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Abstract: With the advantage of faster data access than traditional disks, in-memory database systems,
such as Redis and Memcached, have been widely applied in data centers and embedded systems.
The performance of in-memory database greatly depends on the access speed of memory. With the
requirement of high bandwidth and low energy, die-stacked memory (e.g., High Bandwidth Memory
(HBM)) has been developed to extend the channel number and width. However, the capacity of
die-stacked memory is limited due to the interposer challenge. Thus, hybrid memory system with
traditional Dynamic Random Access Memory (DRAM) and die-stacked memory emerges. Existing
works have proposed to place and manage data on hybrid memory architecture in the view of
hardware. This paper considers to manage in-memory database data in hybrid memory in the view
of application. We first perform a preliminary study on the hotness distribution of client requests
on Redis. From the results, we observe that most requests happen on a small portion of data objects
in in-memory database. Then, we propose the Application-oriented Data Migration called ADM
to accelerate in-memory database on hybrid memory. We design a hotness management method
and two migration policies to migrate data into or out of HBM. We take Redis under comprehensive
benchmarks as a case study for the proposed method. Through the experimental results, it is
verified that our proposed method can effectively gain performance improvement and reduce energy
consumption compared with existing Redis database.

Keywords: in-memory database; hybrid memory; data migration

1. Introduction

With the vigorous development of cloud computing and Internet technologies, a large
number of emerging applications with high concurrency and low latency have emerged.
They put forward new challenges to the performance of traditional computer systems. Due
to the access speed limitation, it is difficult for disk storage-based database system to meet
the scalability and delay requirements of such new applications. As a result, in-memory
database system, such as Redis [1] and Memcached [2], becomes an excellent solution
and has been widely applied in today’s data centers, such as E-commerce websites, game
applications and social networking sites.

In-memory database stores data in memory instead of disk drives to achieve faster
response times by eliminating the need to access disks. Its performance can be significantly
affected by the speed of reading and writing data in memory. However, conventional
DRAM faces the bottleneck of limited bandwidth due to the scalability of pin count [3],
which is commonly known as the memory wall [4]. The advent of die-stacked memory
(e.g., HBM [5], Hybrid Memory Cube (HMC) [6]) has become a promising solution [7]
to alleviate the memory wall problem by delivering several orders of magnitude higher
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bandwidth and lower energy consumption. Unfortunately, the capacity of die-stacked
memory is significantly smaller because of limited number of stacks and the interposer
challenges [8]. Thus, die-stacked memories are often used as a part of main memory or
cache to form a hybrid memory together with traditional DRAM memory.

There have been existing studies on die-stacked memory-based hybrid memory. How
to place and migrate data between two types of memories is mostly studied to optimize
performance and energy efficiency. Vasilakis et al. [9] propose to exploit last level cache
(LLC) to detect memory segment with high data locality for migration. Sim et al. [10] propose
to leverage a customized hardware-managed remapping table to keep page remapping
without operating system interventions. Prodromou et al. [11] introduce a dynamic
memory manager that groups existing memory controllers into several Pods and inserts
them between LLC and the system’s memory controllers. These works all consider the data
migration in the view of hardware management.

In this paper, we consider in-memory database data management on hybrid memory
system in the view of application. To best exploit respective advantages and overcome
drawbacks for performance gain in hybrid memory system, adding migration support
between the two types of memory is of great importance. There are several challenges
facing the design of such migration scheme. First, providing efficient application-level
interfaces related to memory allocation and free is critical for establishing connection
between upper application and lower device. By utilizing these interfaces, users can easily
control these two memories from the perspective of application. Furthermore, it is a key
point to determine the appropriate migration granularity. Different from the page or block
granularity at device-level, the granularity at application-level needs to be considered with
combinations of specific semantics of the application. Finally, identifying what to be placed
in which type of memory is an important task that is directly related to the efficient use of
space and performance gains.

As a result, in this paper we focus on exploring an efficient application-level migration
policy for in-memory database systems that executes hybrid memory systems with flat
memory organization. We first perform a preliminary study on Redis in-memory database
and use its benchmarking tool to simulate client requests on data objects. From the study
results, we observe that a large portion of requests happen on a small amount of data
objects, which indicates the characteristics of hot data. By exploiting this observation, we
propose an Application-oriented Data Migration method called ADM to accelerate the
in-memory database based on hybrid memory architecture. The key idea is to migrate hot
data objects in the database to HBM die-stacked memory for high bandwidth. We design a
hotness management scheme and two migration policies to migrate into and out of HBM,
respectively. By extending the existing malloc and free interface for main memory to be
HBM_malloc and HBM_free, we integrate the ADM migration method into a traditional
in-memory database for programmers.

