micromachines

Article

Identifying Hybrid DDoS Attacks
in Deterministic Machine-to-Machine Networks on a
Per-Deterministic-Flow Basis

Yen-Hung Chen *¥, Yuan-Cheng Lai 2

check for

updates
Citation: Chen, Y.-H.; Lai, Y.-C.;
Zhou, K.-Z. Identifying Hybrid
DDoS Attacks in Deterministic
Machine-to-Machine Networks on a
Per-Deterministic-Flow Basis.
Micromachines 2021, 12, 1019.
https:/ /doi.org/10.3390/mi12091019

Academic Editors:

Roberto Cavicchioli and Paolo Burgio

Received: 24 July 2021
Accepted: 25 August 2021
Published: 26 August 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Kai-Zhong Zhou 2

Department of Information Management, National Taipei University of Nursing and Health Sciences,
Taipei 112, Taiwan

Department of Information Management, National Taiwan University of Science and Technology,
Taipei 106, Taiwan; laiyc@cs.ntust.edu.tw (Y.-C.L.); kaizhongchou@gmail.com (K.-Z.Z.)

*  Correspondence: yenhung@ntunhs.edu.tw or pplong@gmail.com

Abstract: The Deterministic Network (DetNet) is becoming a major feature for 5G and 6G networks
to cope with the issue that conventional IT infrastructure cannot efficiently handle latency-sensitive
data. The DetNet applies flow virtualization to satisfy time-critical flow requirements, but inevitably,
DetNet flows and conventional flows interact/interfere with each other when sharing the same
physical resources. This subsequently raises the hybrid DDoS security issue that high malicious
traffic not only attacks the DetNet centralized controller itself but also attacks the links that DetNet
flows pass through. Previous research focused on either the DDoS type of the centralized controller
side or the link side. As DDoS attack techniques are evolving, Hybrid DDoS attacks can attack
multiple targets (controllers or links) simultaneously, which are difficultly detected by previous
DDoS detection methodologies. This study, therefore, proposes a Flow Differentiation Detector
(FDD), a novel approach to detect Hybrid DDoS attacks. The FDD first applies a fuzzy-based
mechanism, Target Link Selection, to determine the most valuable links for the DDoS link/server
attacker and then statistically evaluates the traffic pattern flowing through these links. Furthermore,
the contribution of this study is to deploy the FDD in the SDN controller OpenDayLight to implement
a Hybrid DDoS attack detection system. The experimental results show that the FDD has superior
detection accuracy (above 90%) than traditional methods under the situation of different ratios of
Hybrid DDoS attacks and different types and scales of topology.

Keywords: DetNet; SDN; Hybrid DDoS attacks; flow-based detection

1. Introduction

As the 5th Generation (5G) of mobile communication promoted telecommunication
technologies across different domains and achieved initial success, the 3rd-Generation
Partnership Project (3GPP) began investigating advanced features to pave the way for
6G [1]. One of these features is the Deterministic Network (DetNet) to cope with the issue
that conventional IT infrastructure cannot efficiently handle latency-sensitive data [1-4].
The DetNet transforms time-critical flows into Deterministic Flows (DetNet Flows) and
enables guaranteed bandwidth, latency, and corresponding features, which are germane to
transport time-sensitive data. By doing so, the DetNet can migrate time-critical applications
from application-specific proprietary networks to packet technologies in the conventional
IP-based infrastructure [4]. Due to the potentiality of the DetNet in 6G, numerous Det-
Net industrial automation use cases have been identified, including machine-to-machine
communication in building automation systems and in the mining industry, and several
corresponding methodologies have also been proposed [3]. However, several security
issues have subsequently arisen [3], such as delay attacks, spoofing, reconnaissance, and,
of course, Hybrid Distributed Denial of Service (Hybrid DDoS). In this study, we focus on
the issue of Hybrid DDoS.
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Hybrid DDoS means high malicious traffic not only attacks the DetNet centralized
controller itself but also attacks the links that DetNet flows pass through. On the one hand,
Hybrid DDoS follows the conventional DDoS attacking pattern that exhausts controller
resources by using a high volume of legitimate traffic, causing the controller operation to
be significantly delayed or interrupted. This type of DDoS attack is also called a Server-
Exhausted Attack (SEA) [5-16]. On the other hand, Hybrid DDoS also adopts a new type
of DDoS attack, the Link Flooding Attack (LFA) [17,18]. The LFA congests key links, called
target links, to isolate servers in the target area where the cloud machines are located from
clients. Hybrid DDoS attacks can easily sneak into a network under the monitoring of
the current DDoS detection system. For example, the attacker can paralyze the DetNet
by only congesting 60% capacity of the targeted links and 50% capacity of the centralized
DetNet controller without being detected because both attacking behaviors may be treated
as normal traffic patterns.

