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Abstract: In this work, a modified Bosch etching process is developed to create silicon nanowires.
Au nanoparticles (NPs) formed by magnetron sputtering film deposition and thermal annealing
were employed as the hard mask to achieve controllable density and high aspect ratios. Such silicon
nanowire exhibits the excellent anti-reflection ability of a reflectance value of below 2% within a
broad light wave range between 220 and 1100 nm. In addition, Au NPs-induced surface plasmons
significantly enhance the near-unity anti-reflection characteristics, achieving a reflectance below
3% within the wavelength range of 220 to 2600 nm. Furthermore, the nanowire array exhibits
super-hydrophobic behavior with a contact angle over ~165.6◦ without enforcing any hydrophobic
chemical treatment. Such behavior yields in water droplets bouncing off the surface many times.
These properties render this silicon nanowire attractive for applications such as photothermal,
photocatalysis, supercapacitor, and microfluidics.
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1. Introduction

Silicon nanowires have been widely used over the past years in many emerging fields,
including photodetection [1,2], photocatalysis [3,4], thermoelectric [5,6], and quantum
information processing [7,8]. Nanowires are one-dimensional materials that present the
shape of needles, rods, or pillars [9,10]. Their diameter lies in the range of nanometers to a
few hundred nanometers [11], while their height can be as large as several micrometers [12].
Apart from the bottom-growth approaches, various patterning and dry etching processes
have also been developed to realize nanowire fabrication with semiconductors [13–15].
Interestingly, most of the reported nanowire arrays are patterned by using electron-beam
and holographic lithography techniques [16], which are attractive in generating a periodic
pattern with a high degree of uniformity. However, the approaches mentioned above
are time-consuming for large area nanowire fabrication and exhibit low throughput for
mass production. As far as dry etching is concerned, it generally involves mask materials
such as photoresist, silicon dioxide, and Teflon microspheres to fabricate structures with
high aspect ratio profiles [16]. For instance, the employment of metal masks requires the
enforcement of an additional lift-off treatment that decreases the pattern resolution and
increases the process complexity. As a result, a specific eliminating step is needed that can
cause irreducible contamination and damage. Recently, a self-assembled mask approach
has emerged that is expected to address the issues mentioned above [17,18]. The method
refers to forming a layer of gold NPs, which is formed by depositing a thin gold film. The
subsequent application of a thermal annealing treatment to aggregate to be a particle-like
hard mask without enforcing any other lithography procedures.
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The frequently used etching treatments include laser ablation [19], metal-catalytic
chemical etching [20,21], and reactive ion etching (RIE) [12,22]. Laser ablation is a random
etching that can cause undercutting of the mask. The silicon wafer’s crystal orientation
binds the catalyst-assisted etching. In contrast, deep reactive ion etching (DRIE) is the
highly anisotropic etching method used to create holes and trenches with high aspect ratios
and close-to-vertical sidewalls on various silicon substrates [17]. The Bosch process [23–25]
is named after the invention of two employees of the German Robert Bosch company and
its name originates from the company name. This process is also known as pulsed- or
time-multiplexed-etching and includes the cycle between SF6 etching and C4F8 passivation,
each phase lasting a few milliseconds. The passivation layer protects the hole/trench
sidewalls from excessive bombardment. At the same time, the directional fluorine/sulfur
ions bombard and remove the bottom passivation layer faster than that along the sidewalls.
Such etch/protect steps alternate in sequence resulting in minimal isotropic etch taking
place only at the bottom of the etched patterns, which makes the Bosch process become a
tremendous potential method in nanostructure fabrication.