In order to evaluate the efficiency of the proposed ADM, we conduct comprehen-
sive experiments on Redis, a commonly used in-memory database, under various client
benchmarks generated by the memtier_benchmark tool. Experimental results indicate that
our proposed migration method can significantly optimize system performance as well as
energy consumption. In summary, our contributions in this paper are listed as follows:

• Observation of the hotness characteristics of data objects in in-memory database from
a preliminary study.

• By exploiting the observation, we propose the application-oriented migration method
ADM, which contains a data hotness management scheme and two migration policies.

• We implement the proposed application-oriented data migration into Redis, and
evaluate its performance under comprehensive benchmarks. Experimental results
have verified its effectiveness on system performance and energy consumption.

The remainder of the paper is organized as follows. We present the background and
motivation for this work in Section 2. Section 3 describes the details of our proposed ADM.
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Evaluation results are shown and discussed in Section 4. We conclude the paper and future
planned work in Section 5.

2. Background and Motivation

In this section, we first present the basics of in-memory database and die stacked
memory-based hybrid memory. Then, we investigate the characteristics of the in-memory
database system in terms of object hotness. At last, motivation of this paper is presented.

2.1. In-Memory Database

In-memory database is a database system that mainly relies on main memory to store
data [12]. Figure 1a shows the basic architecture of the in-memory database. Clients send
query and update requests to access data in the database. Data are stored in memory
in a directly usable format without the barrier of compression or encryption [13]. In-
memory database systems often exploit index structure to accelerate response speed of data
queries. Due to the volatility of memory, in-memory database systems require persistency
mechanisms, e.g., creating logs or snapshot files in disks, to avoid data loss upon power
outage or server failure.

Mainstream in-memory databases are mainly categorized into key-value in-memory
database, relational in-memory database, and other databases. Among them, the key-
value in-memory database performs data access operations by keys. The values usually
support various data types. The key-value data structure is simple and flexible, which is
especially suitable for applications that have different kinds of data structures. Typical
key-value in-memory databases include Redis [1], Memcached [2] and Aerospike [14]. As
a representative in-memory database, Redis is an open source, networked, and single-
threaded database system. Key-value data in Redis use a dictionary to establish the
mapping from key to value. In particular, the values support several types of data objects,
including String, List, Zset, Hash, etc. This paper considers Redis as the case study of our
proposed method for in-memory database.

Clients

In-memory database system

Index
structure

Data
management

Snapshot/
log files

Queries or updates 

Data stored 
in memory

persistency

(a) Structure of in-memory database.
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Figure 1. The background of in-memory database and request distributions of objects under Gaussian
distributions with three deviations.

2.2. Hybrid Memory System

Although die-stacked memory has the similar memory cell arrays and peripheral
logic to conventional DRAM, it can provide higher access bandwidth and lower energy
by using die-stacked techniques. This paper mainly considers HBM die-stacked memory.
Its special through silicon vias (TSVs) structure enables wider I/O interfaces (I/F) among
vertically stacked layers. By integrating hundreds of TSVs through layers, HBM can provide
a much higher memory channel bandwidth (BW) [15]. However, due to the interposer
challenge, its capacity expansion is limited. Table 1 shows the performance and energy
comparisons among two DRAM types (DDR4 and DDR5) and two HBM types (HBM3 [16]
and HBM2) [17]. Although HBM can provide a much higher bandwidth and lower energy,
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its capacity is limited and cannot be used as main memory independently. Thus, the hybrid
memory is designed to exploit advantages of DRAM and HBM in bandwidth and capacity.

Table 1. Comparisons of various memories [16,17].