Numerous studies have explored how to detect a single type of DDoS attack, i.e.,
an SEA [8-16] or LFA [19-24]. However, the presence, magnitude, and synergy effect of
hybrid attacks that launch an SEA and LFA at the same time have not been investigated.
Hybrid attacks, on the one hand, apply the LFA to congest 60% capacity of target links,
and on the other hand, allow the SEA to traverse noncongested target links to consume
40% capacity of the servers in the target area, causing a synergy effect where the service is
interrupted. The synergy effect is an interaction or cooperation between the SEA and LFA,
giving rise to a whole that is greater than the simple sum of its parts on the availability of
the network. In this situation, the conventional LFA detector observes that 40% capacity
of target links is available and may ignore the LFA event. Furthermore, the SEA detector
calculates the server has 40% capacity to satisfy the request and may disregard SEA traffic.
Under hybrid attacks, the reason causing the out-of-service effect is clearly not attributed
to the SEA or the LFA. Therefore, current detection systems that can detect an SEA or LFA
are not applicable to detect hybrid attacks and the corresponding synergy effects. A new
detection approach that can detect Hybrid DDoS attacks and the corresponding synergy
effects should be studied.

This study, therefore, proposes a Flow Differentiation Detector (FDD) to detect Hybrid
DDoS attacks in the DetNet. The FDD adopts a two-step detection scheme: (1) it first
applies a fuzzy-based feature extraction methodology to determine the most valuable links
for the DDoS link/server attacker, and then (2) it applies a heuristic approach to detect
the network behaviors generated from the SEA and LFA. The FDD observes two common
characteristics of the SEA and LFA: (1) they must traverse through the target links, and
(2) their source IP address or destination IP address must be the servers located in the target
area. When hybrid attacks occur, the number of DetNet flows that pass through the servers
in the target area increases, while the number of flows that depart from the servers in the
target area remains almost fixed. The FDD is also implemented in OpenDayLight, which is
a typical Software-Defined Networking (SDN) controller to observe the performance of the
FDD in detecting hybrid attacks in an SDN environment.

The contributions of the FDD are threefold: (1) to implement a hybrid attack in
OpenDayLight, which is a typical Software-Defined Networking (SDN) controller, to
observe and ensure the existence of hybrid attacks and synergy in an SDN environment;
(2) to provide a conceptual solution to detect hybrid attacks in the DetNet; and (3) to
evaluate the performance of current solutions and discuss a possible development path to
defend against hybrid attacks.

This study is organized as follows. Section 2 reviews related work, including SEA
detection and LFA detection. The system model and proposed method, the FDD, are
described in Sections 3 and 4, respectively. The experimental environment and results are
discussed in Section 5. The conclusions are given in Section 6.
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2. Background

This section describes the various types of DDoS attacks, including SEAs, LFAs, and
hybrid attacks, and the corresponding detection methods.

2.1. Server-Exhausted Attacks and Detection Methods

SEAs exploit server vulnerability and generate a large number of requests to quickly
exhaust the targeted server’s resources. Therefore, a server lacking resources cannot
respond to legitimate requests and may even crash. A typical SEA includes SYN flooding
attacks [8,10,11], DNS flooding attacks [9,12,13], and HTTP flooding attacks [14-16].

