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Abstract: In this study, highly active Fe3O4@PDA@Au@GO surface-enhanced Raman spectroscopy
(SERS) active substrate was synthesized for application in the enrichment and detection of trace
polycyclic aromatic hydrocarbons (PAHs) in the environment. The morphology and structure were
characterized by transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS),
X-ray diffraction (XRD) and UV–visible absorption spectrum (UV–vis spectra). The effect of each
component of Fe3O4@PDA@Au@GO nanocomposites on SERS was explored, and it was found that
gold nanoparticles (Au NPs) are crucial to enhance the Raman signal based on the electromagnetic
enhancement mechanism, and apart from enriching the PAHs through π–π interaction, graphene
oxide (GO) also generates strong chemical enhancement of Raman signals, and polydopamine (PDA)
can prevent Au from shedding and agglomeration. The existence of Fe3O4 aided the quick separation
of substrate from the solutions, which greatly simplified the detection procedure and facilitated
the reuse of the substrate. The SERS active substrate was used to detect phenanthrene in aqueous
solution with a detection limit of 10−7 g/L (5.6 × 10−10 mol/L), which is much lower than that of
ordinary Raman, it is promising for application in the enrichment and detection of trace PAHs.

Keywords: surface-enhanced Raman spectroscopy; nanocomposites; PAHs; enrichment detection

1. Introduction

Containing a group of organic molecules comprised of two or more aromatic rings,
polycyclic aromatic hydrocarbons (PAHs) are stable in structure and not easily degraded,
thus they belong to the persistent hydrocarbons [1–3]. It is well-known that the more
aromatic rings, the less easy it is to be degraded. PAHs are highly toxic with strong carcino-
genicity, teratogenicity and mutagenicity, and 16 types of them appear in the environmental
priority control list by the United States Environmental Protection Agency (EPA) according
to their toxicity to human health [3–5]. Therefore, the development of trace detection for
PAHs is significant. A rapid and sensitive method for PAHs’ detection urgently needs to be
researched [6].

The current standard analytical methods for PAHs’ detection, including gas chro-
matography, gas chromatography–mass spectrometry (GC–MS) [7], immunoassay, elec-
trochemical biosensing, and high-performance liquid chromatography (HPLC) [8–13] are
currently broadly applied. These traditional detection methods have some disadvantages,
such as having a time-consuming pretreatment process, and requiring the use of expensive,
large-scale experimental instruments, which cannot meet the needs of rapid detection in
the field.
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As a powerful, rapid, nondestructive and sensitive analytical technique, SERS has
been applied to on-site detection with a portable Raman spectrometer [14,15]. Raman
spectroscopy has its unique advantages: no contact with the sample, no sample preparation,
rapid analysis, its suitability for detecting liquid samples, and availability for high and low
temperature and high pressure measurements in the environment. Compared with other
analytical methods, it has remarkable advantages in environmental applications, including
low sample pretreatment requirements, short analysis cycle, and on-site detection [16–19].
At present, the materials used to prepare the substrate are mainly nanomaterial precious
metals (Au and Ag) and transition metals [20], as well as nonmetallic graphene. However,
due to the poor adsorption capacity of the metal surface to PAHs, and hydrocarbons
such as PAHs not having special functional groups that interact with the metal substrate,
it is difficult to detect PAHs by using conventional SERS substrate. Therefore, surface
functionalization of SERS substrate must be carried out. At present, one of the most
commonly used method is to modify the plasmonic metal surface with different functional
groups (e.g., cyclodextrin [21], alginate gel [22], viologen dications [23] and calixarene [24]),
which can bring PAHs molecules close to the surface of nanostructured plasmonic metal.
Although this method could achieve SERS detection of PAHs, the organic molecules used
for modification are usually difficult to synthesize or expensive, which limits the practical
application of SERS. Wang et al. prepared a Ag-nanoparticle–graphene hybrid for the direct
detection of PAHs. The synthesis process is relatively simple, and the raw materials are not
expensive, but the limit of detection for phenanthrene is 3.2 nM (~0.57 ppb) [25].

Until now, the combination of Fe3O4, polydopamine, GO and Au as a SERS substrate
has not been reported.