Feature DDR4 DDR5 HBM2 HBM3

Max Pin BW 3.2 GB/s 6.4 GB/s 2.4 GB/s 6.4 GB/s
Max I/F BW 25.6 GB/s 51 GB/s 307 GB/s 819 GB/s
Pins/channel 380 pins 380 pins 2860 pins 2860 pins

Energy 5.1 pJ/bit 4 pJ/bit 0.7 pJ/bit unpublished
Max capacity 128 GB 256 GB 8 GB 24 GB

In hybrid memory, HBM has been considered as two hybrid modes of cache, part of
main memory or both. This paper considers to combine HBM and DRAM together to form
the main memory in flat address-space. Existing works have studied the data migrations
between two types of memories to achieve high performance. LGM [9] leverages LLC
to identify memory segments with high spatial and temporal locality for the selection of
migrated data. SILC-FM [18] designs a hardware data management mechanism to organize
stacked memory as an associative structure and allow interleaved subblock placement.
The re-configurable hybrid memory has been proposed, such as the Intel Xeon Phi KNL
architecture [19] that supports two hybrid-modes configurations. CHAMELEON [20]
proposes a hardware-software co-design to dynamically switch memory regions between
two hybrid modes according to the status of free space. Hybrid2 [21] exploits a small
portion of HBM stacked memory as cache, and minimizes the metadata overheads by
extending an on-chip tag. These works consider hybrid memory management in view of
the hardware.

In this paper, we consider managing the data of the in-memory database in hybrid
memory from the perspective of applications. For device-level data management, inherent
memory regions, such as page and block, are usually directly used as design objects. Fur-
thermore, it relies more on the significant modifications of the hardware architecture. For
example, page table entry(PTE), translation lookaside buffer(TLB) and caches are usually
utilized to achieve design goals. Differently, for our application-level data management, the
information about the underlying device is not visible and can not be exploited by users. We
need to extract useful information on target application based on the study of its characteris-
tics. Then, the modification of application’s source code is necessary for the implementation
of scheme. Moreover, the application layer is closer to user compared with lower device
layer. In short, the specific design measures for application- and device-level, including
design object, design granularity, implementation principle, etc., are entirely different.

2.3. Motivation and Scope of This Paper

In this section, we perform a preliminary study on data objects characteristics of
the Redis database. We use the memtier_benchmark, a high-throughput benchmarking
tool for Redis and Memcached to generate client requests [22]. 10 million requests on
100 thousand objects are generated. We collect the amount of requests that access on objects.
Then, the object hotness distribution is collected and shown in Figure 1b. We specify the
Gaussian distribution mode in memtier_benchmark and adopt three standard deviation
configurations including Deviation 1, Deviation 2 and Deviation 3 with 10%, 12.5% and
16.6% of object numbers. From the curves in Figure 1b, we can observe that a great amount
of workload’s requests are distributed on a small number of data objects in in-memory
database. For instance, almost 30% objects occupy 90% requests accesses in Deviation 1.

Our consideration. Motivated by above hotness observation results, we consider
to manage data objects in the in-memory database on the hybrid memory system. As
HBM has a much higher bandwidth, those hot (frequently-accessed) objects that require
fast access speed would be more suitable to be stored in HBM. Keeping this in mind, we
propose to build an application-level hotness-aware data migration scheme.



Micromachines 2022, 13, 52 5 of 13

Scope of this paper. Our whole work is conducted from the perspective of the
application layer, directly modifying the original in-memory database application software
code. On the basis of the original code, a new migration mechanism is added for data
management of the in-memory database based on the new hybrid memory architecture.
Hardware details such as parallelism and pipelines are not involved. In addition, our
purpose is to optimize performance and energy consumption of in-memory database
applications on hybrid memory system. Its fault tolerance and reliability are out of our
research scope.

3. Design and Implementation

In this section, we first present a high-level overview of our proposed ADM method,
and then introduce the detailed designs of its three components. At last, the implementation
of ADM in Redis in-memory database is illustrated.

3.1. Overview

Our proposed ADM approach aims at high-performance in-memory database on
hybrid memory in the application level. ADM mainly consists of three components:
Hotness management, HBM Migr-in and HBM Migr-out, as shown in Figure 2. The HBM
Migr-in component is responsible to migrate hot data objects of in-memory database from
DRAM to HBM, while the HBM Migr-out component is in charge of the migration of cold
data from HBM to DRAM. The hotness management component monitors and manages the
hotness of data objects both in DRAM and HBM. For DRAM, a least frequently used (LFU)
hotness management policy is applied on data objects. In order to decouple the hotness
property when objects are migrated into HBM, we design a novel counter based hotness
management scheme for HBM data objects. Hotness management works together with
the other two components to provide the hotness information and adjust object hotness
according to the management policy.

