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Abstract: In this study, a micromachined chip in Otto configuration with multiple air-gaps (1.86 µm,
2.42 µm, 3.01 µm, 3.43 µm) was fabricated, and the resonance characteristics for each air-gap was
measured with a 980 nm laser source. To verify the variability of the reflectance characteristics of the
Otto configuration and its applicability to multiple gas detection, the air-gap between the prism and
metal film was adjusted by using a commercial piezoactuator. We experimentally verified that the
SPR characteristics of the Otto chip configuration have a dependence on the air-gap distance and
wavelength of the incident light. When a light source having a wavelength of 977 nm is used, the
minimum reflectance becomes 0.22 when the displacement of the piezoactuator is about 9.3 µm.

Keywords: surface plasmon resonance; Kretschmann configuration; Otto configuration; piezoactuator;
MEMS actuator; FEM simulation

1. Introduction

Surface plasmon polaritons are collective oscillations of electrons on the surface of
the metals such as gold, silver, and aluminum, and it is caused by an incident light. When
specific conditions such as the light source angle of incidence, wavelength, and refractive
index of materials are satisfied, the incident light can be absorbed as surface plasmon
polaritons, and the reflectance is rapidly decreased. This phenomenon is called the surface
plasmon resonance (SPR). Surface plasmon resonance characteristics are changed sensi-
tively according to a dielectric constant and refractive index change of the materials near
the metal surface. Thus, if target molecules enter in contact with the metal surface, the
surface plasmon resonance effect will take place, and its degree of excitation is used to
make sensor systems. Through the last decade [1–5], SPR sensors have been widely used
for chemical gas detection, drug design, and biochemical reaction detection with the advan-
tages of label-free and room temperature detection, with real-time monitoring. Recently,
SPR characteristics has been applied as a sensor system to detect physical parameters,
such as micro-displacement and pressure change [6–8]. There are two types of coupling
configurations for surface plasmon resonance system using thin metal films, namely the
Kretschmann and Otto configurations [9,10].

Figure 1a shows the Kretschmann configuration composed of a thin metal film and a
glass substrate [9]. Since the refractive index of the glass is higher compared to the metal
film, an incident light is totally reflected at the interface between the glass substrate and the
thin metal film. At this time, an evanescent wave can propagate along the interface of the
two materials. Generally, the magnitude of the evanescent wave decreases exponentially
inside of the metallic medium. If the metal film thickness (tk) is thin enough for the
wavelength of the incident light, the end of the evanescent wave can excite the surface
plasmon (SPmetal-air) at the bottom side of the metal film. Therefore, one of the most
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important parameters related to the Kretschmann configuration-based SPR is the thickness
of the metal film. In case of the Otto configuration-based SPR sensors, it is necessary that
the glass and metal film have an air-gap distance of about sub-micron (do) sizes, which is a
key parameter, as shown in Figure 1b [10,11]. Due to the robust structure and convenience
of fabrication, most of the surface plasmon resonance sensors are based on the Kretschmann
configuration. However, once the Kretschmann configuration-based SPR sensor had been
fabricated, it is difficult to realize a real-time adjustment of the metal thickness. By contrast,
the Otto configuration has the potential of reconfigurability, where tunable resonance
characteristics are obtained according to a variable air-gap distance. If the air-gap between
the glass substrate and the thin metal film can be stably adjusted, it will be possible to
use a surface plasmon resonance sensor with the structural flexibility obtained using the
Otto configuration. This feature implies that the Otto configuration-based SPR sensor
has potential application in multiple gas detection. A comparison between the Otto and
Kretschmann configuration can be found in [12]. Table 1 shows the characteristics of the
Kretschmann and Otto configurations.
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Figure 1. Prism coupling configurations used in SPR systems: (a) Kretschmann configuration; (b)
Otto configuration.

Table 1. Sensor characteristics of Kretschmann and Otto configurations.