Fe3O4 magnetic nanoparticles (MNPs) have many advantages, such as super param-
agnetism, large specific surface area, fast adsorption rate, easy surface modification and
good biocompatibility. They have a good separation and enrichment function in a complex
matrix, and have been widely used in the biomedical, chemical catalysis, sewage treatment
and biosensor fields [26,27]. In addition, they can be combined with SiO2, metal oxide,
precious metal and graphene oxide to form core–shell structure composites, and will be
widely applied in the future.

As an important neurotransmitter, dopamine is spontaneously oxidized and polymer-
ized in air to form polydopamine (PDA) under weakly alkaline conditions. Polydopamine
is a substance with rich functional groups, good hydrophilicity and excellent biocompatibil-
ity, which can cover many organic and inorganic materials, such as magnetic nanomaterial
Fe3O4. It has a variety of applications such as drug loading, precious metal nanoparticle
loading and organic pollutant adsorption [28].

Being an important derivative of graphene, graphene oxide (GO), also known as
functional graphene, has a two-dimensional spatial structure and is a carbon-based nano-
material with abundant hydroxyl, epoxy, carboxyl and other oxygen-containing energy
groups. It has high specific surface energy, good hydrophilic and mechanical properties,
and good adsorption to many chemicals. The accumulation and hydrophobic action of π-π
between GO and PAHs can be used to give the PAHs a strong enrichment function [29,30].

Au NPs have unique optical properties, easy surface modification and excellent bio-
compatibility.So, functional Au NPs have a wide range of applications in many fields such
as biosensing [31], detection of organic pollutants and heavy metal ions [32], and drug
delivery [33].

Based on the above analysis of the advantages of the four materials, Fe3O4@PDA@Au@GO
composite material was synthesized by assembly method to detect the low concentration
of phenanthrene solution in the aqueous solution in this study. In this thesis, the effect of
the mass of sodium citrate on the SERS was first analyzed. Then, the influence of different
components of Fe3O4@PDA@Au@GO on the detection was analyzed and compared when
the quaternary composite material was used as SERS substrate. This method was used to
study the enrichment and detection effect of phenanthrene solution in aqueous solution
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and to obtain the detection limit, which provides new research methods and ideas for the
synthesis of new composite SERS substrate and detection of trace PAHs in water.

2. Materials and Methods
2.1. Materials

Chloroauric acid tetrahydrate, sodium citrate, ferric chloride, anhydrous sodium ac-
etate polyethylene glycol, dopamine hydrochloride, boron sodium hydrogen, phenanthrene
and pyrene were purchased from McLean Biochemical Technology Co. Ltd. (Shanghai,
China). Ethylene glycol, absolute ethanol and acetic acid were purchased from Chengdu
Colon Chemicals Co. LTD (Chengdu, China). Graphene Oxide Dispersion was purchased
from Sinopharm Nanjing Xianfeng Nanomaterials Technology Co. LTD (Nanjing, China).
Trihydroxymethyl aminomethane was purchased from Shanghai Yuanye Biotechnology
Co. LTD (Shanghai, China) [34]. All the above reagents were of analytical grade and can
be used without further purification. The ultrapure water used in all experiments was
obtained from a purification system [13].

2.2. Material Synthesis
2.2.1. Synthesis of Au Colloid

Au colloid was synthesized by reducing chloroauric acid tetrahydrate (1.6 mM, 30 mL)
with sodium citrate (0.022 g) as a reductant through the method of Freeman [13]. Firstly,
30 mL of chloroauric acid tetrahydrate (1.6 mM) was prepared and boiled under reflux with
magnetic stirring. Secondly, 10 mL of trisodium citrate (0. 022 g) was added into the boiling
solution of HAuCl4 and refluxed for another 30 min until it was changed from yellow to
wine-red. Then, the solution was cooled to room temperature under stirring. Finally, the
AuNPs were stored in a refrigerator at 4 ◦C for further use without further concentration or
dilution [33–35].