Hybrid memory in flat address space

Queries or updates 

Malloc/free

DRAM HBM

Client Requests

Malloc/free

In-memory database system

Index
structure

ADM

Data stored 
in memory

HBM
Migr-out

HBM
Migr-in

Hotness
management

Figure 2. Overview of the proposed ADM method. ADM contains three components and is integrated
to the Redis in-memory database.

3.2. Hotness Management

Since the limited capacity in HBM and migration overhead, the decision about whether
an object should be migrated to HBM must be carefully considered. For objects in DRAM,
Redis records data object hotness by maintaining a value field for each object. It uses the
LFU algorithm to indicate how often the object is accessed and evict the victim object for
persistent storage. A lfu-log-factor field is used to adjust the increase speed of hotness,
while a lfu-decay-time field is used to adjust the hotness decrease speed. In our hotness
management for DRAM, we use the existing LFU algorithm to find the hot data. By setting
a hotness threshold, the migration out of DRAM would be invoked.

Due to the limited capacity of HBM, it is necessary to reclaim memory space of cold
data objects in HBM for new coming objects migrated out of DRAM. For objects in HBM,
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hotness management establishes a counter for each object. When an object is accessed by a
client request, its counter would increase by one. To prevent the counter from increasing
too much, hotness management designs a hotness decay algorithm to limit the growth
of counters. The algorithm would decay the counter value of each object with a fixed
time interval. Specifically, when the decay is invoked periodically, counters of data objects
would be halved. When the hotness counter threshold is satisfied, the object would be
migrated out of HBM to make room for new objects.

3.3. HBM Migr-In

Figure 3 describes the workflow of object migration from DRAM to HBM managed
by the HBM Migr-in component. It develops a threshold-based mechanism to identify
whether an object is hot or not. The HBM Migr-in triggers the workflow when clients send
a request to in-memory database. ADM maintains an object list to store all the objects in
HBM. HBM Migr-in first checks whether the requested object is already in the object list of
HBM. For objects in HBM, it would only increase their counter values by one. Otherwise,
the hotness of the object is first updated according to the LFU rule. Then, the hotness of the
object would be checked through comparing with the pre-set threshold Tin. If it exceeds
the threshold and there is enough space in HBM, the object would be migrated into HBM.
When HBM does not have enough space, the migration operation would be aborted. The
migration from DRAM into HBM mainly includes the following five steps:

1. malloc space in HBM for the object the size of which is obtained from its metadata;
2. copy the value data and metadata of the object into HBM;
3. free the space of the migrated object in DRAM;
4. set an initial counter value for the object according to the counter-based hotness

management;
5. insert an new entry to the object list in HBM.

Is the requested 
obj in HBM object list?

finish

counterobj++

Is the obj hot and the 
remaining space in HBM 

enough?

Migrate the obj into HBM.

Yes

No

Yes

No

Client request to obj

Update the hotness of 
obj based on LFU.

Figure 3. The migration workflow of HBM Migr-in from DRAM to HBM.

3.4. HBM Migr-Out

HBM Migr-out reuses the lru field to store a counter value that counts accesses of
objects stored in HBM. The counter increases for each request to the object. Our HBM
Migr-out adopts an active, interval-based approach to manage object migration from HBM
to DRAM.

As described in Figure 4, HBM Migr-out periodically traverses the object list in HBM
to check each object. For each object in HBM, Migr-out compares its counter value with the
pre-set threshold Tout. If it is lower than the threshold, the object will be migrated out of
HBM; otherwise the counter value will be halved for hotness updating. The migration out
of HBM mainly includes the following five steps:

1. malloc space in DRAM for the object the size of which is obtained from its metadata;
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2. copy the value data and metadata of the object into DRAM;
3. free the space of the migrated object in HBM;
4. set an initial LFU value for the object according to the LFU-based hotness management;
5. delete the corresponding entry from the object list in HBM.

finish

Traverse the object list to 
check each obj in HBM.

Halve the counterobj.

Migrate the obj 
out of HBM.

No

Periodical Interrupt

Is the obj hot? Yes

Figure 4. The migration workflow of HBM Migr-out from HBM to DRAM.

