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Abstract: Resistive switching behaviour has been demonstrated to be a common characteristic to
many materials. In this regard, research teams to date have produced a plethora of different devices
exhibiting diverse behaviour, but when system design is considered, finding a ‘one-model-fits-all’
solution can be quite difficult, or even impossible. However, it is in the interest of the community to
achieve more general modelling tools for design that allows a quick model update as devices evolve.
Laying the grounds with such a principle, this paper presents an artificial neural network learning
approach to resistive switching modelling. The efficacy of the method is demonstrated firstly with
two simulated devices and secondly with a 4 µm2 amorphous IGZO device. For the amorphous
IGZO device, a normalized root-mean-squared error (NRMSE) of 5.66× 10−3 is achieved with a
[2, 50, 50, 1] network structure, representing a good balance between model complexity and accuracy.
A brief study on the number of hidden layers and neurons and its effect on network performance is
also conducted with the best NRMSE reported at 4.63× 10−3. The low error rate achieved in both
simulated and real-world devices is a good indicator that the presented approach is flexible and can
suit multiple device types.

Keywords: resistive switching; artificial neural network (ANN); a-IGZO; device modelling

1. Introduction

It has long been known that complementary metal-oxide semiconductor (CMOS)
technology is set to reach a downscaling limit beyond which the technology is no longer
viable. As we edge closer and closer to this theoretical limit, new nanoscale technologies are
starting to be pursued as a possible complement to the already existing ones. Among such
new technologies, resistive switching (RS) has been labelled as one of the most promising.
Known since the 1960s [1], resistive switching is a phenomenon exhibited mostly by metal
oxides that consists of a reversible change of conductance of a material by the application
of an electric stimulus. These devices are mostly interchangeably named memristors or
resistive RAMs (ReRAM) and have been studied by many research groups in recent years,
not only due to their potential in high-density non-volatile memory applications, but also
as a result of showcasing similar behaviours to biological synapses, which could contribute
to the development of artificial learning systems. Despite their potential, memristors are
still at their infancy and there is still much to be done before they can be widely used in
consumer electronics.

Memristors are typically organized in crossbar structures. Due to the passive na-
ture of the memristor, coupled with multiple resistive levels associated with the devices,
memristor crossbars are vulnerable to sneak-path currents [2]. Sneak-path currents cause
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reading/writing errors to the crossbar array by introducing cross-talk between devices. A
known effective and simple solution to the problem is coupling memristors with transistors
(1T1R). However, memristors are generally made from materials that are not compatible
with CMOS transistors, such as crystalline and amorphous metal oxides or perovskites.
Several solutions have been proposed to tackle the issue of integrating both memristors and
transistors. Traditional solutions consist of a hybrid approach where resistive switching
devices are deposited on top of standard CMOS technology and devices are connected
with one another via micro/nano wire interconnects known as a through-silicon vias (TSV).
In spite of having a simpler implementation, TSV lack the required robustness and may
result in failure [3]. In more recent years, monolithic 3D integration has been regarded
as another promising technology [4]. Other solutions opt for patterning ReRAM cells in
between metal layers [5]. Nevertheless, in spite of promising to solve the 1T1R problem,
3D integration presents a very steep step in complexity and will considerably increase
fabrication costs.

Modelling memristor behaviour with high enough precision, so that they can be
simulated for chip design, is also an object of major concern. Current modelling approaches
of ReRAMs can range from simple dynamical equations that can be easily implemented in
circuit simulators (e.g., SPICE) to fairly complex systems that attempt to fully simulate ionic
motion, believed at this moment to be the phenomenon responsible for resistive switching.

