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Abstract: Applying microfluidic patterning, droplets were precisely generated on an electrowetting-
on-dielectric (EWOD) chip considering these parameters: number of generating electrodes, number
of cutting electrodes, voltage, frequency and gap between upper and lower plates of the electrode
array on the EWOD chip. In a subsequent patterning experiment, an environment with three
generating electrodes, one cutting electrode and a gap height 10 µm, we obtained a quantitative
volume for patterning. Propylene carbonate liquid and a mixed colloid of polyphthalate carbonate
(PPC) and photosensitive polymer material were manipulated into varied patterns. With support
from a Z-axis lifting platform and a UV lamp, a cured 3D structure was stacked. Using an EWOD
system, a multi-layer three-dimensional structure was produced for the patterning. A two-plate
EWOD system patterned propylene carbonate in a quantitative volume at 140 Vpp/20 kHz with
automatic patterning.

Keywords: EWOD; patterning; droplet manipulate; 3D structure formation

1. Introduction

Printing technology has traditionally been widely used to print books, newspapers
and printing electronics. Existing printing techniques include inkjet printing [1,2], screen
printing, gravure printing, letterpress printing and roll-to-roll printing [3,4]. In 2010, Jinsoo
Noh et al. evaluated the limit of accuracy of printing registration of a gravure printing
system [5]. In most above methods, the service life of the mold is curtailed because of
the contact between a scraper and a master mold. The master mold has also a problem
of high production cost and its production is time-consuming; because of the fixed mold,
there is a single master mold corresponding to a single pattern, which is unconducive to
an initial development of a product. Therefore, a maskless patterning technology will be
of great assistance to early-stage R&D of products and prevent master mold degradation.
In contrast, a mold that can be digitally patterned will not degrade when used to print on
a substrate.

While printing techniques are important, however, a second application area of interest
to us is Structural Electronics. Structure Electronics (SE) is a component with conductive
trace on the surface of structure. In the present, injection molding, Fused Deposition
Molding (FDM) and Stereolithography Apparatus (SLA) are the main solutions for structure
manufacturing. After a structure has been formed, the conductive trace can be patterned
on its surface by inkjet printing or aerosol jet printing. At present, conductive traces cannot
be embedded into the SE component because the structural fabrication and trace patterning
occur as serial processes. It is necessary to develop a technology which could combine these
two processes and provide advanced electronic prototypes [6]. Actually, the market of
structural electronics has rapidly increased to become a multi-billion-dollar business [7,8].
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To address applications such as those we have highlighted, we examine the use of
a microfluidic technology to manipulate liquids into arbitrary shapes using digitally ad-
dressed electrodes. In recent years, microfluidic technology has developed rapidly so
as to have become an indispensable part of many engineering and biomedical applica-
tions [9–14]. Microfluidics is regarded as an important advance in the fields of molecular
analysis, biological defence, molecular biology and microelectronics [15–17]. Integrating
microfluidic components on a single chip becomes a lab-on-a-chip (LOC) [18,19], micro-
total-analysis system [20,21], µ-TAS [22] and point-of-care diagnostic equipment [23,24].
With the invention of microfluidics, Shigang et al. integrated EWOD and L-DEP on a single
chip in 2006 and used the characteristic that a liquid follows an L-DEP electrode to form
the letter pattern “NCTU” [25,26]. In 2013, Fujita et al. proposed a method that can rapidly
manufacture microfluidic wafers using dielectric wetted-array wafers. Liquid-phase paraf-
fin served as the medium; ionized water was then used to create a specific shape [27]. The
microfluidic patterning was restricted to the designated shape of the electrode; in sum, the
patterns of microfluidics were based on the mask [28].

While a dielectric particle was forced by a non-uniform electric field, we call this
phenomenon dielectrophoresis (DEP). Even when the particle is not charged, the force still
remains. All particles exhibit dielectrophoretic activity in the presence of electric fields.
This mechanism is applied in polarized biological objects wildly.