3.5. Implementation of ADM

In order to implement the proposed ADM in existing DRAM-based memory system,
we divide the main memory into two parts to simulate the HBM and DRAM space. The
HBM is mapped into a contiguous range of address space, while the DRAM is mapped to
another contiguous range in the same address space. Data objects are exclusively stored
in HBM or DRAM address space, i.e., two memories are in flat address space and there is
only one copy for each data object of in-memory database. In hybrid memory system, we
assume that the DRAM resource is always sufficient for workloads while HBM has limited
capacity. The page replacement with external storage is not under our considerations.

ADM can be integrated into the source code of in-memory database. We develop
new Application Programming Interfaces (APIs) for memory allocation. For example,
hbm_malloc and hbm_free are used to allocate and free HBM memory space, respectively.
Therefore, programmers can directly exploit them to perform data management in different
memories in the application level. In this way, data objects can be migrated between DRAM
and HBM at runtime, without any changes of hardware management.

As a case study, this paper has already implemented ADM in Redis. As Redis stores
data in the form of key-value pairs, and clients often query or update different types of
values, such as String, List and so on. Our migration mechanisms have been applied onto
these types of data objects.

4. Experiment and Evaluation

In this section, we present the evaluation of our proposed ADM method. We first intro-
duce experiment settings, and then quantify the behaviors of migrations on the application
data objects. At last, experimental results are illustrated in terms of system performance
and energy consumption.

4.1. Experimental Setup

In order to evaluate the effectiveness of the ADM method on in-memory database, our
experiment is performed in software and hardware parts. In the software part, the Redis
in-memory database is running on a real computer configured with a 4-core CPU processor
with the frequency of 2.5 GHz. We use a fast and scalable multi-core simulator, Zsim [23],
to capture the memory trace of Redis. In the hardware part, we use a memory simulator,
DRAMsim3 [24], to model the timing parameters and memory controller behaviors for the
hybrid memory with HBM and DRAM. The support for flat address space hybrid memory
composed of DRAM and HBM die-stacked memory is also implemented by extending
DRAMsim3. Its detailed configurations are listed in Table 2.
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Table 2. Memory configurations.

Caches

L1 I-Cache 8-way, 3 cycles, 32 KB
L1 D-Cache 8-way, 4 cycles, 32 KB

L2 Cache 4-way, 7 cycles, 1 MB
L3 Cache 20-way, 27 cycles, 10 MB

Conventional DRAM

Bus frequency 1.6 GHz
Channels 2

Banks 8
Bus width 64 bits/channel

tCAS-tRCD-tRP 22-22-22 bus cycles

HBM Die-Stacked DRAM

Bus frequency 1 GHz
Channels 8

Banks 8
Bus width 128 bits/channel

tCAS-tRCD-tRP 7-7-7 bus cycles

The modeling involved in our experiment is shown in Figure 5. As our scheme is
application-oriented, the ADM is mainly implemented at the application layer. The hybrid
memory simulation is mainly achieved by modifying the DRAMsim simulator [24]. As
shown in the Figure 5, by extending new application program interfaces, we implement
two kinds of memory spaces at the application layer and perform data migration operations
between them. We use the Zsim simulator [23] to extract the memory read/write behaviors
during the running process to form a trace file. Among them, each trace contains three
parts: (1) Tag, in which “0” represents a request on DRAM, while “1” represents a request
on HBM; (2) Request type, in which“W” stands for write request, while “R” stands for read
request; (3) Access address, in which the access address of each request is stored. In our
simulation process, Zsim first translates the virtual address obtained from the application
layer into a physical address and stores it in the trace. Then, the trace file will be injected into
the DRAMSim simulator to simulate the hardware behaviors in hybrid memory. Finally,
we obtain the latency and energy consumption results of the hybrid memory from the
simulation on DRAMsim.

Figure 5. The modeling architecture and process of our experiment.

In our experiments, Redis in version 5.0.8 in standalone mode is taken as a case study
for in-memory database. All workloads are generated by memtier_benchmark, a command
line utility developed by Redis Labs for load generation and benchmarking NoSQL key-
value databases [22]. We construct five kinds of workloads with different ranges of data
size and operation ratios (set-get) as listed in Table 3.
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Table 3. Workloads configurations.