2.2.2. Synthesis of Fe3O4 Particles

Next, 0.45 g ferric chloride hexahydrate was dissolved in 14 mL ethylene glycol (EG),
and the FeCl3·6H2O was completely dissolved by ultrasound for 20 min. Then, 1.2 g
anhydrous sodium acetate (NaAc) and 0.1 g polyethylene glycol (PEG) were added to
the FeCl3 solution, and stirred magnetically for 30 min. As polyethylene glycol (PEG) is
difficult to dissolve, it was stirred for 30 min and ultrasonically stirred for another 15 min
to obtain a uniform solution. The solution was transferred into a 50 mL high-pressure
reactor, and gradually heated to 200 ◦C in an electric blast-drying oven for 8 h, then the
kettle was taken out to cooled to room temperature. The Fe3O4 solution was poured into a
beaker to separate the Fe3O4 nanoparticles from it by an external magnetic field, and the
Fe3O4 nanoparticles were dried in a vacuum-drying oven at 60 ◦C for 6 h to obtain Fe3O4
magnetic nanoparticles after being washed alternately with ultrapure water and anhydrous
ethanol 3~4 times [36–38].

2.2.3. Synthesis of Fe3O4@PDA

First of all, 20 mg Fe3O4 magnetic nanoparticles were added into 60 mL anhydrous
ethanol, and ultrasound was conducted for 10 min to allow 20 mgFe3O4 nanoparticles to
completely disperse into 60 mL anhydrous ethanol. Then, 60 Ml Tris-HCl buffer containing
DA-HCl (6.6 mmol/L) (dopamine hydrochloride) (pH = 8.5) was mixed with the above
solution. After ultrasonication for 3 h, the as-obtained product was separated by an external
magnetic field and the products were collected from the solution by magnetic separation
method. Simultaneously, the Fe3O4 nanoparticles were covered by PDA and the state of
Fe3O4@PDA became massive. The products were washed with ultrapure water 3 times
and finally dried at 45 ◦C for 12 h [39].
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2.2.4. Synthesis of Fe3O4@PDA@Au

Au nanoparticles can load on the surface of Fe3O4@PDA nanoparticles by the classical
electrostatic attraction method [39]. Firstly, 20 mg Fe3O4@PDA nanoparticles were added
into 4 mL anhydrous ethanol and completely dispersed under ultrasonic dispersion for
20 min at room temperature. Then, the as-prepared Fe3O4@PDA solution was put into
the solution of Au nanoparticles under mechanical stirring for 30 min at room tempera-
ture [28]. Finally, Fe3O4@PDA@Au nanocomposites were successfully prepared by coating
Au nanoparticles (NPs) on Fe3O4@PDA.

2.2.5. Synthesis of Fe3O4@PDA@Au@GO

Fe3O4@PDA@Au was washed three times and added into 2 mL ultrapure water [40].
The Fe3O4@PDA@Au aqueous solution was mixed with 0.5 mL (0.5 mg/mL) GO dispersion,
adding an appropriate volume of deionized water to keep the total volume fixed to 12 mL.
After being mechanically stirred for 3 h, Fe3O4@PDA@Au@GO was separated from the
mixture by an external magnetic field [40]. Finally, the as-prepared product was washed
with deionized water 3 times to obtain the Fe3O4@PDA@Au@GO product [28].

2.3. Characterization

X-ray diffraction (XRD) data were recorded on a D8-Advance diffractometer (Brouker,
Germany) with Cu as the target source. Scans were made in the 2θ range of (5~85)◦ with a
step size of 0.02◦ and a count time of 0.15 s per step [40]. The size, morphology and surface
composition of Fe3O4@PDA@Au@GO were characterized by TEM (FEI Talos F200×). The
UV–vis spectrum of AgNPs colloids was obtained on a Shanghai Meipuda Instrument Co.
LTD UV-1600PC spectrophotometer [41]. The Raman and SERS spectra were obtained by
a portable Raman spectrometer (Metage Opal 2800, Metage company, London, England)
with an excitation wavelength of 785 nm [40]. The laser power and the integration time
were set as 400 mW and 90 s, respectively [41].

2.4. Detection Method

We turned on the Metage portable spectrometer (785 nm excitation light) [42] to
preheat it for 30 min, and checked the instrument and laser to ensure they were running
normally. The PAHs solution and the prepared Fe3O4@PDA@Au@GO substrate were
dropped into a brown bottle in proportion. The integral time was 10 s~50 s, and the
laser intensity was 90. Each sample was collected 5 times, and the average value was
taken. After deducting dark current, the Raman signal was detected in the order from high
concentration to low concentration.