SYN flooding attacks that transmit TCP connections and ACK packets are not re-
turned, causing the server to store all these requests and, eventually, run out of resources.
Therefore, [8] calculates the number of SYN packets collected by a server and analyzes the
response rate of an ACK packet, thereby representing the level of internal server resource
damage. Reference [10] calculates the entropy between the source IP and destination IP of
a TCP packet and analyzes the network usage behavior. Entropy represents the degree of
concentration of information under a SEA, and a large number of centralized nodes request
the target server. Reference [11] uses Network Function Virtualization (NFV) to design a
dynamic resource allocation mechanism to detect attacks.

DNS flooding attacks send a large number of nonexistent domain-name requests to
the DNS, causing DNS server failure. To detect DNS flooding, [9] calculates the repetition
rate of the source IP and the destination IP of flows through a DNS. Reference [12] uses
Supervised Machine Learning (SML) to analyze all requests for accessing a DNS and
determines those sending a large number of IP locations for nonexistent domain names to
block these requests. Reference [13] uses machine learning to implement a system to detect
abnormal packets and automatically block attack packets.

An HTTP flooding attack means that the clients interact with the server and send
HTTP requests to compel the server to allocate as many resources as possible to serve
the attack, thus denying legitimate users access to the server’s resources. Reference [14]
uses server logs to train which IP is abnormal. Reference [15] uses the correlation between
IP address and traffic for detection in a Named Data Network (NDN). Reference [16]
builds a model using anomaly-based detection approaches by tracing browsing logs to
detect attacks.

2.2. Link Flooding Attacks and Detection Methods

LFAs exploit vulnerabilities in topology by generating legitimate traffic nearby the
target area to congest key links. If all target links are congested, the target area cannot
receive requests from an external network, and the service in the target area is therefore
unreachable. LFAs comprise two kinds of attacks, i.e., Coremelt attacks and Crossfire
attacks, where the former represents having a single target link, while the latter represents
having multiple target links. For example, Reference [19] uses end-to-end and hop-by-hop
network measurement techniques; Reference [20] tests node-to-node traffic variation to
capture abnormal links through bandwidth usage, delay time, and packet loss rate to detect
an attack in traditional networks; Reference [21] calculates traffic density to find target links
and then monitors these target links’ utilization; References [22,23] builds a centralized
network architecture and periodically observes the target area network traceroute packet
to eliminate malicious traffic before an attack occurs.

2.3. DetNet and the Hybrid Attacks and Detection Methods

The DetNet applies flow virtualization to satisfy time-critical flow requirements. The
DetNet virtualizes heterogeneous data flows in order to (1) preserve the properties of
these flows over a converged IP-based infrastructure and (2) be backward compatible with
statistically multiplexed IP-based traffic. Therefore, two tasks of DetNet flow virtualization
are designed. First, the DetNet duplicates and eliminates packets over noncongruent
routing paths to achieve a sufficiently high delivery ratio and satisfy the application’s
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QoS requirement [2]. Second, the DetNet applies central controllers, i.e., Software-Defined
Network (SDN) controllers, to enable a fully scheduled operation orchestrated to integrate
virtualized DetNet flows in conventional IP-based implementations. The DetNet controller
frequently obtains flow tables from switches with the OpenFlow protocol or measures
network topology with the Link Layer Discovery Protocol (LLDP) and the Broadcast
Domain Discovery Protocol (BDDP) in the control plane. These two tasks inevitably
incur that DetNet flows and conventional flows share the same physical resources and
interact/interfere with each other [3]. Several security issues subsequently arise [3], such
as delay attacks, spoofing, reconnaissance, and, of course, Hybrid Distributed Denial of
Service (Hybrid DDoS). This study focuses on the issue of Hybrid DDoS.

Most studies focus on detecting a single type of DDoS attack, i.e., SEA or LFA, in a
traditional network rather than DetNet. Reference [24] explores hybrid attacks in SDN,
which launch an SEA and LFA interrelatedly. It uses correlation to cluster traffic to deter-
mine whether it is an SEA and measures the target link utilization to determine whether it
is an LFA. The study also integrates two types of attacks in one system but ignores hybrid
attacks that can launch an SEA and LFA at the same time. The Hybrid DDoS not only
attacks the DetNet centralized controller itself but also attacks the links that DetNet flows
pass through. Therefore, a new detection approach that can detect Hybrid DDoS attacks
should be studied.