Name Data Size Ranges (Bytes) Operation Ratios (Set:Get)

bench1 [1, 2000] 1:9
bench2 [1, 3000] 1:9
bench3 [1, 3000] 3:7
bench4 [1, 3000] 5:5
bench5 [1, 4000] 1:9

To quantify the impact on performance and energy consumption, we run Redis in-
memory database under the following four memory types with different methods:

• DRAM : Redis runs on the single memory only including DRAM memory.
• HM-W/O-Migr: Redis runs on the hybrid memory architecture, but there is no migra-

tion scheme. Data objects enter in HBM in a first-come first-served way.
• HM-W-Migr: Redis integrated with our proposed ADM method runs on the hybrid

memory architecture and there are migrations between DRAM and HBM.
• HBM: Redis runs on the single memory only including HBM memory type. We

assume an ideal situation that the capacity of HBM memory is unlimited.

4.2. Behaviours of Object Migration

We first analyze the served behaviours of client requests in HBM/DRAM from the
application perspective. Figure 6a shows the distribution of client requests served in HBM
or DRAM across five workloads. The left column denotes the HM-W/O-Migr while the
right column denotes the HM-W-Migr. From the figure, it can be found that the proposed
ADM method can increase the percentage of client requests served in HBM. It implies
the placement of hot data in faster HBM for serving more client requests. This behaviour
shows that our proposed ADM method truly identifies the hot data and utilizes HBM space
more frequently.
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Figure 6. Distribution of served requests on application-level (a) and results of four methods on
different data structures of Redis (b–d).

4.3. Performance and Energy Results

In this section, we first present the performance and energy results of data structures
including String, Zset, List and Hash, as shown in Figure 6b–d. All results are obtained
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from Dramsim3 and normalized to Redis on DRAM. Performance refers to the latency to
serve memory requests. As existing benchmarks do not support data structures besides to
String [25], we extend the memtier_benchmark tool to support them.

From the performance results, We can see that HM-W-Migr outperforms the DRAM
and HM-W/O-Migr in all workloads. On average, HM-W-Migr improves performance by
48% compared with the DRAM, and by 20% compared with the HM-W/O-Migr. From the
energy results, we can find that HM-W-Migr can reduce read and write energy by 26% and
18% over HM-W/O-Migr on average, respectively. The HBM version in all figures shows
ideal best results, while HM-W-Migr performs closest to the ideal case. Besides, we can
observe that the ADM on String data can achieve the most improvement when compared
with other data structures.

4.4. Sensitivity Analysis

In order to further verify the sensitivity of ADM, we investigate its effectiveness on
different data size ranges and operation ratios between sets and gets on the String data type.

4.4.1. Sensitivity to Data Size Range

Figure 7a–c show results of performance, read energy and write energy across three
different data size ranges, respectively. From the results, we can find that when the data size
increases, the performance and energy improvement of HM-W/O-Migr and HM-W-Migr
both decrease compared with the DRAM case. However, compared to HM-W/O-Migr
that drops 27% in performance, 33% in read energy and 33% in write energy, the drop
of HM-W-Migr is lower with 12% in performance, 15% in read energy and 18% in write
energy. Figure 8a shows the read/write request distribution on HBM and DRAM. We can
find that the number of memory requests is increasing as the data size increases. Besides,
compared to HM-W/O-Migr (i.e., W/O in Figure 8a), HM-W-Migr (i.e., W in Figure 8a)
has a steady increase in the percentage of memory requests in HBM across all workloads.
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Figure 7. Normalized results across different size ranges.
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Figure 8. Distributions of dram/hbm read/write requests across different size ranges and set-get
operation ratios.

4.4.2. Sensitivity to Set-Get Operation Ratio

Figure 9a–c show the performance, read energy and write energy results across three
different operation ratios, respectively. When the percentage of set operation increases, HM-
W/O-Migr shows a slight decrease in performance and energy improvement compared to
the DRAM case. HM-W-Migr also shows the same results for performance and read energy,
except for write energy. It can be seen from Figure 9c that, the write energy improvement
of HM-W-Migr shows a slight increase when the portion of set operation becomes higher.
Figure 8b describes the request distribution on HBM and DRAM across three operation
ratios. It can be found that, the improvement in percentage of HBM write requests in
HM-W-Migr gradually increases when the set operation ratio increases. In addition, the
improvement in percentage of all HBM requests in HM-W-Migr are almost the same across
three ratios. In summary, our proposed ADM method can improve both performance and
energy results across different workloads.
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5. Conclusions and Futuer Work

In this paper, we propose an application-oriented data migration method for in-
memory database on the hybrid memory architecture. By establishing a hotness manage-
ment scheme for die-stacked memory and DRAM, ADM designs the migrations into and
out of HBM, and implements these two designs with new APIs by extending the existing
in-memory database. We evaluate our ADM method using the Redis as a case study. Com-
prehensive experiments verify the effectiveness of ADM on performance improvement and
energy consumption reduction. Specifically, compared to existing Redis database on hybrid
memory architecture, our proposed ADM method can improve performance by 20%, read
energy by 26% and write energy by 18% on average.