3. Results and Discussion
3.1. Materials Characterization
3.1.1. UV–Vis Characterization

The UV–vis spectra in Figure 1 demonstrate the maximum absorption of Au NPs synthe-
sized by various masses of sodium citrate, which are located at the range of 350 nm–600 nm.
The masses of sodium citrate were 0.028 g, 0.022 g, 0.016 g and 0.010 g, respectively. It can
be seen from Figure 1 that when the mass of sodium citrate was 0.022 g, the absorption
intensity at 385 nm and 525 nm were better. The SERS detection effect was the best when
the mass of sodium citrate was 0.022 g, so the dosage of the reducing agent sodium citrate
was 0.022 g [32].
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Figure 1. The UV–vis spectra of Au NPs synthesized by various masses of sodium citrate (1) 0.028 g;
(2) 0.022 g; (3) 0.016 g; (4) 0.010 g.

3.1.2. XRD Patterns of Fe3O4@PDA@Au@GO

In the X-ray diffraction (XRD) patterns of Fe3O4@PDA@Au@GO (Figure 2), six peaks
appeared at 2θ = 30◦, 35◦, 43◦, 53◦, 57◦, 62◦, which are consistent with the XRD standard
card PDF#79-0419 data [43]. The prepared Fe3O4 has very good structural characteristics
and belongs to the cubic crystal system. Two major diffraction peaks (2θ = 38◦, 44◦) in
the XRD pattern of the Au nanostars Fe3O4@PDA@Au@GO probe correspond to standard
PDF#04-0784 and are indexed to the planes of Au in a cubic phase. The XRD pattern of the
composite probe illustrates that the composites contain Fe3O4 and Au nanoparticles [43].
According to the above XRD analysis, there are Fe3O4 nanoparticles and Au nanoparticles
in the Fe3O4@PDA@Au@GO SERS substrate.
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3.1.3. TEM Image of Fe3O4@PDA@Au@GO

According to the corresponding TEM image of the Fe3O4@PDA@Au@GO presented in
Figure 3, most nanoparticles are spherical in shape, with an average size of 1 µm. Further
magnification at 100 nm and 200 nm shows that Au NPs are evenly distributed on the
GO surface without large aggregates, indicating that Au NPs can be effectively adsorbed
on the GO surface and Au NPs can be dispersed well by GO. As shown in the picture of
amplification to 50 nm, Fe3O4 is in clusters, Au nanoparticles are the black dots, GO is
coated in the outermost layer, and PDA is positioned in the interlayer in the center of the
spherical Fe3O4 and Au nanoparticles.
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Figure 3. TEM image of Fe3O4@PDA/Au/GO nanocomposites. (a) transmission electron microscopy
(TEM) image of 1 um; (b) transmission electron microscopy (TEM) image of 200 nm; (c) transmission
electron microscopy (TEM) image of 100 nm; (d) transmission electron microscopy (TEM) image
of 500 nm; (e) transmission electron microscopy (TEM) image of 50 nm; (f) transmission electron
microscopy (TEM) image of 50 nm.

As shown in Figure 4a,d, Fe is evenly distributed in the inside of the Fe3O4@PDA@Au@GO
nanocomposite material, which proves that Fe3O4 acts as a magnetic substrate for SERS. In
Figure 4b, Au is mainly distributed around the spherical substance. Figure 4c,e,f demon-
strates that the distribution diameters of C, N and O elements are larger than Au, which
indicates that GO is coated on the surface of Fe3O4@PDA@Au [13]. The EDS in Figure 4g
accounts for the successful synthetization of Fe3O4@PDA@Au@GO.

3.2. Sample Preparation and SERS Measurement

Firstly, phenanthrene (0.1 g) was added to methyl alcohol as the solvent, shaken in
ultrasonic for 30 min and stirred with magnetic stirring for 2 h. Secondly, the prepared
materials were poured into a 100 mL volumetric flask and solutions of phenanthrene were
prepared at a concentration of 1 g/L with methyl alcohol as the solvent. Lastly, a range of
PAHs solutions at different concentrations were prepared by diluting them with methyl
alcohol [13].
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3.3. Impact of Various Masses of Sodium Citrate on SERS Detection Performance

Figure 5 shows that Au NPs synthesized by various masses of sodium citrate were
used as SERS substrates to investigate the effect of particle sizes on detection performance.
The masses of sodium citrate were (1) 0.028 g (2) 0.022 g (3) 0.016 g (4) 0.010 g. The
figure represents the SERS spectra of 10−2 g/L pyrene solution on Au NPs substrate by
adding different amounts of sodium citrate, gold nanoparticles and pyrene mixed at the
volume ratio of 1:3. Figure 5 shows that the peak intensity is the strongest in curve 2. Gold
nanoparticles were prepared by sodium citrate solution configured with 0.022 g sodium
citrate, and the detection effect of 10−2 g/L pyrene solution is the best, which is presented
in Figure 5(2).