The comparison of the studies mentioned above is summarized in Table 1. Type refers
to the type of DDoS. Environment refers to which network environment the detection
executes. Attack refers to where the attacks are detected. Method refers to the paper
solution concept. Flow/packet-based refers to the solution depending on the features.
Flow-based refers to packet transmission route traces such as IPFIX [25], and packet-based
refers to packet payload. Dataset refers to the paper test using a real or simulated dataset.

Table 1. DDoS attack detection comparison table.

Method Attack Type Flow/Packet-Based
Calculate SYN response rate [8] SYN Packet-based
Use flow to calculate IP repetition rate [9] DNS Flow-based
Calculate entropy to detect [10] SYN Flow-based
Use the dynamic resource allocation mechanism [11] SYN Flow-based
Use ML to train the packet feature [12] DNS Packet-based
Use ML to train the packet feature [13] DNS Packet-based
Analyze server logs to train an abnormal packet [14] HTTP Packet-based
Use correlation IP and traffic to detect [15] HTTP Flow-based
Analyze user trace logs to train model [16] HTTP Packet-based
Probe to measure link utilization [19] Crossfire Flow-based
Analyze node-to-node traffic variation topology [20] Crossfire Packet-based
Use flow to measure link utilization [21% Crossfire Flow-based
Analyze traceroute packet and reroute [22] Crossfire Packet-based
Analyze traceroute packet and reroute [23] Crossfire Packet-based
Use correlation to cluster traffic to measure link utilization [24] Hybrid Flow-based

3. DetNet Environment Setting and Notation Description

The DetNet is a centralized network architecture for managing network node behavior
and topology information. Figure 1 shows the system model of this study. This study
applies an SDN controller as a supervisor to manage the DetNet environment and control
all switches that store all flow tables. When Hybrid DDoS attackers launch attacks, the
behavior of flows is recorded in the flow table. The controller can obtain the links (L) and
switches of all flow tables in the network.
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Figure 1. System model.

Table 2 shows the notations used in this study. T represents the size of the topology,
SW represents the switches, TA represents the servers in the target area, F represents all
flows (f,,) in the flow table in the SDN switches, « represents how to set the links as target
links, L represents links in SDN, TL represents target links in SDN, and SP represents the
system that determines the attack standard.

Table 2. Used notations.

Notation Description

T Number of switches
SW: switches in SDN; sw: which switch

TA: servers in the target area; ta;: which server

F=A{ f,|m > F: flows in SDN; f,,,;: which flow
o Ratio of the link as a target link
L —{sw] (1 < k<T } L: links in SDN; SW; ) which link
TL Target links in SDN
SP Service performance

4. Proposed Method Flow Differentiation Detector

This study attempts to maximize detection accuracy under hybrid attacks in the
DetNet. The basic assumption is that the target link can be the observation point to
detect both an SEA and LFA because it can capture the most flows through the target area.
Regardless of which flows accessing or responding are for the target area, these flows
will pass through the target links with a high probability. In order to detect the network
behaviors generated from the SEA and LFA, the hybrid attack detector is suggested to adopt
their common features, namely the number of target flows, which have two characteristics:
(1) they must traverse through the target links, and (2) their source IP address or destination
IP address must be the servers located in the target area. Furthermore, when hybrid attacks
occurred, we observed a phenomenon where the number of flows that passed through
the servers in the target area increased, while the number of flows that departed from the
servers in the target area was almost fixed. However, under normal traffic, the number
of flows that departed from the servers increased when the number of flows that passed
through the servers increased because the servers can provide normal services.

As discussed above, this study proposes a Flow Differentiation Detector (FDD). The
FDD adopts a two-step detection scheme to detect Hybrid DDoS attacks in the DetNet.
First, the FDD uses a fuzzy-based feature extraction methodology to determine the most
valuable links and locate the targeted area of the Hybrid DDoS attacker. Second, the FDD
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statistically evaluates and detects the network behaviors generated from the SEA and LFA
based on the observation of the target links.