A novel one-step Bosch process is presented in this work to fabricate silicon nanowires
with controllable surface density and a high aspect ratio. Our approach contains three main
processing steps: NPs deposition as a mask material, modified Bosch etching, and removal
of the mask. It is also attainable to change the nanowire’s structural profile by tuning the
mask size and total etching duration. The modified Bosch process can transfer the NPs-
based mask pattern into the silicon substrate and remove the particles in the etching process.
In addition, the NPs-based mask is created by employing the magnetron sputtering for the
deposition of a thin gold film (thickness from 4 to 10 nm) and subsequent thermal annealing
at 500 ◦C for 1 h. The annealing temperature, holding time, and film thickness are crucial
parameters to control the particle surface density and size. As a result, the enforcement of
a higher annealing temperature, elevated holding times, and the employment of a thicker
film led to a low surface density of the NPs and decreased filling density of the nanowires
at last. In addition, our unique silicon nanowire arrays exhibit extremely superhydrophobic
behavior with a contact angle over ~165.6◦ without any hydrophobic chemical treatment.
Such behavior permits the water droplets to bounce off the surface many times, making it
extremely difficult to conduct pendant-drop measurements. Besides, the fabricated silicon
nanowire structure displays lower than 2% near-unity reflectance properties within an
optical wave range of 220 to 1100 nm. It is interesting to notice that after incorporating the
Au NPs and inducing the surface plasmons effect on their surface, a near-unity reflectance
factor below 3% in the broadband range of 220 to 2600 nm is achieved.

2. Materials and Methods
2.1. Fabrication Process

The involved fabrication processes are schematically illustrated in Figure 1. Firstly,
polished (100)-oriented p-type silicon wafers with a resistivity of 1–20 Ω·cm and thickness
of 500 ± 10 µm were selected to fabricate the silicon nanowires. Next, all wafers were
cleaned using a buffered oxide etch (BOE) solution at room temperature, followed by
acetone, isopropanol, and deionized water (DI water) rinsing to remove the native oxide,
residuals, and organic contamination. Next, gold thin films with various thicknesses of
4, 6, 8, and 10 nm were deposited on the wafer surface by employing the magnetron sput-
tering technique at room temperature (DC sputtering system, AJA International, Scituate,
MA, USA). Next, the Au NPs-based masks were created by applying a rapid thermal
annealing step at 500 ◦C for one hour. The Au NPs size presents a strong dependence on
the film thickness. Subsequently, the silicon wafer was DRIE-etched with a modified Bosch
process to create the nanowires. The etching process was conducted within an RIE cluster
reactor (Plasma Pro100 Cluster, Oxford Instruments, Abingdon, UK).



Micromachines 2021, 12, 1009 3 of 10

Micromachines 2021, 12, x FOR PEER REVIEW 3 of 10 
 

 

process to create the nanowires. The etching process was conducted within an RIE cluster 
reactor (Plasma Pro100 Cluster, Oxford Instruments, Abingdon, UK). 

 
Figure 1. The schematic diagram of the nanowire fabrication process. The gold thin film is deposited on the P-type silicon 
wafer. Thermal annealing is employed to create gold particle mask. The followed etching treatment consists of initial 
Bosch etching, forward etching for more undercut, and the continue etching to remove Au nanoparticles. 

2.2. Etching Conditions 
The Bosch process is carried out through the fast alternative between two modes, 

namely the bombardment reaction by SF6 plasma and the protection by polymer C4F8 to 
obtain structures with nearly vertical sidewalls. Table 1 illustrates the modified etching 
recipe based on the Bosch process. The execution of such etching experiments requires the 
utilization of a helicon antenna-coupled plasma reactor that operates in the inductive 
mode. With the assistance of turbine vacuum pumps, we can rapidly and precisely adjust 
various experimental parameters such as gas flux, pressure, and plasma density. The em-
ployed single etching loop mainly consists of the three following steps: protection poly-
mer deposition, bottom polymer breakthrough, and depth direction etching. Initially, the 
protection deposition step is conducted by introducing repeatable flows of C4F8 up to the 
values of 60 SCCM to form a thick polymer layer on both the metal NPs and the pore 
sidewall. Such thick polymer is wrapped on the metal NPs, which is beneficial to avoid 
the mask undercut and achieve a high selection ratio between the particle mask and the 
silicon. For the subsequent deposition step, a C4F8 flow rate of 5 SCCM is selected to form 
a thin protection polymer at the bottom of the pore. In the meantime, the SF6 flow rate of 
160 SCCM is set to avoid fast C4F8 deposition to block the nanowires’ interval spacing. 
Such balance between the deposit and the etching procedures is adjustable according to 
the structure pitch size. Next, the bottom breakthrough step aims to dissolve the protec-
tive polymer and expose the silicon substrate at the pore bottom. Finally, the depth-direc-
tional etching occurs, where the posterior region of the silicon reacts with SF6 faster than 
that on the sidewall, thus realizing a highly anisotropic etching. Besides, a silicon wafer 
with Au film deposited on its top surface is also selected as the platform to support the 
silicon pieces to be etched. The platform temperature is retained constant at the value of 
5 Celsius by flowing helium gas. We also used the highly thermal conductivity silicone 
grease to bond the etching pieces on the table silicon wafer. The goal was to accurately 
control the uniform piece temperature distribution and to be consistent with the set value 
of the platform temperature. 