The principles of electrowetting (EW) and electrowetting-on-dielectric (EWOD) are
used in microfluidic devices, mentioned in 2002. Kim et al. also conducted interrelated
research developed over the years. Several recent commercial applications are based
on electrowetting technology, such as adjustable lenses, display technology and much
biotechnology [29–34]. In 2015, Banerjee et al. proposed a programmable microfluidic
system that integrates a continuous fluid and digital microfluidics [35]. Digital microfluidic
technology through electrowetting on dielectric (EWOD) systems is widely used, such as
in a laboratory on a chip [36–39]. In 2014, Liu proposed a simple and accurate image-based
technique to measure a droplet volume to generate nanometer droplets from continuous
electrowetting microchannels [40]. In this work, we used electrowetting-on-dielectric
(EWOD) wafers to pattern different kinds of fluid and DEP systems for solidifying the three-
dimensional structure stack. We discuss the volume accuracy of droplets generated under
various changes of a driving environment such as the number of generating electrodes,
the number of cutting electrodes, voltage, frequency and the distance between the two
plates. We used an array-type electrode to perform accurate volume patterning. In the
part in which the three-dimensional structure is stacked, a mixed colloid of polyphthalate
carbonate (PPC) and a photosensitive polymer material was used. The colloid was driven
and stacked on light curing to complete the production of the three-dimensional structure.

The purpose of this research was to surmount the limitation that a single mold can
correspond to only a single pattern, meanwhile developing a process which could combine
structure fabrication and conductive trace fabrication. Finally, this research will realize the
concept by the arrayed electrode and curable colloid which were used to complete a single
array chip but could be lined with various mold structures. The parallel-plate EWOD and
DEP chip can be machined but controlled in volume, with advantages to refine the use of
colloids.

Although the electrode design concept and driving force are approximately the same,
we drove a smaller liquid volume (3.2 nL for propylene carbonate) and applied UV-curable
liquid (UV-SIL) for forming digital patterns in this research firstly. We also make it possible
for printing electronics and structural electronics application.

2. Theoretical of Electro-Wetting Effect, Experimental Design and Setup
2.1. Theoretical

Therefore, a lower limit on the size of a droplet that can be driven is not known
and the force applied is simply proportional to the voltage applied. These are important
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considerations for the application of this approach to high fidelity digital printing at
high rates.

Consider a system composed of liquids and solids. When a voltage is applied to the
system, the charges and electric dipoles in the system will be rearranged and distributed
between the liquid-solid interfaces [41–43]. The phenomenon is shown in Figure 1. The
surface energy of the interface changes, and the repulsive effect between the charges
reduces the surface tension of the liquid. It will result in a smaller contact angle between
the liquid and the solid, which in turn changes the wetting characteristics of the liquid on
the solid surface. This phenomenon is called the electro-wetting effect [44–50].
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Figure 1. The charge is rearranged according to the applied voltage.

Consider the interface tension of a liquid drop on a solid surface: (1) solid-liquid
interface tension γSL; (2) solid-gas interface tension γSG; (3) liquid-gas interface tension
γLG. The relationship between them is shown in Figure 2. From Young’s equation, it can be
determined that the relationship between the droplet contact angle θ0 and the tension is:

γSG = γSL + γLG cosθ (1)
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According to the research results published by Lippmann in 1875, the interfacial
tension γSL between liquid and solid can be controlled by an external voltage, and the
derived formula is:

γSL(V) = γSL | V=0 − C/2 ∗ V2 (2)

where C is the capacitance value of the dielectric layer.
Combining the above Formulas (1) and (2), the following can be derived:

cosΘV − cosΘ0 = εrε0/2tγLG ∗ V2 (3)

where ε0 is the vacuum dielectric constant, εr is the dielectric constant of the insulating
layer and t is the thickness of the insulating layer.
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2.2. Electrode Design of EWOD Chip and DEP Chip

In the experiment, we used AutoCAD 2019 to draw the electrode designs. There are
mask designs of two types for microfluidic patterning and modeling. The first mask design
is an electrode array composed of storage tanks, transmission electrodes, liquid-generating
electrodes and liquid-pattern 4 × 4 array electrodes. The storage tank electrode is designed
with a radius of 2 mm; transmission electrodes are 1.358 mm × 0.762 mm to generate
a mother droplet with electrodes of 0.972 mm × 0.762 mm. The patterning area size is
2.55 mm× 2.75 mm; the array is composed of 40 electrodes. The electrode width is 0.15 mm,
shown in Figure 3a.
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Figure 3. Chip designs: (a) electrode mask for an EWOD pattern array; (b) two pairs of electrodes in 7× 6 open interdigitated
electrode mask for DEP chip.