3.4. SERS Spectra of 10−2 g/L Phenanthrene Solution Detected by SERS Substrate

Phenanthrene solid, the mixture of gold substrate and phenanthrene solution (10−2 g/L)
with volume ratio 1:1, and 10−2 g/L phenanthrene solution were added to three brown
sampling bottles, and detected by a Metage Opal 2800 spectrometer. The detection results
are displayed in Figure 6. The SERS spectra obtained by detection are shown in curves 1–3
in Figure 6. The comparison of curves 1 and 2 shows that the characteristic peak positions
of phenanthrene solid were at 411.58 cm−1, 548.37 cm−1, 710.18 cm−1, 1351.89 cm−1 and
1525.69 cm−1, and the detected peaks of phenanthrene SERS solution were roughly the
same. According to curve 3, the characteristic peak of 10−2 g/L phenanthrene standard
solution almost disappeared. The characteristic peaks of phenanthrene can no longer be
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distinguished from ordinary Raman spectra. As can be seen from the above experimental
results, Fe3O4@PDA@Au@GO substrate is crucial in SERS enhancement.
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3.5. Effects of Each Component in Fe3O4@PDA@Au@GO on SERS Detection Performance

The purpose of this experiment is to detect the SERS activity of Fe3O4, Fe3O4@PDA,
Fe3O4@PDA@Au, Fe3O4@PDA@Au@GO and the enhanced properties of various materials
in Fe3O4@PDA@Au@GO substrate by preparing standard solution of 10−2 g/L and in
accordance with the volume ratio of 1:1.
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It can be seen from curve 4 in Figure 7 that Fe3O4 has a certain enhancement effect
on 10−2 g/L phenanthrene solution, but the effect is not obvious, while Fe3O4@PDA had
no enhancement effect on the 10−2 g/L standard solution, and the characteristic peak is
invisible from curve 3 in Figure 7, which might because PDA covered Fe3O4, meaning the
SERS activity of Fe3O4 can not be shown. The characteristic peak positions of phenanthrene
can be clearly seen from curve 2 at 415.78 cm−1, 532.68 cm−1, 640.87 cm−1, 691.22 cm−1,
1348.78 cm−1 and 1542.71 cm−1, which indicates that the SERS intensities of 10−2 g/L
phenanthrene solution are increased by mixing with Fe3O4@PDA@Au substrate. It can be
seen from curve 1 and 2 in Figure 7 that Fe3O4@PDA@Au enhanced the Raman signal of
phenanthrene. When Fe3O4@PDA@Au@GO was used as the SERS substrate, the enhanced
effect of the composite material was significantly better than that of Fe3O4@PDA@Au. This
is because, on the one hand, GO can chemically enhance the Raman signal of phenanthrene,
and on the other hand, GO can adsorb phenanthrene molecules through π–π interaction,
narrowing the distance between phenanthrene and Au. Fe3O4@PDA@Au@GO substrate
increases the adsorption capacity of 10−2 g/L phenanthrene solution by combining the
electromagnetic enhancement of Au with the chemical enhancement of GO [29].
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3.6. Influence of the Mixing Ratio of SERS Substrate and Phenanthrene Standard Solution on
SERS Detection Performance

SERS substrate and 10−2 g/L phenanthrene solution were mixed by the volume ratios
of 1:0.5, 1:1, 1:2, 1:3 and 1:4. The influence of the mixing ratio of SERS substrate and
phenanthrene solution on SERS detection performance are shown in Figure 8.