Type Kretschmann Otto

Wavelength Visible range Visible and IR range
Structure Simple Complex

Design parameter Refractive index,
Metal thickness (<100 nm)

Refractive index,
Air-gap thickness (>1 µm)

Characteristics
Tunability Low High

Influence of
Adhesion layer High Low

Many researchers focused on the application of the Otto configuration and concluded
their research by using theoretical simulations without experimental results [13–16]. Ac-
cording to the development of micromachining technology, the Otto configuration-based
SPR sensor systems have been experimentally realized [17,18]. Sopko et al. proposed the
concept of an acousto-optical device using Otto configuration-based SPR phenomenon
with 10.6 µm wavelength [18,19]. Although their sensor system can be used to analyze
dependencies of the reflective coefficient of the prism–air–metal system on the air-gap and
dielectric permittivity, a relationship between the air-gap and resonance wavelength is not
referred. Moreover, most of the SPR systems that use the prism coupling configuration
operated with an angular interrogation method having a large size because of the rotation
stage and motor driver used [20].

Figure 2 shows the dependence of the resonance wavelength on the air-gap for
Kretschmann and Otto configurations where the two systems are composed of glass,
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metal, and silicon substrate. In case of the Kretschmann configuration, the resonance
wavelength is converged to the specific value according to the increasing air-gap distance
between the metal film and silicon substrate, as shown in Figure 2a. This tendency can be
explained, since the resonance wavelength is determined by the thickness of the metal film
and can be easily affected by the silicon in the proximity of the surface plasmon polariton.
The resonance wavelength of the Otto configuration is influenced by the air-gap distance,
as shown in Figure 2b. It should be noticed that the resonance wavelength can be linearly
adjusted by increasing the air-gap distance. As a result, the Otto configuration has potential
use for an SPR system using the air-gap interrogation method, which in this work was
achieved using a micro-actuator.
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In this study, we verified the feasibility of an Otto configuration-based SPR sensor
system using the air-gap interrogation method. In Section 2, we propose the Otto config-
uration with variable air-gaps including measurement results of the SPR characteristics
and a comparison with the FEM simulation results. Section 3 explains the feasibility of
the air-gap interrogation method for the Otto SPR system. The Otto configuration SPR
characteristics dependance on the air-gap distance is analyzed by using a proposed SPR
measurement system including a piezoactuator.

2. Otto Configuration with Multiple Air-Gaps
2.1. Design

Figure 3a shows a schematic view of the proposed Otto configuration with multiple
air-gaps. The SPR chip is composed of a silicon substrate with a quartz cap. The silicon has
a step-like cavity, which is separated into four sections. Taking into account the wavelength
of 980 nm, a 200 nm-thick gold film is located in the cavity, and the air-gaps between
the metal film and quartz cap are designed to be 1.8 µm, 2.3 µm, 2.8 µm, and 3.3 µm,
respectively, as shown in Figure 3b. Each section of the silicon cavity has the same width
of 2.5 mm according to the beam diameter of the laser source. At both ends of the silicon
cavity, an inlet and outlet with a diameter of 1.6 mm for gas flow is integrated on the chip to
conduct further studies. The whole size of the proposed SPR chip is 11.4 × 11.4 × 1 mm3.
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Figure 5 shows the silicon cavity profile after the fourth DRIE process, as shown in 
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pha-step IQ, KLA-Tencor, Inc.). Each step height is measured to be about 2.06 𝜇m, 0.56 

Figure 3. Otto configuration-based SPR sensor chip with stepped air-gap height: (a) schematic view;
(b) cross-section view.