4.1. Step 1: Locate the Target Links

For the first step, to locate the targeted links, the FDD calculates the link weight of
each link according to Formula (1) and selects the top 20% links as the target links based
on the Pareto principle, where roughly 80% of consequences come from 20% of causes [21].

M
Link weight (W) represents the importance of the links enclosed in an area, ) f s is the
m=1

M
number of flows in the destination IP equal to the target area, Y. fiu.scr is and the number
=1

m=
of flows in the source IP equal to the target area. We multiplied the two values to obtain
the link weight and sorted the link from high to low by link weight.

M M
Link Weight(W) = Z fm.dst X Z fm.scr (1)
m=1 m=1

After finding the target link, we selected the switch that was farthest from the target
area at the end to the ends of the target link. It was necessary to use the end of the target
link to measure the service performance considered attacked by an SEA and LFA. We
merged the flow tables from these switches and divided these flows in the target link into
input flows and output flows. The input flows with a destination IP equal to the target area
represent an external request to access the target area, and the output flows with a source
IP equal to the target area represent a service response from the target area. Regardless
of the type of attack, the number of input flows will increase, and the number of output
flows will maintain a value or increase slowly. Therefore, we calculated the frequency of
the differentiation between the number of input flows and output flows.

The OpenFlow protocol supports IP Flow Information Export (IPFIX) [25]. We used
common features called flow keys, such as five tuples, source and destination IP addresses,
source and destination port number, and communication protocols (ip_src, ip_dst, port_src,
port_dst, proto). We monitored the behavior of the network by flow traffic transmission
and defined that flows with the same source IP addresses, destination IP addresses, and
protocols will be considered the same flow.

In order to detect hybrid attacks, it was necessary to calculate the flow’s traffic at-
tacking the target area. For this purpose, we used an SDN controller to complete the
process and calculated the flow differentiation by the number of flows to be the service
performance in the network [10,12,14,15] and the topology to find target links and set the
observation points. Figure 2 shows the FDD process schematic diagram.

SDN Controller

Set L= {swy } Alert
Sct T4, a — —_—

Network manager
? LLDP S
C F SDDP LSW.1
OpenFlow
Q — W ) g ﬂ ta,
=—r swy  Target Link SW, tay
SEA botnet - p— swy =
L il 3 " ta.
r—;;_;\r\—\ \ SW 3
—— sW, = !
e
Swy tag ta,
LFA botnet Network

Figure 2. FDD process schematic diagram.
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4.2. Step 2: Statistically Detect Hybrid DDoS Attacks Observed from the Target Links

The FDD statistically evaluates and detects the network behaviors generated from the
SEA and LFA based on the observation of the target links in the second step. The FDD
applies a chi-squared test, which is a statistical hypothesis test to determine whether there
is a statistically significant difference between the influx of expected flows and the influx of
observed flows. Influx refers to the difference between the traffic flow in the targeted area
and the traffic flow outside the targeted area. If the testing result is significantly different,
it can be determined that the target area is attacked, and an alert is sent to the network
manager. The formula (2) for the chi-square statistic x2 is:

- . _E.
d=y e)

where c is the degrees of freedom, and O; is the evaluated sample calculated by formula (3)
Ol' = (Spinput X k— SPoutput) (3)

E; is the O; observed beforehand, i is the i-th data in the sampled time period, and k is
used to moderate the sensitivity of testing. The k value is set to 1.0 in this study and can be
modified by the network administrator based on their security policy. The chi-square test
x2 is a p-value that evaluates whether the test result is significantly a hybrid attack or not.

The detailed procedure, as shown in Figure 3, first considers the first time to detect
a situation, so we define the variable (Cycle) to identify the number of detections; then,
the FDD selects above these switches from the target links” end. From these switches
(SWy), the flow tables (F) merge the flow tables into one table M. Third, we avoid causing
measurement error, selecting existing flows. Other flows in the contrast source IP and
the destination IP are measuring flows, and the remaining flows are deleted. Fourth, the
large table (M) classifies the number of input (SPl-nput) and output (SPOMtput) flows. The
last step applies a chi-squared test to determine whether there is a statistically significant
difference between the observed O; and the expected E;. If the testing result is significantly
different, it can be determined that the target area is attacked, and an alert is sent to the
network manager.