The volume ratio of the substrates and phenanthrene might influence the SERS inten-
sity. Its effect is researched by adding the SERS substrates into the phenanthrene solution
(10−2 g/L) in different volume ratios of 1:0.5, 1:1, 1:2, 1:3 and 1:4, respectively [14]. There is
a close linear correlation between the SERS intensities and the volume ratio. In Figure 8, it
can be observed that the SERS intensity decreases when the volume ratio goes from 1:1 to
1:4, the peak disappears completely when the volume ratio is 1:4, which may be because
the increase in the amount of the substrates promotes the adsorption of target molecules,
whereas the SERS intensity is decreased when the volume ratio further goes from 1:1 to
1:0.5 [13]. Therefore, the volume ratio of 1:1 is selected for further experiments.
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threne solution..

3.7. The Detection Limit of Phenanthrene Obtained on Fe3O4@PDA@Au@GO Nanocomposites
SERS Substrate

After mixing SERS gold substrate with phenanthrene of different concentrations at
volume ratio 1:1, the spectra of different concentrations are detected. According to the
above experimental results, the characteristic peak of phenanthrene is invisible in the
ordinary Raman spectrum when the concentration of phenanthrene is 10−2 g/L. There-
fore, the detection limit of phenanthrene by ordinary Raman is relatively high, and the
detection of phenanthrene at low concentrations cannot be effectively carried out. The
Raman signal of phenanthrene can be enhanced by the SERS substrate effectively. The
detection limit of phenanthrene is explored by gradually reducing the concentration of
phenanthrene solution, and the detected concentrations are 10−2 g/L, 10−3 g/L, 10−4 g/L,
10−5 g/L,10−6 g/L,10−7 g/L and 10−8 g/L, as displayed in Figure 9. Compared with
the characteristic absorption peaks of phenanthrene solid in Figure 9, the characteristic
absorption peaks of phenanthrene can be demonstrated in the SERS spectrum when the con-
centration of phenanthrene solution is 10−2 g/L, 10−3 g/L, 10−4 g/L, 10−5 g/L, 10−6 g/L,
10−7 g/L and 10−8 g/L. When the concentration is reduced to 10−8 g/L, the characteristic
absorption peaks at all wavelengths are obviously weakened. However, the detection
limit of phenanthrene by this method is 10−8 g/L, which is obviously lower than that of
ordinary Raman since the GO in Fe3O4@PDA@Au@GO composite can adsorb and enrich
phenanthrene in solution through π–π interaction, thus increasing the amount of phenan-
threne on the composite. PDA prevents the shedding and reassembly of the Au, which
enhances the electromagnetic properties of Au. The Raman signal is obviously enhanced
through the electromagnetic enhancement effect of Au NPs and the chemical enhancement
effect of GO [44]. This method can be further applied to the enrichment and detection of
trace phenanthrene.

The SERS peak intensities versus the logarithm of phenanthrene concentration had a
good linear relationship from 10−6 g/L to 10−2 g/L (Figure 10). The calibration equa-
tion can be described as (the characteristic absorption peaks located at 415.24 cm−1)
y1 = 2490.2x − 1955.8 and the correlation coefficient (R2) is 0.9684. The linear regression
equation (the characteristic absorption peaks located at 690.24 cm−1) is y2 = 1228.8x − 863.6
and the correlation coefficient (R2) is 0.9595. The error bars indicate the standard deviation
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derived from a total of 10 measurements. This shows that the substrate can be applied for
rapid analysis and detection of phenanthrene at low concentrations.
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Figure 9. The detection limit of phenanthrene obtained on Fe3O4@PDA@Au@GO nanocomposite
SERS substrate (phenanthrene solid. (1): 10−2 g/L phenanthrene SERS solution. (2): 10−3 g/L
phenanthrene SERS solution. (3): 10−4 g/L phenanthrene SERS solution. (4): 10−5 g/L phenanthrene
SERS solution. (5): 10−6 g/L phenanthrene SERS solution. (6): 10−7 g/L phenanthrene SERS solution.
(7): 10−8 g/L phenanthrene SERS solution).

Micromachines 2022, 13, x FOR PEER REVIEW 12 of 15 
 

 

SERS solution. (5): 10−6 g/L phenanthrene SERS solution. (6): 10−7 g/L phenanthrene SERS solution. 
(7): 10−8 g/L phenanthrene SERS solution). 