The second mask design is to form a three-dimensional structure; an open interdig-
itated electrode array chip is designed so that a liquid can be driven without or with
an additional upper cover. The architecture contains 7 × 6 sets of interdigitated array-
patterned electrodes of width 1.4 mm × 1.4 mm; the overlapping part is 300 µm shown
in Figure 3b, which also shows two pairs of electrodes; the interdigitated electrodes are
designed with width 20 µm and pitch 20 µm.

2.3. Fabrication Process of EWOD and DEP Chip

The EWOD and DEP chip fabrication is shown in Figure 4. The structure of the chip
and top plate is indium tin oxide (ITO) glass. The chip is made with photolithography. We
chose SU8-2002 as the dielectric layer and Cytop for the hydrophobic layer.

2.4. Experimental Setup

The digital microfluidic control system used in the experiment includes a signal
generator, power amplifier, relay board and PXI-6512. The electric signal was generated
with a signal generator (33220A, Keysight., Santa Rosa, CA, USA) and magnified with a
power amplifier (A304, A. A. Lab System Ltd., Ramat Gan, Israel). This electrode signal
was connected to the relay board. To control each relay port, we used PXI-6512 (National
Instruments Corp., Austin, TX, USA), which has 64 channels and can control I/O switches
in a safe output status. Through LabView program and the clamp (CCNL050–47-FRC,
Yokowo Co., Ltd., Tokyo, Japan), we controlled specific switches and electrodes. The signal
was output to the chip by the clamp.
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2.5. Preparation of Driving Liquid

During the patterning and modeling experiment, we selected propylene carbonate
(Sigma-Aldrich, St. Louis, MI, USA) and UV-SIL photosensitive polymer material (UV 329,
Heart-bond industrial materials LTD., Changhua County 50077, Taiwan) as the driving liq-
uid. UV-SIL was selected as the modeling experiment material and absorption wavelength
was 365 nm, because UV resin is an adhesive material of a kind that can become solidified
on exposure to UV light, and it is commonly used as a glue for paints, coatings and inks.

3. Results
3.1. Droplet Generation

This experiment used a dielectric wetted 4 × 4 array electrode wafer to control the
droplet; the liquid used was propylene carbonate (PC). The distance between the parallel
plates was defined with double-sided tape as 20 µm. The applied voltage was 120 Vpp; the
frequency was 20 kHz to make the mother droplet become generated from a storage-tank
electrode. The four basic operations of droplets on applying a voltage mentioned in the
literature review are manipulation, generation, transmission and separation [33]. Accurate
control of the electrode switch was achieved through a computer program (LabView).

Initially, liquid (1 µL) was placed on the electrode of the storage tank. After the top
plate was covered, a mother droplet was generated through the steps of transmission and
separation. The area of the mother droplet after generation was 25,000 µm2; the volume
of the mother droplet was 0.016 µL, as shown in Figure 5a. Subsequent droplets were
generated from the mother droplet (0.016 µL) to 1.95 nL. The liquid-generation electrode
was designed to be 0.2 mm × 0.4 mm to separate the droplet. The mother droplet electrode
was first actuated, followed by the cutting electrode and small transfer electrode; the size
of the droplet was similar to that of the small transfer electrode. After all three electrodes
were actuated, the mother droplet moved only the same distance as the opened electrode.
Instead of moving the small transfer electrode completely, it exhibited a state of force
balance. The cutting electrode was then closed to generate a droplet; the droplet was
generated according to steps shown in Figure 5b.
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3.2. Droplet Generation in a Two-Plate Chip