We expect to conduct two extensions based on our ADM method in the future work.
On the one hand, we expect to improve the scalability of our approach. Our existing
experiment takes Redis as case study for evaluation. Some other applications would be
considered as cases to implement our ADM method. On the other hand, we would test
some experimental data on real devices that would further verify the effectiveness of ADM.

Author Contributions: The contribution of this paper from authors is as follows: Y.D. is responsible
for supervision, conceptualization, methodology, writing review, project administration and funding
acquisition; W.Z. is responsible for investigation, data curation, software, validation, conducting the
simulations and writing on original draft preparation; M.Z. is responsible for guidance on methodol-
ogy and experimental implementation; M.L. is responsible for construction of some experimental
platforms; K.J. is responsible for visualization; R.A. is responsible for resources and writing—review
and editing. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China grant No.
61802287, supported by State Key Laboratory of Computer Architecture (ICT,CAS) under Grant No.
CARCH201903 and Shenzhen Fundamental Research Program under Grant No. JCYJ20210324122406017.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Redis. Available online: https://redis.io/ (accessed on 15 July 2020).
2. Memcached. Available online: http://memcached.org/ (accessed on 13 March 2021).
3. Ahn, J.; Yoo, S.; Mutlu, O.; Choi, K. PIM-enabled instructions: A low-overhead, locality-aware processing-in-memory architecture.

In Proceedings of the 2015 ACM/IEEE 42nd Annual International Symposium on Computer Architecture (ISCA), Portland,
Oregon, 13–17 June 2015; pp. 336–348.

4. Wulf, W.A.; McKee, S.A. Hitting the memory wall: Implications of the obvious. ACM SIGARCH Comput. Archit. News 1995,
23, 20–24. [CrossRef]

5. Jun, H.; Cho, J.; Lee, K.; Son, H.Y.; Kim, K.; Jin, H.; Kim, K. Hbm (high bandwidth memory) dram technology and architecture. In
Proceedings of the 2017 IEEE International Memory Workshop (IMW), Monterey, CA, USA, 14–17 May 2017; pp. 1–4.

6. Pawlowski, J.T. Hybrid memory cube (HMC). In Proceedings of the 2011 IEEE Hot Chips 23 Symposium (HCS), Stanford, CA,
USA, 17–19 August 2011; pp. 1–24.

7. Rogers, B.M.; Krishna, A.; Bell, G.B.; Vu, K.; Jiang, X.; Solihin, Y. Scaling the bandwidth wall: challenges in and avenues for CMP
scaling. In Proceedings of the 36th Annual International Symposium on Computer Architecture, Austin, TX, USA, 20–24 June
2009; pp. 371–382.

8. Ramalingam, S. HBM package integration: Technology trends, challenges and applications. In Proceedings of the 2016 IEEE Hot
Chips 28 Symposium (HCS), Cupertino, CA, USA, 21–23 August 2016; pp. 1–17.

9. Vasilakis, E.; Papaefstathiou, V.; Trancoso, P.; Sourdis, I. LLC-guided data migration in hybrid memory systems. In Proceedings
of the 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 20–24 May 2019;
pp. 932–942.

10. Sim, J.; Alameldeen, A.R.; Chishti, Z.; Wilkerson, C.; Kim, H. Transparent hardware management of stacked dram as part of
memory. In Proceedings of the 2014 47th Annual IEEE/ACM International Symposium on Microarchitecture, Cambridge, UK,
13–17 December 2014; pp. 13–24.

11. Prodromou, A.; Meswani, M.; Jayasena, N.; Loh, G.; Tullsen, D.M. Mempod: A clustered architecture for efficient and scalable
migration in flat address space multi-level memories. In Proceedings of the 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), Austin, TX, USA, 4–8 February 2017; pp. 433–444.