In general, circuit modelling of these devices has been highly influenced by the theory
of Leon Chua on memristive devices [6], where resistive switching devices are dynamical
systems formally represented by the following set of equations:

I = G(w, V, I)×V (1)

dw
dt

= f (w, V, t) (2)

where w represents an internal state of the device, V is the voltage applied to the terminals,
and I is the current flowing through the device. It is worth mentioning that these equations
describe a voltage-controlled device. In the case where the memristor is current-controlled,
the voltage dependence should be exchanged with the current. Nowadays, some non-
physical models end up making the assumption that Equation (2) can be further simplified
by two separate orthogonal equations:

dw
dt

= g(w, V, t)× h(V, t) (3)

in which h(V, t) is a function tracking how the internal state changes with electric stim-
uli and g(w, V, t) represents the so-called window function, responsible for binding the
internal states and endowing additional non-linear behaviour.

Equation (1) is most often modelled empirically or based on conduction mechanisms
particular to metal-insulator-metal (MIM) and metal-semiconductor-metal (MIS) type
structures. HP labs is known as one of the pioneering groups in resistive switching, having
proposed in [7] a model based on ionic drift and linear current-voltage (I-V) relation,
bound by a low resistive state (LRS) and high resistive state (HRS). This work in particular
triggered a set of other articles improving upon the original model, namely [8–10], which set
to design window functions that could better describe the behaviour of real devices. In [11],
Pickett concluded that the dominant conduction mechanism was due to carriers tunnelling
through a barrier and thus used the Simmons tunnelling formula for MIM junctions to
describe the I-V curves. Yakopcic used the same principle in his model formulation [12]. It
is also well-known that some types of resistive switching are more afflicted by stochasticity.
This is notably true for filamentary type memristors since conductive filament formation is
non-uniform by nature and rupture might occur unpredictably [13]. Often probabilistic
models have to be taken in consideration to account for device stochasticity [14].
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Empirical and data-driven models have also been widely used, not only due to the
complexity that physical models incur in, but also because they are sometimes more
practical to develop, especially when the underlying mechanisms are unknown. With the
intention of having a generalised model, Kvatinsky proposed both a current-controlled
and voltage-controlled threshold-based system to describe the switching properties of
memristors, known as the TEAM and VTEAM model, respectively [15,16]. Contemplating
the possibility of a linear relation for the current-voltage pair, as seen in [7], Kvatinsky
also proposed an exponential expression, broadening the application and providing good
comparisons with some previously mentioned works. In [17], Messaris introduced a more
data-driven approach that seems to achieve good results for TiOx-based devices.

As a matter of fact, most models found in the literature have only been tested with
titanium oxide-based or hafnium oxide-based devices; however, there is a wider array of
metal oxides that have been used with resistive switching properties, such as ZTO and
IGZO [18,19]. These materials are of particular interest since they have been at the forefront
of thin-film transistor (TFT) technology given that they not only offer one of the highest
electron mobilities achievable thus far for this type of technology, but they are also key
semiconductor materials in the transparent and flexible electronic market. IGZO is thus a
very good candidate to achieve 2D memristor-transistor integration using the same active
material. Compared to CMOS, fabrication costs would also be considerably reduced, since
TFT fabrication has been widely reported to be performed at room temperatures. Another
particular feature of IGZO-based devices is that they can present interface-type resistive
switching instead of the more commonly found and modelled filamentary type. Unlike the
latter, interface-type resistive switching provides better device-to-device reproducibility
and cycle-to-cycle uniformity, which can result in higher accuracy pattern recognition
applications [20]. Furthermore, non-filamentary RS is area-dependent, making it a lot more
attractive for scalable circuit design.

One possible solution that has not been widely explored is capturing the internal
dynamics of the memristor using an artificial neural network (ANN). ANNs are loosely
inspired in brain networking and known learning principles. Backpropagation is, however,
the most widely used training algorithm which has proven, in recent years, to be a very
useful and powerful tool in complex system identification. Different types of neural net-
works exist, ranging from simple feedforward or recurrent models to more complex deep
learning systems, such as GAN, deep convolutional networks, or autoencoders, to name a
few [21]. Neural networks have been used successfully in the past to model other types of
electronic devices, namely a-IGZO transistors [22]; however, to our knowledge, only one
work so far has been published on resistive switching modelling with ANNs [23] with very
little detail being provided. In this article, we explore how interface-type amorphous oxide
semiconductor resistive switching can be modelled by neural networks capable of simulat-
ing dynamic systems. This data-driven model has the potential advantage of describing
the behaviour of manufactured memristive devices quickly and with few measurements
while offering a controlled trade-off between accuracy and computational complexity.