Set Cycle = 0;

Set M=0; k= 1;

M= MF; k++

N

chi-square test
(0, E)

y utput )
@
-

Figure 3. Flowchart of FDD methodology.



Micromachines 2021, 12, 1019

8 of 15

5. Implementation

The experiment of this study establishes a hybrid attack detection system based on the
FDD in SDN. It is implemented in Java, deployed on OpenDayLight, which is a popular
open-source SDN controller, and obtains flow information through OpenDayLight’s REST
APIs so that it will not introduce additional loading overhead to the controller. There are
two main modules in this system: (1) the Target Link Selection Module (TSM) and (2) the
Service Performance Module (SPM).

The TSM is responsible for calculating which links will be selected as target links. It
also calculates the link weight using Formula (1) in [21]. The TSM obtains all flows through
the target area in the network to sort those links by link weight from high to low weight.
On the other hand, it also needs to know the switch and link positions in the topology and
consider the topology and link weight together to the target links. The primary REST APIs
used by the TSM mainly include APIs1 and APIs2 to receive all switch flow tables, where
APIs1 and APIs2 are as follows:

e  APIsl: /restconf/operational /network-topology:network-topology;
e  APIs2: /restconf/operational /opendaylight-inventory:nodes/node/switch/table.

The SPM applies a chi-square test to evaluate the differentiation between input and
output flows to obtain SP in the target link. If a significant difference exists, the system
will send an alert that indicates the target area is under attack to the network manager.
The SDN controller can obtain all the information from the network depending on the
OpenFlow protocol. This implementation will focus on the SDN controller.

The SDN controller obtains the topology of the network, such as the link between the
switch and the switch, the link between the switch and the node, or the link between the
switch and the controller, so we can use this API to determine all the distributions and
positions of the links in the network. The SDN controller obtains the flow table from the
links. The TSM obtains flows that pass the target area to calculate the link weight of each
link, and the SPM obtains input and output flows that pass through the target area.

6. Evaluation

This section compares our proposed FDD with other detection methods through
experiments. We first introduce the experimental environments, scenarios, performance
metrics, and methods to be compared. Then, the effects of detection performance on
different parameters, such as the ratio of hybrid attacks, the number of servers in the target
area, and the number of switches, are investigated.

For comparison of the detection effect between the FDD and the current detection sys-
tems, therefore, the experimental group is the FDD, and the control group is LFADefender
(LAD) [21], which detects LFAs, Reinforcing Anti-DDoS Actions in Realtime (RADAR) [24],
which detect SEAs, and Combiner (COM), which combines LAD and RADAR. If one of the
detection methods detects an attack, COM will identify the situation as an attack.

6.1. Experimental Environment

This subsection explains how to set up the experimental environment, including the
tools for simulating the network, attacks, and parameters, all experiment scenarios, evalua-
tion of detection performance metrics, and the methods to be compared, are described.

The experiment setup in [21] was used for our testbed, along with Mininet to simulate
the DetNet SDN environment and one SDN controller, OpenDayLight. The core of the
network is composed of switches in an Ubuntu system 16.04 virtual machine. Because
we considered the limitations of the experimental equipment, the bandwidth of all links
in our testbed is 10 Mbps. In addition, we set up botnet access requests to the target
area in SDN to generate legitimate traffic using iPerf [21] and trafgen [26], which are
network tools, to simulate hybrid attacks on the testbed, where we could directly control
all hosts. iPerf and trafgen are tools to generate and observe traffic based on the maximum
achievable bandwidth on IP networks. This traffic supports different timings, protocols,
and bulffers, and it can collect corresponding performance results, including throughput,
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VM

Mininet

Ubuntu 16.0.4 L7

loss, and other parameters. We employed five botnets that played the role of an SEA
and LFA and twenty-five hosts as normal usage. The SDN controller and bot were built
by a container deployed in several Virtual Private Cloud (VPC) networks in different
cloud service providers to emulate the DetNet architecture. The container is a lightweight
virtualized service containing only the application and its libraries and dependencies, and
VPC is a virtual version of a physical network.