The SERS peak intensities versus the logarithm of phenanthrene concentration had 
a good linear relationship from 10−6 g/L to 10−2 g/L (Figure 10). The calibration equation 
can be described as (the characteristic absorption peaks located at 415.24 cm−1) y1 = 
2490.2x − 1955.8 and the correlation coefficient (R2) is 0.9684. The linear regression 
equation (the characteristic absorption peaks located at 690.24 cm−1) is y2 = 1228.8x − 863.6 
and the correlation coefficient (R2) is 0.9595. The error bars indicate the standard 
deviation derived from a total of 10 measurements. This shows that the substrate can be 
applied for rapid analysis and detection of phenanthrene at low concentrations. 

 

Figure 10. The linear correlations between the SERS intensity and the logarithm of phenanthrene 
concentration. (a) 415.24 cm−1; (b) 690.24 cm−1. 

3.8. Mechanism of PAHs–Substrates Interaction and Its Raman Enhancement 
SERS measurements of PAHs detected on the SERS-developed substrates and 

Fe3O4@PDA@Au@GO can justify the hypothesis that the PAHs are bound to the 
substrates through the PAHs–Au–PDA–GO material interaction. The detection 
sensitivities of PAHs by this substrate can be enhanced by at least two orders of 
magnitude over that by Au NPs colloid [13]. According to the previous experimental 
results, the enhancement effect of the composite is not significantly increased after the 
addition of magnetic nanoparticles Fe3O4, indicating that Fe3O4 has no effect on the 
Raman signal. However, the presence of Fe3O4 can make the SERS substrate be quickly 
separated from the solution and can simplify the experimental operation. The results 
show that Au NPs are crucial to enhance the Raman signal based on the electromagnetic 
enhancement mechanism, and apart from enriching the PAHs through π–π interaction, 
GO also generates strong chemical enhancement of the Raman signal, and PDA can 
prevent Au shedding and agglomeration. 

4. Conclusions 
In this study, a layered self-assembly method was used to prepare 

Fe3O4@PDA@Au@GO substrate with high SERS activity, and the morphology and 
structure of the substrate were characterized by investigating the effect of different 

Figure 10. The linear correlations between the SERS intensity and the logarithm of phenanthrene
concentration. (a) 415.24 cm−1; (b) 690.24 cm−1.

3.8. Mechanism of PAHs–Substrates Interaction and Its Raman Enhancement

SERS measurements of PAHs detected on the SERS-developed substrates and Fe3O4@
PDA@Au@GO can justify the hypothesis that the PAHs are bound to the substrates through
the PAHs–Au–PDA–GO material interaction. The detection sensitivities of PAHs by this
substrate can be enhanced by at least two orders of magnitude over that by Au NPs
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colloid [13]. According to the previous experimental results, the enhancement effect of the
composite is not significantly increased after the addition of magnetic nanoparticles Fe3O4,
indicating that Fe3O4 has no effect on the Raman signal. However, the presence of Fe3O4
can make the SERS substrate be quickly separated from the solution and can simplify the
experimental operation. The results show that Au NPs are crucial to enhance the Raman
signal based on the electromagnetic enhancement mechanism, and apart from enriching
the PAHs through π–π interaction, GO also generates strong chemical enhancement of the
Raman signal, and PDA can prevent Au shedding and agglomeration.

4. Conclusions

In this study, a layered self-assembly method was used to prepare Fe3O4@PDA@Au@GO
substrate with high SERS activity, and the morphology and structure of the substrate
were characterized by investigating the effect of different masses of reducing agent on
the SERS detection. It was concluded that the optimal effect is seen with 0.022 g sodium
citrate. Through the influence of different components of composite substrate on SERS
detection performance, we also found that Au and GO enhanced the Raman signal in the
Fe3O4@PDA@Au@GO substrate, and the existence of Fe3O4 can separate the substrate
promptly and simplify the experimental steps. PDA has good adhesion and reactivity, and
the composite nanoparticles have good magnetic response, which can quickly separate and
enrich the molecules to be measured and shorten the pretreatment time. The detection
limit is 10−7 g/L when Fe3O4@PDA@Au@GO is used to detect phenanthrene solution as
the SERS substrate. Compared with the other SERS-based methods, the detection limit
is obviously reduced. The applicability of the composite nanoparticles further proves
that the SERS sensitivity is a simple, sensitive, environmentally friendly, and low sample
pretreatment requirement technique which can be applied in the environmental detection
of trace PAHs [45,46].
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