  

Figure 1. The schematic diagram of the nanowire fabrication process. The gold thin film is deposited on the P-type silicon
wafer. Thermal annealing is employed to create gold particle mask. The followed etching treatment consists of initial Bosch
etching, forward etching for more undercut, and the continue etching to remove Au nanoparticles.

2.2. Etching Conditions

The Bosch process is carried out through the fast alternative between two modes,
namely the bombardment reaction by SF6 plasma and the protection by polymer C4F8 to
obtain structures with nearly vertical sidewalls. Table 1 illustrates the modified etching
recipe based on the Bosch process. The execution of such etching experiments requires
the utilization of a helicon antenna-coupled plasma reactor that operates in the inductive
mode. With the assistance of turbine vacuum pumps, we can rapidly and precisely adjust
various experimental parameters such as gas flux, pressure, and plasma density. The
employed single etching loop mainly consists of the three following steps: protection
polymer deposition, bottom polymer breakthrough, and depth direction etching. Initially,
the protection deposition step is conducted by introducing repeatable flows of C4F8 up to
the values of 60 SCCM to form a thick polymer layer on both the metal NPs and the pore
sidewall. Such thick polymer is wrapped on the metal NPs, which is beneficial to avoid
the mask undercut and achieve a high selection ratio between the particle mask and the
silicon. For the subsequent deposition step, a C4F8 flow rate of 5 SCCM is selected to form
a thin protection polymer at the bottom of the pore. In the meantime, the SF6 flow rate
of 160 SCCM is set to avoid fast C4F8 deposition to block the nanowires’ interval spacing.
Such balance between the deposit and the etching procedures is adjustable according to
the structure pitch size. Next, the bottom breakthrough step aims to dissolve the protective
polymer and expose the silicon substrate at the pore bottom. Finally, the depth-directional
etching occurs, where the posterior region of the silicon reacts with SF6 faster than that
on the sidewall, thus realizing a highly anisotropic etching. Besides, a silicon wafer with
Au film deposited on its top surface is also selected as the platform to support the silicon
pieces to be etched. The platform temperature is retained constant at the value of 5 Celsius
by flowing helium gas. We also used the highly thermal conductivity silicone grease to
bond the etching pieces on the table silicon wafer. The goal was to accurately control
the uniform piece temperature distribution and to be consistent with the set value of the
platform temperature.
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Table 1. Nanoparticles-assisted Bosch process.

Main Steps in 1
Etching Loop

SF6 Gas
Flow (sccm)

C4F8 Gas
Flow (sccm)

ICP Power
(W)

HF Power
(W)

O2 Gas Flow
(sccm)

Table
Temperature

(◦C)

Pressure
(mTorr)

Helium
Backing

(Torr)

Step Time
(ms)

Pre-deposition 10 200 1500 5 0 5 0 10 25
Deposition 5 60 1250 5 0 5 20 10 550
Deposition

Sub 1 20 60 1250 5 0 5 20 10 50

Deposition
Sub 2 160 60 1250 5 0 5 30 10 100

Deposition
Sub 3 160 5 2000 5 0 5 30 10 50

Deposition
Sub 4 160 5 2000 60 0 5 30 10 50

Breakthrough 200 5 2000 60 0 5 30 10 325
Breakthrough sub 1 200 5 2000 60 0 5 30 10 100