2. Materials and Methods
2.1. Modelling of Memristor Dynamics with Neural Networks

By analysis of Equations (1) and (2), one can see that the first equation is static
and only the second is dynamical. Therefore, Equation (1) can be physically modelled if
transport mechanisms are well-known or empirically approximated for LRS and HRS states.
Equation (2) presents itself as more challenging. To fully model the devices’ dynamics and
prevent the common pitfall of not including the memory of past dynamics in the device
model [24], it is required of the network to be capable of learning data-driven dynamic
systems. Since the dynamics are not known, one possible solution relies on multi-step
neural networks (MSNN) [25]. In its simplest form, an MSNN consists of a multilayer
perceptron structure followed by a linear multi-step method with M steps. Feeding the
system with temporal data-snapshots will result in the learning of the underlying equation
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that governs the dynamics of a system, without committing to a particular class of basis
functions or using temporal gradients directly. Unlike that reported in [25], using the
backward differentiation formulas (BDF) with a step size of M = 1 provided the best
results. As such, in future references to the network, BDF with a single step-size should be
assumed as the chosen multi-step method. To further explain how the system works, let us
assume a simple dynamical system of the form:

∂x
∂t

= k(x(t)) (4)

The objective is to discover k without any prior knowledge of it besides the evolution of
the state x(t) at time instances t1, t2, . . . , tN . To that effect, a linear multi-step method can
be employed, with the form:

1

∑
m=0

(αmxn−m + βm∆tk(xn−m)) = 0, n = 1, . . . , N (5)

for M = 1. Here, αm and βm are parameters specific to each multi-step scheme and xn−m
is the state of the system x at time tn−m. Finally, by placing a neural network at k, the
dynamics of the system can be learned by minimizing the mean square error loss function:

min

(
1
N

N

∑
n=1
|yn|2

)
(6)

where

yn =
1

∑
m=0

(αmxn−m + βm∆tk(xn−m)) (7)

One required adaptation to the network was the addition of an exogenous input to the
network. This was performed since Equation (2) is not only dependent on the current state,
but also on the applied voltage to the system. With the exogenous inputs, the system can
then be formally described by a change in Equation (4), and subsequently Equation (7),
such that for our particular case they take the form:

∂ω

∂t
= k(ω(t), V(t)) (8)

yn =
1

∑
m=0

(αmωn−m + βm∆tk(ωn−m, vn−m)) (9)

where ωn−m and vn−m are the internal state of the device and the voltage applied to the termi-
nals of the ReRAM at time tn−m. Figure 1 showcases a diagram of the implemented MSNN.
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...

Hidden Layers

Input Output

vn−1

ωn−1

kn−1

∑1
m=0(αmωn−m + βm∆tk(ωn−m, vn−m))

loss = 1/N ∑N
n=1 |yn|2

yn

Figure 1. Diagram of the implemented multi-step neural networks (MSNN) with the exogenous
input. During testing, the output and input of the network are fed to an ordinary differential equation
solver. The output of the solver will be the new input of the network ωn