12. In-Memory Database. Available online: https://en.wikipedia.org/wiki/In-memory_database (accessed on 13 June 2021).

https://redis.io/
http://memcached.org/
http://doi.org/10.1145/216585.216588
https://en.wikipedia.org/wiki/In-memory_database


Micromachines 2022, 13, 52 13 of 13

13. In-Memory Database. Available online: https://www.omnisci.com/technical-glossary/in-memory-database (accessed on 27
June 2021).

14. Aerospick. Available online: https://aerospike.com/ (accessed on 12 September 2020).
15. Loh, G.H. 3D-stacked memory architectures for multi-core processors. ACM SIGARCH Comput. Archit. News 2008, 36, 453–464.

[CrossRef]
16. SK Hynix Announces Development of HBM3 DRAM. Available online: https://news.skhynix.com/sk-hynix-announces-

development-of-hbm3-dram/ (accessed on 14 November 2021).
17. Choosing between DDR4 and HBM in Memory-Intensive Applications. Available online: https://www.techdesignforums.com/

practice/technique/choosing-between-ddr4-and-hbm-in-memory-intensive-applications/ (accessed on 21 August 2021).
18. Ryoo, J.H.; Meswani, M.R.; Prodromou, A.; John, L.K. Silc-fm: Subblocked interleaved cache-like flat memory organization. In

Proceedings of the 2017 IEEE International Symposium on High Performance Computer Architecture (HPCA), Austin, TX, USA,
4–8 February 2017; pp. 349–360.

19. Ramos, S.; Hoefler, T. Capability models for manycore memory systems: A case-study with Xeon Phi KNL. In Proceedings of
the 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, USA, 29 May–2 June 2017;
pp. 297–306.

20. Kotra, J.B.; Zhang, H.; Alameldeen, A.R.; Wilkerson, C.; Kandemir, M.T. Chameleon: A dynamically reconfigurable heterogeneous
memory system. In Proceedings of the 2018 51st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
Fukuoka, Japan, 20–24 October 2018; pp. 533–545.

21. Vasilakis, E.; Papaefstathiou, V.; Trancoso, P.; Sourdis, I. Hybrid2: Combining caching and migration in hybrid memory systems.
In Proceedings of the 2020 IEEE International Symposium on High Performance Computer Architecture (HPCA), San Diego, CA,
USA, 22–26 February 2020; pp. 649–662.

22. Memtier_Benchmark. Available online: https://github.com/RedisLabs/memtier_benchmark (accessed on 18 July 2020).
23. Sanchez, D.; Kozyrakis, C. ZSim: Fast and accurate microarchitectural simulation of thousand-core systems. ACM SIGARCH

Comput. Archit. News 2013, 41, 475–486. [CrossRef]
24. Li, S.; Yang, Z.; Reddy, D.; Srivastava, A.; Jacob, B. DRAMsim3: A cycle-accurate, thermal-capable DRAM simulator. IEEE

Comput. Archit. Lett. 2020, 19, 106–109. [CrossRef]
25. Cao, W.; Sahin, S.; Liu, L.; Bao, X. Evaluation and analysis of in-memory key-value systems. In Proceedings of the 2016 IEEE

International Congress on Big Data (BigData Congress), San Francisco, CA, USA, 27 June–2 July 2016; pp. 26–33.

https://www.omnisci.com/technical-glossary/in-memory-database
https://aerospike.com/
http://dx.doi.org/10.1145/1394608.1382159
https://news.skhynix.com/sk-hynix-announces-development-of-hbm3-dram/
https://news.skhynix.com/sk-hynix-announces-development-of-hbm3-dram/
https://www.techdesignforums.com/practice/technique/choosing-between-ddr4-and-hbm-in-memory-intensive-applications/
https://www.techdesignforums.com/practice/technique/choosing-between-ddr4-and-hbm-in-memory-intensive-applications/
https://github.com/RedisLabs/memtier_benchmark
http://dx.doi.org/10.1145/2508148.2485963
http://dx.doi.org/10.1109/LCA.2020.2973991

	Introduction
	Background and Motivation
	In-Memory Database
	Hybrid Memory System
	Motivation and Scope of This Paper

	Design and Implementation
	Overview
	Hotness Management
	HBM Migr-In
	HBM Migr-Out
	Implementation of ADM

	Experiment and Evaluation
	Experimental Setup
	Behaviours of Object Migration
	Performance and Energy Results
	Sensitivity Analysis
	Sensitivity to Data Size Range
	Sensitivity to Set-Get Operation Ratio


	Conclusions and Futuer Work
	References