Breakthrough
Sub 2 200 5 2500 60 0 5 80 10 50

Breakthrough
Sub 3 200 5 2500 0 0 5 80 10 50

Etch 500 5 2500 0 0 5 80 10 600
Etch
Sub 1 1 120 2500 0 0 5 80 10 150

Etch
Sub 2 5 120 1250 0 0 5 20 10 100

2.3. Surface Characterization

The surface texture morphology was investigated using a scanning electron micro-
scope (SEM, Hitachi UHR FE-SEM SU8230, Hitachi, Tokyo, Japan). The reflectance and
transmittance spectra were measured using a UV-Vis-NIR spectrophotometer (Shimadzu
UV 3600 plus, Shimadzu, Kyoto, Japan). The BaSO4 compound was used as the reflectance
spectrum reference from the nanowire surface, while the aluminum mirror was the ref-
erence for reflectance spectra of the polished silicon wafer. The total reflection, diffuse,
and mirror reflection were measured in the integrating sphere. Furthermore, the contact
angle of the nanowire texture was characterized by using the contact angle meter, which is
equipped with a rotatable substrate holder and automated dispenser (CAM-01A, GLOBAL
ANALYTICAL, Ankara, Turkey). The mechanical stability experiment was performed by
using an automatic dripping device. Five thousand water droplets of twenty microliters
were dripped continuously from a distance of 30 cm to strike the silicon surface. The
bouncing effect of the water droplet on such a surface was captured and recorded by
employing a high-speed video camera (5KF10, Fuhuang Agile Device, Hefei, China).

3. Results and Discussion

Figure 2a divulges the digital photo of the samples with nanowires formed by applying
120 Bosch etching loops. The NPs were created by enforcing an annealing step on a 4 nm
Au thick film and served the role of the etching mask. The sample surface exhibits a black
visual due to the nanowires’ “light trapping” ability [26,27]. This ability originates from the
energy decay in the surface light reflections and the optical path length extension through
the internal refraction and transmission processes [26,28]. The surface reflection loss stems
from both the mirror reflection effect at the smooth substrate and diffusion reflection
caused by structures with small aspect ratios. As a result, the employment of surface
textures with a configuration of the pore, tip, and deep holes can effectively suppress such
reflection losses by permitting more incident light to enter the structure and multi-reflect
along the depth direction. As far as the optical path length is concerned, it is significantly
larger than the actual substrate thickness. More specifically, it is defined as the distance
that an unabsorbed photon could travel within the silicon bulk before it escapes, which
implies that light waves will have more opportunities to achieve a coupling decay with
silicon [29]. The employment of a structure that induces multiple internal reflections, light
refraction, and transmission effects can facilitate such a coupling decay process [30]. As a
result, surface structures with a smaller smooth area on top and larger aspect ratios can
trap an enhanced incident light, leading to constant attenuation through the consecutive
interactions of light and silicon within the structure. Figure 2b illustrates the tilted SEM
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image of the fabricated nanowire array, showing that the Au NPs are distributed uniformly
at the top of the nanowires. It is also indicated that the etching step’s depth direction has a
high selection ratio between silicon and mask. In addition, the employed etching process
is highly anisotropic, which is desired to avoid mask undercut and create structures with
elevated aspect ratios. As depicted in Figure 2c, the fabricated nanowires with a height
of ~3 µm exhibit a needle-like configuration and have average aspect ratios of about 10:1.
Figure 2d divulges the top view image of the silicon nanowires, which indicates a large
pore proportion that allows a relatively considerable amount of light to enter and a tiny
flat surface proportion on the top to avoid the specular reflection loss of the incident light.
In addition, Figure S1 illustrated the digital photographs of a 4 inch wafer of the silicon
nanowires formed through 120 etching loops, indicating a good uniformity across the
wafer. Table S1 illustrates the etch rate, scallop height, and profile control ability in detail.
Figure S2 shows the SEM image at high magnification, which indicates that the sidewalls
are smooth and the Bosch scallops have an average height of ~25 nm.
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Figure 2. Photograph and SEM images of the silicon nanowires. (a) Photograph; (b) nanowires with
Au nanoparticles on tip top; (c) tilted image of the nanowires formed through 120 loops of Bosch
process; (d) top view of the nanowires formed through 120 loops of Bosch process.

