. In Figure 2a, the Ni/Au Schottky contact
showed a forward current of 2.13 A/mm at 5 V while Pt/Ti/Pt/Au showed 0.5 A/mm. The
high Schottky barrier height of the contact may cause a reduction in forward current [32].
In the reverse region (Figure 2b), the Pt/Ti/Pt/Au device degraded and showed higher
leakage current 6.04 × 10−5 A/mm at −10 V than Ni/Au (5.29 × 10−6 A/mm). The SBHs
and ideality factors for the Ni/Au and Pt/Ti/Pt/Au AlGaN/GaN HEMTs are given by (1)
and (2), respectively:

J = JS

[
exp

(
qV
nkT

)
− 1

]
(1)

JS = A∗T2 exp
(
−qφb

kT

)
(2)

where JS is the reverse saturation current density; n is the ideality factor; A* is the effective
Richardson constant; T is the absolute temperature; φb is the SBH obtained from the satura-
tion current density; and k is the Boltzmann constant [33]. The SBH of the Pt/Ti/Pt/Au
contact at the reverse-biased region was observed to deteriorate, implying that the sur-
face roughness caused by the high-energy Pt atoms deposited during e-beam evaporation
process on the AlGaN/GaN HEMTs ultimately caused cracks in the MS contacts. This phe-
nomenon can be attributed to the inhomogeneities at the MS interface and large deviations
in the behaviors of the top electrodes despite the higher work function of Pt compared with
Ni. Hence, the reverse leakage current of the Pt/Ti/Pt/Au Schottky contact was higher
than that of the Ni/Au contact, as shown in Figure 2.
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The capacitance–voltage (C–V) and conductance–voltage (G–V) characteristics of the
Ni/Au and Pt/Ti/Pt/Au contacts on the AlGaN/GaN HEMTs were examined at 1 MHz,
as shown in Figure 3. The threshold voltage of the Pt/Ti/Pt/Au Schottky contact in the
forward region was observed to have a more positive shift of 0.28 V, as shown in Figure 3a.
This means that the 2DEG carrier concentration below the Pt/Ti/Pt/Au Schottky contact
was significantly reduced due to greater depletion under the Pt/Ti/Pt/Au contact than
the Ni/Au contact, thereby indicating that a top electrode made of Pt has a higher work
function than that made of Ni [7]. The conductance of the Pt-based Schottky contact was
higher in the off region than that of the Ni/Au Schottky contact, indicating the degradation
of the off-state leakage current.
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The initial value (before stress) of the Schottky contact calculated both I–V and C–V
methods. We measured the C–V characteristics of both devices at 1 MHz at room tem-
perature (Figure 3a). The below equation demonstrated a Schottky barrier relation with
capacitance characteristics [33].

A2

C2 =
2
(

Vbi − kT
q − V

)
qNDεs

(3)

where εs is the semiconductor permittivity; Vbi is the built-in potential; ND is the doping
concentration; A is the area; and C is the capacitance. In the reverse region, 1/C2 vs. V gave
a straight line from which we calculated the flat band voltage V0 (intercept of x-axis) and
built-in potential Vbi. The barrier height can be calculated by the below expression,

Vn = EC − EF =
kT
q

In
(

NC
ND

)
(4)

where EC and EF represent the conduction band minima and Fermi energy level, respectively. We
used a NC (effective density of states in the conduction band) of 1.7 × 1018 cm−3 [34]. Schottky
barrier height can be expressed as

φb = Vbi + Vn +
kT
q

(5)

From the C–V measurement, a Schottky barrier height value was obtained at 0.59 eV
and 0.48 eV in Ni/Au and Pt/Ti/Pt/Au, respectively. Apparently, this was high compared
to the I–V measured values [35] which is shown in Table 1.

Table 1. Comparison of I–V and C–V measured data of both devices at room temperature.

Schottky Barrier Height (φb) (eV) I–V Method C–V Method

Ni/Au 0.55 0.59
Pt/Ti/Pt/Au 0.45 0.48

The transconductance showed almost similar characteristics of both devices at the
same gate length of 14 um. The drain current in the Pt/Ti/Pt/Au device in Figure 4b was
slightly lower than the Ni/Au gated device, indicating that the 2DEG carrier concentration
below the gate area had decreased [7]. The transfer characteristics of the Ni/Au and
Pt/Ti/Pt/Au contacts on the AlGaN/GaN HEMTs are shown in Figure 4a. The off-state
leakage current of the Pt/Ti/Pt/Au HEMT was slightly higher than that of the Ni/Au
HEMT. In the voltage region below −1.5 V, the Pt-based Schottky gate yielded a high
forward leakage current. Extra tunneling of the currents has been suggested in the Pt gate
due to the surface level of the MS state, as demonstrated by Zhang et al. (2006) [36]. Thus,
the leakage current increased instead of reducing at the minimum forward bias.

In Figure 5, the critical voltage of the Ni/Au HEMT, followed by a sudden increase
in the gate leakage current, was about −25 V, which resulted in permanent defect sites at
the MS interface. This sudden increase in the gate leakage current can be ascribed to the
inverse piezoelectric effect [37]. In contrast, no sudden increase in the gate leakage current
was observed up to −60 V in the Pt/Ti/Pt/Au HEMT [38]. Although all characteristics of
the Pt/Ti/Pt/Au HEMT including Schottky diode, transistor I–V, and C–V measurements,
showed significant improvements in the forward region, the device characteristics in the
reverse region were degraded due to the inhomogeneities at the MS interface.
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Figure 5. Critical voltages (Vcrit) of Ni/Au and Pt/Ti/Pt/Au on AlGaN/GaN HEMTs in the range of
−10 to −60 V with stepped stresses. The Vcrit of Ni/Au was about −25 V and that of Pt/Ti/Pt/Au
was unspecified for up to −60 V.