The SEA botnets with trafgen [26] send at least 10,000 SYN packets, and LFA botnets
send traceroute packets to the target area to find target links before sending TCP or UDP
packets with iPerf [21] at both ends of the target link to congest the target links. During the
attack phase, the bandwidth of attack traffic from bots is 2 Mbps. At the same time, the
remaining twenty-five normal hosts randomly access the three servers in the target area
because attacks will exist simultaneously with normal usage in the real world.

6.2. Scenarios

By default, we set up the topology with seven switches in the SDN, three servers in
the target area, and five botnets as attackers in the SDN to combine SEAs and LFAs under
different ratios to achieve the effect of hybrid attacks. R is the hybrid ratio and is defined
as LB/SB, where LB is the number of LFA botnets, and SB is the number of SEA botnets.
This research experimentally tested the effectiveness of one to five servers in the target area
because the number of servers could be changed. This study randomly generated attacking
and normal traffic based on a fuzzy testing methodology to ensure all experiments in this
section have sufficient samples/scenarios regarding hybrid attacking and normal traffic.

Finally, we tested three types of topologies [21] where hybrid attacks occurred to
detect an effect. Figure 4a demonstrates the topology design. Figure 4b has seven switches
and one SDN controller, which is the core of the network. Figure 4c has 20 switches and
1 SDN controller. Figure 4d has 33 switches and 1 SDN controller.

AR & »
e
@l \
N

Targetarca

(c) Topology with 20 switches of the Experiment

(d) Topology with 33 switches of the Experiment

Figure 4. Experimental topology.
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6.3. Performance Metrics

In the evaluation effect part, three measures are considered, namely detection accuracy,
false-positive rate (FPR), and false-negative rate (FNR), which are classified by the confu-
sion matrix shown in Table 3. True positive (TP) is the number of attacksbeing attacked;
false negative (FN) is the number of attacks seen as normal usagebeing attacked, false
positive (FP) is the number attacks under normal usage situations, and true negative (TN)
is the number of attacks seen as normal usage under normal usage situations. Detection
accuracy means that the detection system can correctly identify whether it is an attack
or normal. For example, according to Formula (4), FPR means that the detection system
wrongly identifies attacks under normal usage situations according to Formula (5). FNR
means that the detection system cannot identify the attacks and miss rate according to

Formula (6).
TP+ TN

TP+ TN + FP + FN
FP
“FP+TN
FN
" FEN+TP

)

Accuracy =

FPR %)

ENR (6)

Table 3. Confusion matrix.

Yes (Fact) No (Fact)

Yes (Prediction) TP FP
No (Prediction) EN TN

6.4. Effects of Hybrid Ratio

Figure 5 demonstrates the performance of different ratios of hybrid attacks in a
topology with seven switches and three servers. When the ratio of hybrid attacks increases,
the detection accuracy of LAD, RADAR, and COM becomes inferior. FAD’s average
detection accuracy is 75%, RADAR'’s average detection accuracy is 72.22%, and COM’s
average detection accuracy is 90%. The detection accuracy of the FDD is the most stable,
with an average detection accuracy of 96.67%, which is better than previous studies.

100% o~

80% /
Y C—

60%

Accuracy

40%
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0 20 40 60 80 100
Hybrid Ratio
——LAD —4—RADAR CoM FDD

Figure 5. Accuracy vs. hybrid ratio.
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We further explored the type I and type II errors of all studies by observing the false-
positive rate (FPR) and false-negative rate (FNR). A type I error is the false rejection of
the null hypothesis (FPR) such as “normal traffic is detected as a hybrid attack”, while a
type Il error is the false acceptance of the null hypothesis (FNR) such as “a hybrid attack is
detected as normal traffic”. Figure 6 describes the reason causing the difference in average
detection accuracy. FDD-FPR and FDD-ENR are both lower than 10%, which is better than
all the other detection systems because the FDD detects target link congestion in small-size
topologies more easily.