To investigate the impact of the mask size and the duration of the etching process
on the silicon nanowire formation, we closely examined the modifications induced by
adjusting one etching loop or by employing three different particle sizes. First, Figure S3
illustrates the SEM images of the nanoparticle mask formation before the etching treatment.
The Au film with deposition thickness of 4 nm was used, and it presents as continuous
islands with spacings. Then, two temperatures of thermal annealing treatment were
applied to compare the particle mask formation. It is indicated that the nanowire pitch size
mainly depends on the spacing between the isolated particles caused by film thickness
and annealing temperature. The nanowires’ diameters rely on the randomly formed
particles’ sizes. Figure 3 illustrates the SEM images of the silicon nanowires formed,
enforcing longer etching durations and varying the Au nanoparticle sizes. More specifically,
Figure 3a reveals the tilted view and top view images of the nanowire structure formed
by applying 160 etching loops and the deposition of a 4 nm thick Au film to create the
particle mask. The acquired nanowires exhibited an average height of about 5.62 um,
indicating that a longer etching duration produces nanowires with higher heights. Besides,
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Figure 3b–d illustrates the tilted and top views images of the silicon nanowires that are
etched through the incorporation of particle masks formed by employing 6, 8, and 10 nm
thick Au films, respectively. The obtained average nanowire heights are 6.71, 8.83, and
7.78 µm, respectively. The surface density decreases by increasing the particle size, whereas
the silicon nanowire formed by 4 nm thick Au film exhibits the highest density. Since a
thicker film is more likely to lead to larger NPs, the inter-particle intervals become larger
as well. This effect is nicely captured in Figure 3d. Figure S4 illustrates the SEM images
at high magnification of the nanowires formed through 160 etching loops; the particle
masks are formed by 4, 6, 8, and 10 nm Au film, respectively. It is indicated that the silicon
nanowire formed by 4 nm Au film has the highest structure density. The digital images
of the nanowire-based samples are presented by employing four different particle masks
formed by the deposition of 4, 6, 8, and 10 nm thick Au film. The nanowire surface induced
by the presence of 4 nm thick Au film exhibits the darkest appearance, which is obvious
through the digital photograph comparison illustrated in Figure S5. Thus, these silicon
nanowires were selected for the following test of the optical character.
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Figure 3. Photograph and SEM images of the silicon nanowires formed through longer etching duration and the varying
Au nanoparticle sizes and etching loops. (a) Tilted view and top view of the nanowire formed through 160 etching loops,
the particle mask is formed by 4 nm Au film; (b–d) tilted view and top view of the nanowires formed through 160 etching
loops; the particle masks are formed by 6, 8, and 10 nm Au film, respectively.

The optical measurements were carried out to investigate the nanowires’ ability to
suppress the light reflection. Firstly, a polished silicon wafer was selected as a reference
sample for the reflectance and transmittance spectra. Figure 4a demonstrates that the
reflectance of the nanowire surface is significantly lower than that of the polished silicon
wafer in the wavelength range of 220 to 1100 nm. In addition, the reflectance efficiency of
the nanowire sample below the wavelength value of 1000 nm is less than 2%. Figure 4b
discloses the comparative spectra, as far as the transmittance property is concerned, indi-
cating that nanowires-based surface exhibits a lower value than the polished one at the
wavelength range above 1000 nm. Such a discrepancy could be originated by the change
in the material’s surface induced by the residuals of the etching reaction. Besides, we
also conducted the light reflection comparison of two silicon nanowire samples formed
by 4 nm film and two different etching durations. As shown in Figure S6, the silicon
nanowire surface formed through 120 etch loops exhibited higher reflection values in the
wavelength range of above 1200 nm than that formed through 160 etch loops. In addition,
the well-known localized surface plasmon resonance (LSPR) effect [31–33] was applied
to decrease the reflectance coupling of the near-infrared light on such nanowires-based
surfaces. Au NPs were employed to generate the LSPR. The used LSPR NPs were also
loaded via a DC magnetron sputtering deposition of Au, followed by a thermal annealing
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treatment. As divulged in Figure 4c, the nanowires decorated with Au NPs showed a lower
than 3% reflectance at the wavelength range from 220 to 2600 nm.
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It is well established that the nanowires are under intensive research for photoelec-
tronic and energy storage-related applications due to their enhanced properties in terms
of increased anti-reflectivity, high surface-to-volume ratio, and quantum confinement ef-
fects. Besides, silicon nanowires also exhibit unique structural properties that render them
quietly different from the bulk silicon. More specifically, they can remarkably enhance the
hydrophobicity property of the substrate surface [34,35]. The hydrophobic characteristics
are of great importance since they can be utilized in the self-cleaning process, anti-bacterial
surfaces, and other biomedical applications. In addition, the octadecyl trichlorosilane (OTS)
is frequently applied on nanowire surface as a chemical treatment method to enhance
structure-based hydrophobicity. However, such types of treatment tend to increase the
contamination levels, requires high cost, and presents poor long-term reliability. It is inter-
esting that our fabricated silicon nanowire arrays exhibited extremely superhydrophobic
behavior with a contact angle over the value of ~165.6◦ and without implementing any
hydrophobic chemical treatment, as is revealed in Figure 5a. Such a property permits the
water droplet to bounce off the surface and does not allow the pendant-drop measurement
to be conducted. Besides, Figure S7 shows the contact angle of the silicon nanowire surface
formed by 4 nm Au film and 180 etch loops. Therefore, a hydrophobic-treated micropipette
was utilized to enable the execution of the contact angle measurement by releasing a water
droplet on such a surface. As illustrated in Figure 5b, the acquired screenshots from a
high-speed video (the video frame rate was set to 4000 per second) demonstrate that a
water droplet of 1.5 µL drops onto the nanowire surface at the height of 70 mm. Initially,
it fully bounces off and consequently continues nine times to rebound along with the
vertex’s height gradually decreased. The whole process has been recorded by the provided
Videos S1 and S2, where the bouncing effect of a water droplet with 1.5 µL on horizontal
and inclined nanowire surfaces is presented, respectively. Besides, five thousand water
droplets of 20 µL drip continuously struck the silicon nanowires from 30 cm, as depicted in
Figure S8, where no apparent damage of the nanowires’ surface was detected.
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4. Conclusions