In the experiment to generate a droplet of quantitative volume, with the variation
of the number of electrodes, we observed the changes in the size of droplets. We defined
the gap between the two plates to be 20 µm; the fixed frequency was 20 kHz, and varied
voltages were applied. A droplet was generated from the mother droplet; the mother
droplet was stretched to three, four and five electrodes; a cutting electrode was then used
to generate droplets, as shown in Figure 6a. The solution results show that, when a larger
voltage was applied, the separated droplet was also larger; the further that the mother
droplet was stretched, the larger was the droplet produced. In the experiment, when the
applied voltage exceeded 200 Vpp, the liquid stretched along the electrode wire, as shown
in Figure 6b. The experimental results of droplet size with varied voltage are shown in
Figure 6c. The correlation coefficient between the size of the droplets generated with three
electrodes and the voltage was R2 = 0.991.

In other experiments with the number of cutting electrodes, the mother droplet was
separated into droplets, using 1, 2 and 3 cutting electrodes, respectively, and generated
ten times to obtain an average value. Fewer cutting electrodes caused a less dragging tail
so that the size of the generated droplet was more consistent with the electrode size. The
dragging of the liquid tail is shown in Figure 6d. Fewer generating electrodes and shorter
cutting paths were observed to generate a smaller droplet and were near the designed
electrode size, on comparing the change of frequency from 10 kHz to 30 kHz. Figure 6e
shows the area of the droplets generated using various generating electrodes and cutting
electrodes at 120, 130, 140 and 150 Vpp and varied frequency. The size of droplets generated
was unaffected by the frequency.
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3.3. Variation of Droplet Size with Gap Height and Voltage

The feasibility of forming a droplet was established through the above experiments.
In this experiment, we tested the generation of droplets with varied gap height under the
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same frequency, 20 kHz, and a varied voltage level. The purpose was to find a suitable
gap size to facilitate subsequent patterning to define a required liquid volume. In this
experiment, 11 voltages/Vpp = 100, 110, 120, 130, 140, 150, 160, 170, 180, 190 and 200, were
applied at fixed frequency 20 kHz. The size of the droplets generated in this experiment
was averaged to determine the size of the droplets generated by the voltage. We used
spacers of thickness 20, 15 and 10 µm to define the gap height of the two-plate EWOD
system. For droplet measurement, we used an image analysis tool to obtain the size of the
droplet generated from a pixel calculus. The calculus equation is

measure pixel × scale2 = droplet area

The result of varied gap height on the generated droplet size and area is shown in
Figure 7a; the error axis is the error value of five experiments. A height of 10 µm was more
appropriate to generate droplets because the size of the droplets was stable and consistent
with the designed electrode size; the error of the generated droplet from ten droplets is
shown in Figure 7b; and the droplet size generated by the electrode design must be about
80,089 µm2.
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As the results show above, droplet size could be control by gap height and applied
voltage. However, the smallest droplet size was still restricted by electrode size. This
means that with reducing the electrode size, the smaller and finer features will succeed.

3.4. Microfluidic Patterning of 4 × 4 Array EWOD Electrodes

Based on the above experiments, we used three generating electrodes and one cutting
electrode to generate droplets. A spacer (10 µm) defined the gap between the parallel
plates. The experiment used propylene carbonate to pattern various letters to confirm the
amount of liquid required for each letter. At 140 Vpp/20 kHz, the size of the droplets
generated in an environment with gap height 10 µm was about 0.83 nL. The experiment
patterned 26 alphabetic characters. The statistical results of the size of droplets required for
each letter are shown in Table 1. The pattern required two more droplets than the number
of electrodes because of the closed structure, such as A, B, D, P, Q, shown in Figure 8a. This
quantitative method of droplet generation can accurately determine the amount of liquid
required, which was conducive to the volume of liquid needed for patterning such as for
future molding. An appropriate volume of liquid can make the shape of the molded shape
nearer the original. This design was less likely to cause a problem of shape deformation.

Table 1. Quantity of opening electrodes and droplet volume to pattern an English alphabet.