100% - 100%
haiN
\
*z{\
80% AN 80%
%%N .
o ~ h)
Z  60% o~ _ -t 60% X
Ssalg--"" N
B ~
N N
\%
40% > 40%
%\
N\
20% “so 20%
0% | [———— - — — . T P
0 20 40 60 80 100
Hybrid Ratio
- = LAD-FNR RADAR-FNR COM-FNR FDD-FNR
—o—LAD-FPR 4—RADAR-FPR —&-—COM-FPR FDD-FPR

Figure 6. FNR and FPR vs. hybrid ratio.

It should be noted that the accuracy rate of previous studies shown in Figure 5, which
are LAD, RADAR, and COM, dropped between the 20% and 80% hybrid ratio. On the other
hand, the FPR and FNR of previous studies, which are LAD, RADAR, and COM, changed
abnormally between the 20% and 80% hybrid ratio. This is because the hybrid attacks were
a combination of an SEA and LFA. Previous detection systems only depend on one value
that increases under a single-type attack, and they cannot identify hybrid attacks. However,
our proposed FDD maintains high accuracy and a low FPR/FNR because it identifies the
attacks according to flows through the target area, which indicates the differentiation of
the service input and output flows. As long as the service is affected by the attack, whether
it is link congestion or server collapse, the FDD will be determined as an attack. We can
infer that the FDD can solve the problem that single-type detection systems cause a miss
rate when hybrid attacks occur.

6.5. Effects of the Number of Servers in Target Area

This experiment attempts to explore the performance of all methods detecting the
hybrid attack and the synergy effect of different numbers of servers in the target area.
The environment setting is that the hybrid ratio is equal to 0.4 in the topology with
seven switches.

Figure 7 shows that, when there is only one server in a target area, all methods have
good detection accuracy above 90% because all these methods merely watch over the traffic
related to this server. However, as the number of servers in the target area increases, the
traditional detection methods, i.e., LAD, RADAR, and COM, experience low detection
accuracy. On the other hand, our proposed FDD still has a stable detection accuracy
performance. Figure 8 also supports the above argument that traditional studies experience
higher type 2 errors (FNR), as when a hybrid attack is detected as normal traffic, the number
of servers rises. We can infer that traditional methods use a single observation point to
detect attacks without a self-adjusting ability when the number of servers is changed. The
FDD is based on multiple target links to detect hybrid attacks, so it is hardly affected.
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Figure 7. Accuracy vs. number of servers in the target area.
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Figure 8. FNR and FPR vs. number of servers in the target area.

6.6. Effects of the Number of Switches

This section further explores the performance of all methods when facing different
scales of topology. In this experiment, the hybrid ratio is equal to 0.4, and the three servers
in the target area are under different numbers of switches. The results are shown in Figure 9.
The FDD has a 98.9% average detection accuracy rate for detecting hybrid attacks under
each topology. However, the detection accuracy of traditional methods, i.e., LAD, RADAR,
and COM, becomes worse when the topology becomes larger. This may be due to the
inability of traditional studies to detect hybrid attacks, as shown in Figure 10, leading
to higher type 2 errors (FNR) when the topology becomes larger and the synergy effect
becomes deteriorated.
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Figure 10. FNR and FPR vs. number of switches.

7. Conclusions and Future Work

In this study, we proposed the FDD, an approach against Hybrid DDoS attacks that
leverages SDN, to effectively detect Hybrid DDoS attacks according to the experimental
results. In the detection system, we deployed the FDD on OpenDayLight and evaluated it
on Mininet, which simulates a real network environment.

The FDD first applies a fuzzy-based mechanism, Target Link Selection, to determine
the most valuable links for the DDoS link/server attacker, and then it statistically evaluates
the traffic pattern flowing through these links. Furthermore, the contribution of this study
is to deploy the FDD in the SDN controller OpenDayLight to implement a Hybrid DDoS
attack detection system. The experimental results show that the FDD has superior detection
accuracy (above 90%) than traditional methods under the situations of different ratios of
Hybrid DDoS attacks and different types and scales of topology.

In future work, we plan to extend our work to Artificial Intelligence (AI) technology
and explore the best setting of the moderator k in our proposed FDD. Furthermore, we will
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explore the possibility of developing an Al robustness test methodology to verify that the
artificial intelligence model has been fully trained to ensure robustness and effectiveness.
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