3.2. Reliability Instability Based on Temperature

To verify the degradation of the SBH from high electrical stress, the forward and
reverse leakage currents of the Ni/Au and Pt/Ti/Pt/Au contacts on the AlGaN/GaN
HEMTs were evaluated before and after off-state stress application (VD = 50 V, VG = −7 V)
over a duration of 3600 s. The reverse leakage current of the Pt/Ti/Pt/Au contact after
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off-state stress application showed a greater reduction than that of the initial device while
that of the Ni/Au increased, as shown in Figure 6. It is also interesting to note that the SBHs
of the Ni/Au and Pt/Ti/Pt/Au after application of off-state stress decreased from 0.55 to
0.49 eV and increased from 0.46 to 0.69 eV, respectively. This means that the hot carriers
under the off-state stress have a significantly effect on the MS. In fact, the stress condition
at room temperature (25 ◦C) depends significantly on the gate voltage and electric field.
The metallization schemes for the Schottky contacts on the AlGaN/GaN HEMT must thus
be verified for thermal instabilities due to the Ga out-diffusion and Au interdiffusion at
elevated temperatures.
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Figure 6. (a) Forward leakage current and (b) reverse leakage current of Ni/Au and Pt/Ti/Pt/Au on
AlGaN/GaN HEMTs before and after off-state stress (VD = 50 V, VG = −7 V) during 3600 s.

The thermal reliability instabilities for the Ni/Au and Pt/Ti/Pt/Au HEMTs were
examined in the temperature range of 298 to 368 K in intervals of 10 K. Figure 7 shows the
J–V characteristics of the Ni/Au and Pt/Ti/Pt/Au contacts after application of off-state
stress (VD = 50 V, VG = −7 V) at different temperatures. The reverse leakage currents of the
Ni/Au HEMT before and after off-state stressing at 298 K were not degraded; in fact, the
off-state stress with increasing temperature caused greater initial-parameter degradation
rather than at room temperature [39], as shown in Figure 7a, which can easily generate
more interface traps. In contrast, the reverse leakage currents of the Pt/Ti/Pt/Au HEMT
decreased after off-state stressing at 298 K, with further reduction at 308 K under the same
off-state stress conditions.
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Figure 7. Reverse leakage current of the (a) Ni/Au and (b) Pt/Ti/Pt/Au on AlGaN/GaN HEMTs
after off-state stress (VD = 50 V, VG = −7 V) in the temperature range of 298 K to 368 K measured at a
temperature interval of 10 K. [Curves are not shown from 328 K to 358 K].

To investigate the barrier height and ideality factor of both devices, we repeated the
same experiment with both Ni/Au and Pt/Ti/Pt/Au with different gate lengths of 10 µm
and increased the temperature beyond 368 K to observe the degradation effect [40–43].
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Figure 8a demonstrates the stress with temperature effect carried out on both devices.
Barrier height of Ni/Au increased in a conventional way and the device burnt out at a
368 K temperature with the same off-state stress applied (VD = 50 V, VG = −7 V). The
Pt/Ti/Pt/Au gated device had no breakdown issues after a temperature of 368 K. It was
difficult to compare the ideality factor at a higher gate length (14 µm) due to high leakage
current; therefore, we narrowed it down with shorter gate devices. We found a better
ideality factor at a gate length of 10 µm compared to the gate length of 14 µm. Due to
the high gate leakage current, the ideality factor (4.3) was high in Pt/Ti/Pt/Au [44,45].
However, after stress at 308 K, the ideality factor decreased, and was between 1 and 2 as
the temperature increased.
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Figure 8. Barrier height (a) and ideality factor (b) of the Ni/Au and Pt/Ti/Pt/Au devices in the same
experiment described in Figure 7. Ni/Au gated device burnt out after 378 K (a) and there was an
increase in Schottky barrier height from 0.49 eV to 0.68 eV at 308 K in the Pt/Ti/Pt/Au gated device.

Although the initial characteristics of the Pt/Ti/Pt/Au HEMT were determined by
the inhomogeneities at the MS interface, the interfacial trap states can be reduced by curing
the surface donor state of the Pt-based Schottky contact after off-state stressing. For an
increase in temperature over 308 K under the same off-state stress condition, the reverse
leakage current degradation is mitigated by the inverse piezoelectric effect mechanism.
As the temperature increases further, the number of electrons with very high energies
decreases. At increased temperature, greater phonon-induced carrier scattering mitigates
carrier acceleration, which minimizes hot-carrier damage [46].

In other words, the number of moderate-energy carriers (0.5 eV to 2.5 eV) increases
with an increase in temperature. Moderate-energy carriers could produce or reorganize
flaws in the MS contacts after application of off-state stress if the defect activation energies
are sufficiently low. Thus, it is necessary to analyze the concurrent SBH and hot-carrier
degradation because of the interfacial trap states at the MS contacts.

4. Conclusions

Detailed reliability assessments and electrical characterizations were performed for
Ni/Au and Pt/Ti/Pt/Au gate contacts on AlGaN/GaN HEMTs. Although the Pt-based
gate was expected to have a high work function when used on top of the AlGaN, the
SBH and reverse leakage current degraded in comparison with those of the Ni-based gate,
implying that the high-energy Pt atoms induced surface roughness during the e-beam
evaporation process. After applying off-state stresses and high temperatures, Pt/Ti/Pt/Au
HEMTs showed abrupt reductions in the reverse leakage currents, which improved the
SBH by suppressing the interfacial donor states. From the behaviors of the interfacial trap
states of the MS contacts, the stability of the AlGaN/GaN HEMT could be ascertained by
simultaneously investigating the SBH and reliability instability.
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