English alphabet A B C D E F G

Electrode number 8 10 6 8 8 6 8

Droplet volume
(nL) 8.30 9.96 5.81 8.30 7.47 5.81 7.47

English alphabet H I J K L M N

Electrode number 6 6 5 7 4 7 8

Droplet volume
(nL) 5.81 5.81 4.98 5.81 3.32 6.64 7.47

English alphabet O P Q R S T U

Electrode number 8 7 7 9 8 4 6

Droplet volume
(nL) 8.30 7.47 7.47 8.30 7.47 3.32 4.98

English alphabet V W X Y Z

Electrode number 6 7 8 5 8

Droplet volume
(nL) 4.98 6.64 7.47 4.98 7.47

Next, we used a pre-editing method to automate the patterning. The strokes of each
pattern varied; the total volume also varied. We compared the interval spent by each
pattern in the automated molding; the results are shown in Figure 8b. To turn on the
pattern of the synthetic electrode takes longer; the time to form a letter with a higher
pattern continuity or fewer strokes is shorter. The quantity of opening electrodes and
droplet volume needed pattern an English alphabet is shown in Table 1.

As the results show above, it could take an electrode from each EWOD chip as a pixel
of display. Higher resolution of display means with a higher amount of pixels, it could
show finer, sharper characters in the image, even if a higher resolution of electrode design
on EWOD chips in this research was not shown. A high possibility and potential to address
the requirement for different shapes still remains if a high-resolution electrode of EWOD
chips is designed and fabricated.
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3.5. UV-SIL Photosensitive Polymer Colloid Patterning Experiment by EWOD Electrodes

Based on the foregoing experiments, three generating electrodes were used for pattern-
ing experiments; one cutting electrode was used to generate droplets, and a 10 µm spacer
served between parallel plates. The experiment used UV-SIL to pattern various letters to
confirm the amount of liquid required for each letter. A photosensitive material has the
characteristic of changing from a liquid to a solid in a short time after absorbing ultraviolet
light. A fixed voltage, 120 Vpp, and fixed frequency, 20 kHz, were applied; an area of
2 × 2 was used for letter patterning on the 4 × 4 array electrode. The size of the droplets
generated in an environment with a gap height of 10 µm was about 0.8087 nL. Directly
driving the UV-SIL liquid in the parallel plates facilitated direct curing when reprinting in
the future. The curing of the colloid required two stages, pre-curing and full curing, when



Micromachines 2021, 12, 1104 11 of 17

the electrode was open. The upper cover must be added between curing to complete the
reprint. Compared with an open-type coplanar electrode, the two-plate electrode did not
need to be covered with additional pressure, so it is less likely to cause shape deformation.
The results of the volume of liquid used appear in Table 2.

Table 2. Quantity of opening electrodes and droplet volume to pattern an English alphabet by using
UV-SIL liquid.

English alphabet. A B C D E F G

Electrode number 8 10 6 8 8 6 8

volume (nL) 8.08 9.70 5.66 8.08 7.27 5.66 7.27

English alphabet H I J K L M N

Electrode number 6 6 5 7 4 7 8

volume (nL) 5.66 5.66 4.85 6.46 3.23 6.46 7.27

English alphabet O P Q R S T U

Electrode number 8 7 7 9 8 4 6

volume (nL) 8.08 7.27 7.27 8.08 7.27 3.23 4.85

English alphabet V W X Y Z

Electrode number 6 7 8 5 8

volume (nL) 4.85 6.46 7.27 4.85 7.27

3.6. Forming a 3D Structure Using Stacking with UC-SIL Photosensitive Polymer Colloid by
DEP Electrodes

In the UV-SIL modeling experiment, we used a 7 × 6 open-environment electrode to
control the liquid, placing 1.5 µL of the colloid on the electrode. With a voltage of 360 Vpp
and a frequency of 5 kHz, the colloid completely covered the electrode in two seconds,
as shown in Figure 9a. When the three-dimensional structure was stacked, the pattern
was easily formed according to the shape of the first layer structure. The two-plate DEP
system was combined with open-environment electrode patterning reprinting to make the
first layer shape clearer. The first layer was patterned and formed with a combination of
parallel-plate type and interdigitated electrode. We used the original 7 × 6 interdigitated
electrode, with 10-µm spacers, and chose the upper cover with a hydrophobic layer.