2.2. Fabrication

The proposed sensor chip is fabricated following the process shown in Figure 4. Firstly,
a cavity with four different depths of 2 µm, 2.5 µm, 3 µm, and 3.5 µm is formed at the
surface of a 500 µm-thick, 4-inch silicon wafer though the deep reactive ion etching (DRIE)
process where photoresist is used as an etching mask. Then, a 200 nm-thick gold layer
is patterned inside the cavity with an adhesion layer of 10 nm-thick chrome by using an
electron-beam (E-beam) evaporation and lift-off process. The inlet and outlet for fluids
sensing test is defined through the backside using the DRIE process. Finally, the prepared
silicon and a 500 µm-thick quartz substrate are bonded together to form the Otto chip. To
assure that the two wafers have a clean surface, an isopropyl alcohol (IPA)-based solution
and sulfuric acid-based SPM solution is used to remove any contamination on the wafers.
After that, to make each wafer surface hydrophilic, the wafers are treated with O2 plasma
(RF power: 150 W, pressure: 100 mTorr, O2 flow rate: 50 sccm, and treatment time: 10 s) by
using an inductively coupled plasma (ICP) etcher system before the direct bonding process.
The direct bonding process is completed with manual bonding and thermal treatment
(temp: 300 ◦C, treatment time: 8 h).
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Figure 5 shows the silicon cavity profile after the fourth DRIE process, as shown in
Figure 4b without the gold and chrome film, which is measured using a profilometer (Alpha-
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step IQ, KLA-Tencor, Inc.). Each step height is measured to be about 2.06 µm, 0.56 µm,
0.59 µm, and 0.42 µm, respectively. Therefore, it is expected that the final fabricated SPR
chip has air-gaps of about 1.86 µm, 2.42 µm, 3.01 µm, and 3.43 µm, respectively, where
the sections are called Section 1, Section 2, Section 3, and Section 4, at each position. The
surface roughness of the gold film is also measured to be about 1.3 nm by using an atomic
force measurement (AFM) system (XE-100, Parksystems, Inc.), as shown in Figure 6a. The
measured surface roughness level is too small to degrade the SPR characteristics of the
sensor chip. The fabricated Otto configuration-based SPR chip with multiple air-gaps is
shown in Figure 6b.
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2.3. Measurement and Results

SPR characteristics of the fabricated Otto configuration-based sensor chip is achieved
by using the measurement setup shown in Figure 7. Before experimenting with the
polychromatic module, the experiment is performed using a laser module. The laser
module has a 980 nm wavelength used as incident light, and its beam diameter is controlled
to be about 2 mm by using an optical iris. To excite the surface plasmon on the metal surface,
the polarization of light should be parallel to the incidence plane of the measurement
system. A TM polarized laser beam is incident on the BK7 prism, which is located on
the rotation stage, and the fabricated SPR chip is attached on the hypotenuse side of the
prism by using an index-matching oil. The use of the index-matching oil plays a vital
role, preventing the degradation of SPR characteristics caused by unintended scattered
reflection at the minute gap between the prism and SPR chip. The optical intensity of the
reflected light at the interface between the glass substrate and air-gap of the fabricated SPR
chip is measured using a CCD camera. In addition, part of the incident light is measured
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as a reference signal, and the incidence angle can be controlled by the rotation stage.
The measurements are taken in two steps. First, the position of the desired chip section
is selected by adjusting the height of the sample vertically. Then, the incident angle is
adjusted with the dial located on the rotation stage. The dial changes the incident angle by
0.25 degrees.
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The simulation schematic used to produce the design is shown in Figure 8; simulation
and measurement comparison is shown in Figure 9. As depicted in Figure 9, minimum
reflectance when the SPR phenomenon occurred is measured to be 0.688, 0.716, 0.766, and
0.86, respectively at each chip section; the measurement results are compared with theoreti-
cally calculated results by using FEM simulation (COMSOL Multiphysics, Altsoft Inc.). The
resonance angles at each chip section are 42.88◦, 42.48◦, 41.77◦, and 44.44◦, respectively. The
minimum reflectance is minimized at Section 1, and the reflectance is increased according
to the increasing air-gap distance. This means that the SPR phenomenon is maximized
at Section 1, and the Otto configuration-based SPR characteristics can be affected by the
air-gap distance.
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3.1. Otto Configuration-Based SPR System Using a Piezoactuator