2.2. Fabricated Devices

The fabricated memristive device to be modelled consists of a 60 nm IGZO film which
is stacked between molybdenum and gold. At the top contact interface, a thin layer of
titanium is deposited firstly for better adhesion of the gold contact. Furthermore, the
titanium is an oxygen-getter layer, and as such, it reacts with the oxygen of the layer
below, generating more oxygen vacancies at the top interface and providing the ohmic
side of the resistive switching device. Thus, the thickness of the intrinsic IGZO should
be considered lower than 60 nm. On the other hand, the junction between IGZO and
molybdenum forms a Schottky barrier, granting a slight rectification on the current-voltage
characteristic. The layering structure of the device is presented in Figure 2a. Devices
were fabricated in a cross-point structure with an area of 4 µm2 and a micrograph of a
similar device to the one in use is shown in Figure 2b. The I-V characteristic of the device,
visible in Figure 2c, exhibits bipolar switching and set occurs on the forward direction.
Current state is also changed gradually without any sharp transitions to be observed. The
smoother transitioning between states can be attributed to the area-dependent nature of
IGZO resistive switching. Slight changes in the characteristic can be seen in the 100 cycle
endurance study (see Figure 2c). Nonetheless, stabilization of the characteristic curve is
achieved over time. The device presents only minor changes from cycle 50 to 100.
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Figure 2. (a) Diagram of the IGZO memristor layers. The width of the device is represented by d, with the
DUT having d = 2 µm (figure is not to scale). (b) Micrograph of the fabricated amorphous IGZO devices
showcasing a cross-point structure with a 4 µm2 area. The numbers represent the width of the device in
µm. (c) Logarithmic I-V characteristic of a 4 µm2 IGZO memristor subjected to 100 endurance cycles.

2.3. Data Sourcing and Measuring Instrument

A Keithley 4200 SCS was used to obtain the training and test data for this model. An ultra-
fast I-V module with transient current and voltage measurements, coupled with multi-level
pulsing capabilities, was used to generate data sequences. The ultra-fast module was required
so that the switching dynamics could be captured with enough precision. It also provided the
required flexibility to induce either potentiation or depression on the device with the required
fine-grading. The measurement noise was filtered with a simple first-order auto-recursive filter.

2.4. Static IGZO Memristor Equation

As mentioned previously, either a physical or empirical expression has to be found to
model the I-V relation corresponding to Equation (1). As the intrinsic mechanisms behind
resistive switching in amorphous IGZO are still unknown, the empiric route was taken.
The chosen equation is of the following form:

I = αV exp

(
− β√

V + β/λ

)
(10a)

α = x0 exp (x1β)− x2 (10b)
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where λ, x0, x1, and x2 are parameters and β is defined as the internal state of the device.
Note that Equation (10b) is empirical (as explained below) and assumes an important role
by allowing Equation (10a) to be dependent on a single state variable (β). It was inspired in
the field emission formulation by Padovani and Stratton [26], mostly because it provided a
good mix between a diode-like behaviour at lower voltages and linear response at higher
fields. In Figure 3, the results of fitting Equation (10a) to some of the measured data points
can be found as well as the exponential fitting between α and β on the inset graph. At first,
Equation (10a) is fitted to the acquired data using two independent variables, α and β. It
should be noted that data acquisition is performed at fast speeds to prevent an internal
state change of the device, meaning that each I-V curve in Figure 3 has a fixed value of
state variable β (and α). Later, Equation (10b) is used in the fitting of the parameters x0, x1,
and x2 that are obtained from α and β values found for each of the I-V fitting curves (the
filled red dots represent the samples in the inset graph).

0.5 1.0 1.5 2.0 2.5 3.0
Absolute voltage (V)

10−6

10−5

10−4

10−3

A
bs

ol
ut

e
cu

rr
en

t
(A

)

Measured IV
Fitted IV

0 10
β

0.0

0.1

0.2

α

Figure 3. Fitting of data extracted from a 4 µm2 IGZO memristor to the empirical Equation (10a). The
fitting data are used to model the static I-V characteristic of the device. The inset graph represents the
α− β relation, two fitting variables related exponentially by Equation (10b). The filled dots in the inset
graph represent the best-fitting α and β variables for each I-V curve, and the dashed line is the result of
applying the second exponential fitting defined by Equation (10b). The second fitting is fundamental
to prevent having two independent state variables influencing the dynamics of the device.

3. Results and Discussion

This section presents the results of the proposed modelling method. Firstly, the
behavior of the model is demonstrated with two simulated devices.