After the UV-SIL formed in the parallel plate, it was irradiated with a UV mercury
lamp (350 nm–450 nm) for 9 min. The top cover of the hydrophobic layer was removed; the
formed pattern was printed on the top cover without the hydrophobic layer using the same
material as an adhesive, finally curing with UV light for 9 min that allowed the liquid to
solidify and to be transferred to the upper cover without a hydrophobic layer. If a narrow
band of wavelength with a higher dosage UV LED is used, shorter curing time will be
possible. The same chip was subsequently used to pattern the electrode-driven colloid in
an open environment. After forming, the upper cover with the first layer of colloid was
used for imprinting. In this experiment, we found that the glue on the electrode chip was
well integrated with the glue on the upper cover; through the height control with the Z-axis
lifting table, the stacking and mold turning steps were completed smoothly. The process is
shown in Figure 9b.
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process flow by DEP system with UV-SIL liquid.

During the stacking, when the first layer structure was completely defined, whether
the subsequent layers were driven with an electrode to drive, the liquid had little effect
on the molding. In the experiment, the first layer mold structure was 10 µm, in which the
colloid was formed in the parallel plate; the structural forming of letters T, U, H is shown
in Figure 10a. During the stacking, the colloid was placed directly on the chip with the
hydrophobic layer; with no applied voltage, the embossing was performed on controlling
the lifting height to complete the stacking of the three-dimensional structure. The result
of the stacking structure is shown in Figure 10b; the transfer error between each layer is
shown in Figure 10c. With satisfactory control of the stacking height, the transfer error
between each layer was less than 10%.
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of T, U, H with 13 layers, 11 layers and 13 layers, respectively; (c) transfer error between each layer
during stacking.
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4. Conclusions

We discuss various methods to generate a more accurate volume of the droplets, to
obtain improved environmental parameters for accurately generating droplets. In the
subsequent patterning experiment, an environment with three generating electrodes, one
cutting electrode and a gap height of 10 µm was used. The size of the droplets generated
was relatively stable and consistent with the designed electrode size. In the experiment
of propylene carbonate and UV-SIL patterning, the applied voltage was 140 Vpp/20 kHz,
and generation, movement, separation and positioning were performed; the letters were
patterned. Through pre-programming we can also perform patterning automatically.

In the modeling experiment, a new driving liquid called UV-SIL colloid was used,
better to control under 360 Vpp/5 kHz. We formed the first layer with a two-plate EWOD
system to define the pattern; after UV light curing and stacking for 9 min, the colloid was
completely transferred to the upper cover with no hydrophobic layer. The most important
factor in the experiment was the height control. During the experiment, the subsequent
layers of colloids became fused along the defined edge of the first layer.

Compared to common printing techniques in Figure 11a, a master mold is necessary
for all printing techniques. A blading process is used for ink feeding within contact between
the blade and the master mold (red dotted circle in Figure 11a). This process will cause a
risk of damage in the surface of the master mold, which results in a limited life span of the
master mold. Another issue is that only one pattern corresponds to its master mold. In this
research, we successfully show digital patterning by a DEP system in Figure 11b. Without
the blading process and variety patterns in one digital mold (DEP system), printing is
made more cost-effective and efficient for the development stage.
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Figure 11. (a) All printing techniques with blading process and pattern-fixed master mold; (b) digital mold by DEP system
without the blading process.

We successfully demonstrate a new concept of a 3D printing technique for structural
electronics application. Through such EWOD and DEP systems, new UV-SIL material were
introduced, and the 3D stacking process was approved by UV exposure. A clearer pattern
outline and a 3D multilayer solidified stack with less deformation were thereby obtained.
Compared to traditional printing techniques, the EWOD and DEP system in this research
introduced that it is possible to pattern without master mold damage. On the other hand,
3D printing through this DEP system also allows new comparisons in the literature. It
makes an embedded circuit for structural electronics possible, which is impossible for
current 3D printing techniques.
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In the future, if more functional driving liquids are introduced and approved in this
DEP system, more interesting electronic products will be possible. The concept is shown in
Figure 12.
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