A novel DRIE method was demonstrated in this work to create silicon nanowires with
controllable surface densities and high aspect ratios. Such a process involves employing an
Au NPs-based deposition mask, a modified Bosch etching process, and a mask removal
step. As a result, the fabricated silicon nanowire array exhibited an excellent anti-reflection
below 2% within a broad light wave range from 220 to 1100 nm. Furthermore, by lever-
aging the formation of surface plasmons, induced by the creation of Au NPs through the
dewetting process of 4 nm thick gold film, a near-unity reflectance of below 3% in the
broadband of 220 to 2600 nm was obtained. Besides, our prototypes exhibited extremely
super-hydrophobic properties with a contact angle over ~165.6◦ without applying any
hydrophobic chemical treatment, resulting in bouncing off the surface properties of the
water droplets. These results render the fabricated silicon nanowire a pretty promising
solution for various applications, including developing novel photothermal [5,6,36,37]
and photocatalysis processes [38,39], supercapacitor electrodes [40–42], and microfluidic
devices [43–45].

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/mi12091009/s1, Figure S1: Digital photographs of the 4-inch wafer of the silicon nanowires
formed through 120 etching loops; Figure S2: The SEM image at high magnification, indicating the
smooth sidewalls and the Bosch scallops with the height of ~25 nm; Figure S3: The SEM images of
the nanoparticle masks before etching treatment; Figure S4: SEM images at high magnification of the
nanowires formed through 160 etching loops, the particle masks are formed by 4, 6, 8, and 10 nm
Au film, respectively; Figure S5: Digital photographs of the nanowires formed through 160 etching
loops, the particle masks are formed by 4, 6, 8, and 10 nm Au film, respectively; Figure S6: The
reflectance spectra of the polished silicon surface and the nanowire ones formed by 4 nm film. The
nanowires are formed through 120 and 160 etch loops, respectively, while the planar silicon is used
as the reflectance. reference; Figure S7: Contact angle of the silicon nanowire surface formed by 4 nm
Au film and 180 etching loops; Figure S8: SEM image of the tilted view of the silicon nanowire array
after striking by five thousand water droplets continuously; Table S1: Nanoparticles-assisted Bosch
process; Video S1: the whole process of the water droplet with 1.5 µL bouncing on the horizontal
nanowire surface; Video S2: the whole process of the water droplet with 1.5 µL bouncing on the
inclined nanowire surface.
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