In this section, we report the feasibility of an air-gap interrogation of the Otto chip
configuration. To verify the characteristic variability of the Otto configuration, and its appli-
cability, the air-gap between the prism and the metal film is adjusted by using a commercial
piezoactuator (P-841.10, PI Korea Ltd., Seoul, Korea). When a 2mVpp voltage is applied to
the piezoactuator, the response behavior of the piezoactuator shows a 2 nm position change.
Figure 10a shows the proposed Otto configuration-based SPR measurement system. In this
experiment, we used laser modules with two different wavelengths of 786 nm and 977 nm.
The power of the reflected light is measured by using an optical power meter (PM121D,
Thorlabs Inc., Newton, MA, USA). To build the Otto configuration, a 200 nm-thick gold
film is evaporated on the 500 nm-thick silicon die, which is attached to the moving head of
the piezoactuator. Thus, it is easy to set up the Otto configuration-based SPR measurement
system by aligning the piezoactuator and the prism without any complex fabrication pro-
cess. In this system, the incident light is reflected at the hypotenuse side of the prism, and
the air-gap distance between the gold film and prism can be adjusted by the piezoactuator
with sub-micron resolution in real time.

3.2. SPR Characteristics with Air-Gap Variation

Figure 11a shows the FEM simulation result of the Otto configuration-based SPR
characteristics according to the variable air-gap distance from 4 to 0 µm at a wavelength
of 786 nm. In this case, the incident angle is assumed to be 41.87◦, 42.03◦, 42.08◦, and
42.1◦, each minimum reflectance is calculated to be 0.368, 0.07, 0.001, and 0.023, for each
air-gap 1 µm, 1.3 µm, 1.45 µm, and 1.5 µm, respectively. This result means that the SPR
phenomenon can be maximized when the air-gap and incident angle are 1.45 µm, 42.08◦

for the wavelength of 786 nm. As depicted in Figure 11b, we measured the reflectance
according to the variable displacement of the piezoactuator, from 4 to 12 µm. The measured
minimum reflectance values for the incident angles of 41.87◦, 42.03◦, 42.08◦, and 42.1◦

are 0.292, 0.202, 0.202, and 0.202 where the displacement of the piezoactuator is 8.55 µm,
7.8 µm, 7.5 µm, and 7.5 µm, respectively. The measurement result shows that the maximum
SPR phenomenon occurs when the air-gap and incident angle are 7.5 µm and 42.1◦. Table 2
Shows FWHM of simulation result and measurement result.
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Table 2. Sensor characteristics for Kretschmann and Otto configurations.

Incident Angle (Degree) 41.87 42.03 42.08 42.1

FWHM of measurement (µm) 4.05 1.2 1.05 0.9
FWHM of simulation (µm) 0.7 0.25 0.05 0.15

3.3. SPR Characteristics with Air-Gap and Wavlength Variation

We experimentally verified that the SPR characteristics of the Otto configuration have
a dependence on the air-gap distance and the wavelength of the incident light. Figure 12a
shows a simulation result where the wavelengths are 786 nm and 977 nm, with incident
angles of 42.08◦and 42.15◦, respectively. According to this simulation result, the minimum
reflectance of about zero can be achieved when the air-gap is 1.45 µm and 1.8 µm for each
wavelength, respectively. In the measurement results, shown in Figure 12b, the reflectance
can be reduced to be 0.25 when the displacement is 10.5 µm for the 786 nm wavelength.
In case of the 977 nm wavelength, the SPR phenomenon can be maximized when the
displacement of the piezoactuator is 9.3 µm.
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4. Conclusions

In this study, we verified that the Otto configuration-based SPR sensor system has
the potential use as a sensor with structural flexibility, such as air-gap distance and wave-
length. The surface plasmon resonance system using the air-gap interrogation method
has advantages such as small size and real-time compensation of fabrication errors. The
Kretschmann configuration presents flexibility limitations for reconfigurable sensor head
designs. On the other hand, reconfigurable sensor design using the Otto configuration
is considered to compensate for the limitation caused due to having a unique air-gap by
using the air-gap interrogation method. It is expected that the results of this study can be
used as background data for the development of Otto configuration-based surface plasmon
resonance sensors with variable resonance characteristics, which has not been reported so
far, and these features can be applied to multiple gas sensing.
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