Secondly, the method is validated with measurements taken from an amorphous
IGZO device. The figure of merit used is the normalized root-mean-squared error (NRMSE)
defined by:

NRMSE =

√
∑(q̂n − qn)2

∑(qn − q)2 (11)

Here, qn and q̂n represent the output of the system and the desired value for the nth sample.
q is the average value of the samples.

3.1. Learning of a Simulated Device

As a proof of concept, the proposed modelling method was tested with data gener-
ated from two different models, of two different devices, where the model parameters
themselves were extracted from actual measured data. This means that the base models
should be good representations of real devices. The VTEAM model and the Prodromakis
window function were used to replicate a hafnium-based device [27] and the Yakopcic
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model was used to replicate a titanium-based memristor [28]. The parameters for the
models were extracted from [16] and [12], respectively. The Prodromakis window function
was added to the VTEAM model with parameters p = 0.5 and j = 1. A series of signals
were applied to the simulated devices with different starting points and waveforms (DC,
triangle, and pulse). The original signals, totalling 900 samples, were further subdivided
into 9000 samples to improve training, and 80% of the data was used in training, and the
remaining 20% to test the learned dynamics. The network topology used was two inputs
(state and voltage), three hidden layers with 50 neurons each, and one output (next state).
The normalized root mean square error (NRMSE) for the total of the 1800 samples used
in the Pt-Hf-Ti memristor testing was 1.22× 10−5. The titanium-based device presented a
higher NRMSE of 9.51× 10−3.

Regarding the hafnium-based device, Figure 4 illustrates the output of the network
for two particular inputs, a square (Figure 4a) and a triangular wave (Figure 4b). As seen,
the network was capable of learning all of the dynamics, struggling only slightly at the
hard boundaries introduced by the window function and at the sub-threshold voltages
contemplated by the VTEAM model (−0.53 ≤ V ≤ 0.5). This effect is visible in Figure 4a
when the state variable approaches zero. Figure 5a,b also shows the plot of the output of the
network after learning the titanium-based device. Much like in Figure 4a, the boundaries
introduced by the window function are once again the major source of error. Nonetheless,
the low error obtained is an encouraging telltale sign to move forward beyond the proof
of concept.
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Figure 4. Expected dynamics of a simulated Pt-Hf-Ti memristor and the output of an MSNN network
with external input and [2, 50, 50, 50, 1] topology. (a) Output of the network to a square-shaped
periodic input. (b) Output of the network to a triangular-shaped periodic input.
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Figure 5. Expected dynamics of a simulated Pt-TiO2−x memristor and the output of an MSNN
network with external input and [2, 50, 50, 50, 1] topology. (a) Output of the network to a square-
shaped periodic input. (b) Output of the network to a triangular-shaped periodic input.

3.2. Learning of an Amorphous IGZO Device

For the IGZO device, after mapping the current values to the corresponding internal
state, an MSNN was fed with a series of measurements. The total dataset consisted in
34 measurements. After subdividing the dataset, a total of 816 time-series were used for
training and 204 for testing.

Several different network structures were then put to the test, and the NRMSE results
are reported in Table 1. As the table shows, for the most part, and as expected, the
NRMSE reduces with both increasing network depth and width. It is clear that a shallow
network, with one hidden layer, performs poorly in relation to the other configurations.
This is conformal with the understanding that deeper networks tend to be more accurate.
However, as complexity grows, the latter statement is valid if there is enough representative
data being provided in the training phase. If the number of observations is reduced, larger
networks will be more prone to overfitting phenomenons due to their higher number of
parameters. This is probably the cause for the trend observable in Table 1, as the error
tends to increase (or performance does not improve substantially) as the network reaches
larger sizes. Note that early stopping in training is used to mitigate overfitting. The epoch
resulting in the smallest error on the test set is saved as the best result. Even though it
did not provide the best performance, the topology [2, 50, 50, 1] was selected as the best
alternative. This is mostly due to the trade-off between computational complexity and
accuracy, a particularly important compromise when models are used in circuit-simulating
tools such as SPICE.
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Table 1. Normalized root-mean-squared error (NRMSE) values of test data for different numbers of
hidden layers and neurons per layer.

Hidden Layers
Neurons per Layer

15 30 50 100

1 - 52.5× 10−3 12.1× 10−3 27.4× 10−3

2 9.18× 10−3 7.46× 10−3 5.66× 10−3 5.00× 10−3

3 19.6× 10−3 5.36× 10−3 4.63× 10−3 7.21× 10−3

The network demonstrated once again to be capable of learning the dynamics of the
device and in providing filtering to the somewhat noisy measurements collected. Figure 6a,c
displays the output of the network to triangular inputs at different frequencies and initial
conditions. Figure 6b,d display the exact same data as Figure 6a and Figure 6c, respectively,
as an I-V characteristic. This last form of representing the data is used because it provides
a higher perception of precision at lower amplitudes. In fact, the filtering effect of the
model is particularly evidenced at lower voltages. However, some deviation from the
measurements is noticeable, but also expected. The smaller window size on the forward bias
(see Figure 2c), alongside the cycle-to-cycle non-uniformity posed the biggest challenge to
the network. Given that the collected learning data were mostly based on pulsing inputs, it
is hard to judge whether the network was capable of learning the response to different types
of stimuli (e.g., sine), nonetheless, the expected pinched hysteresis loop was present when
the network was faced with an input similar to a DC sweep, as seen in Figure 6b. Inputs
inducing potentiation/depression also produced a desired output even though no prior
data had been trained at that particular pulse frequency. In Figure 7a,b, potentiation and
depression data can be observed. Input pulses with a 6 ms time period at a 50% duty cycle
and amplitudes of negative 3 V and positive 2 V were applied to induce either depression
or potentiation, respectively. Gradual accumulation of error with time is also noticeable
in Figure 7a,b. Nonetheless, such behaviour is to be expected, in both black-box and non-
black-box approaches to dynamical system modelling until a bound is reached, at which
point the error should reset or decrease significantly. As seen previously in Section 1, some
works make use of a bounding function. For the particular learning set presented above, no
window function was used either in training or testing; however, the inclusion of a bounding
function is within the realm of possibilities and might even present learning improvements.
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Figure 6. Expected dynamics of an a-IGZO memristor and the output of an MSNN network with
external input and [2, 50, 50, 1] topology. (a,b) represent the same response to a single DC sweep style
input, however (a) is represented over time and on a linear scale and (b) displays the logarithmic I-V
plot, commonly used to show a memristor hysteresis loop. Plots (c,d) represent the output of the
network to a depression inducing triangular waveform. Just like in (a,b), the left-side image, (c), is a
linear-time plot and the right-side image, (d), a logarithmic I-V representation.
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Figure 7. Expected dynamics of a a-IGZO memristor and the output of an MSNN network with externa
input and [2, 50, 50, 1] topology to both potentiation and depression inducing pulses. (a) Demonstration
of depression with the output of the network versus a point-cloud of measured data. (b) Demonstration
of potentiation with the output of the network versus a point-cloud of measured data. The inset graph
showcases a zoomed in portion of image (b), pointing out the difference between network output and
measured data.
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4. Conclusions

By having demonstrated the capability to learn a simulated hafnium-based device,
a simulated titanium-based device, and a 4 µm2 IGZO memristor, it can be said that the
introduced modelling approach has the potential to adapt to multiple device types and
materials. Regarding the fitting error, the hafnium-based simulated device presented
a lower NRMSE than the amorphous IGZO memristor. This can be attributed to the
fact that the simulated device is not subject to measurement added error and cycle-to-
cycle non-uniformity. Furthermore, more data samples can be generated, facilitating
learning. Notwithstanding the higher NRMSE, the IGZO device modelling achieved good
results with a compact network structure, reducing computational complexity significantly.
Low computational complexity is paramount to the implementation of device models in
SPICE simulation.

Another very important aspect of the modelling approach was the capability of
the network to learn potentiation and depression. With the increased interest in using
memristors in ANN applications, both potentiation and depression assume a critical role is
shaping the future of neuromorphic computing.
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