
micromachines

Article

A Compact Linear Ultrasonic Motor Composed by Double
Flexural Vibrator

Jiayin Li, Yin Wang *, Ziyan Chen, Fang Cheng and Qing Yu

����������
�������

Citation: Li, J.; Wang, Y.; Chen, Z.;

Cheng, F.; Yu, Q. A Compact Linear

Ultrasonic Motor Composed by

Double Flexural Vibrator.

Micromachines 2021, 12, 958. https://

doi.org/10.3390/mi12080958

Academic Editor: Lin Zhang,

Chunlong Fei, Yang Yang, Jianguo Ma

and Zeyu Chen

Received: 15 July 2021

Accepted: 11 August 2021

Published: 13 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Mechanical Engineering and Automation, Huaqiao University, Xiamen 361021, China;
ljy18950188761@163.com (J.L.); c_zy100@163.com (Z.C.); chf19chf19@hotmail.com (F.C.);
yuqing@hqu.edu.cn (Q.Y.)
* Correspondence: yin.wangyin@hqu.edu.cn

Abstract: A minimized linear ultrasonic motor was proposed, and two flexural bimorph vibrators
were utilized to form its stator. The construction of the linear ultrasonic motor and its operation
principle was introduced. Two working modes with the same local deformation distribution were
chosen on the basis of Finite Element Analysis (FEA). To obtain its optimized structural parameters,
sensitivities on frequency difference were calculated, and a way of decreasing the frequency difference
of two working modes was introduced. A prototype of the optimized model was made. The modal
testing of the stator and its performance evaluation was conducted. The modal testing results were
in good agreement with that of the simulation. The maximum speed of the prototype is 245 mm/s,
and its maximum thrust is 1.6 N.

Keywords: linear ultrasonic motor; minimization; discrete structure optimization; performance evaluation

1. Introduction

A linear ultrasonic motor (LUSM) is an electromechanical device that transfers ul-
trasonic vibration with amplitude of the order of micrometers into unidirectional motion
through friction coupling [1–3]. Since the ultrasonic vibration of LUSMs are excited by the
inverse piezoelectric effect of piezoelectric ceramics, they feature fast response, high reso-
lution, long stroke, and compact size, which make them competitors for electromagnetic
counterparts [4–6].

There are several factors to classify LUSMs, including the shape of the vibrator,
assembly of piezoelectric elements, and vibration modes utilized. Regarding the shape
of the vibrator, there is the bar shape, plane shape, and block shape [7–9]. Among these
shapes, the vibrators with plane shape interest researchers due to their compact size and
higher efficiency [10]. In the category of plane-shaped vibrators, LUSMs can be divided
into two groups regarding the relation between vibration direction and structural plane,
that is, out-of-plane mode LUSMs and in-plane mode LUSMs. As the direction of the
vibration displacement is perpendicular to the structural plane, it is called an out-of-plane
mode LUSM, while the vibration displacement is in the structural plane, and thus, it is
called an in-plane mode LUSM [11,12].

In recent years, LUSMs of in-plane mode have been reported. These motors are usually
small and efficient [13,14]. For example, some motors that use in-plane modes as their
operating modes have an output speed and weight ratio of more than 20 times (the larger
the ratio, the smaller the motor, the higher the output speed) [15–17]. These motors all have
a common feature: their operating modes are composed of two or more different types of
vibration modes [18,19]. These characteristics are beneficial to single-phase excitation of
the motor [20,21].

Although these merits of in-plane LUSMs are attractive for researchers, there are some
challenges for designing in-plane vibrators for such LUSMs. In the existing in-plane mode
LUSMs, the operating modes of the stator are different. The difference between working
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modes varies with the boundary conditions especially when the different vibration modes
are excited, for the trend of variation may be opposite in two different vibration modes,
resulting in a larger frequency gap between them [22]. Allowing for the consistency in
exciting two working modes, it is beneficial for choosing working modes with the same
deformation modes, which lead to the same variation when boundary conditions are
changed [23–25].

To propose an in-plane vibrator with the same deformation mode, a minimized linear
ultrasonic motor utilizing two identical local flexural vibration modes was proposed in
this paper. In Section 2, the working principle of the motor was introduced. In Section 3,
the motor operation mechanism was analyzed and simulated by the finite element method.
The sensitivity of the motor was analyzed, and the optimization scheme was developed to
reduce the frequency difference between the identical local flexural vibration modes. In
Section 4, a prototype of the motor was made, and its performance was tested.

2. Working Principle
2.1. Construction

The overall component and structure of the LUSM is shown in Figure 1a. The mech-
anism comprises three essential parts: a stator, a mover, and a base to which the stator
and mover are fixed. The motor transfers the ultrasonic vibration of the stator into the
unidirectional movement of the mover via frictional coupling. The guider, which is utilized
in conjunction with the mover, balances the stator’s normal contact toward the mover and
simultaneously maintains the linear shear contact.

Micromachines 2021, 12, x FOR PEER REVIEW 2 of 14 
 

Although these merits of in-plane LUSMs are attractive for researchers, there are 

some challenges for designing in-plane vibrators for such LUSMs. In the existing in-plane 

mode LUSMs, the operating modes of the stator are different. The difference between 

working modes varies with the boundary conditions especially when the different vibra-

tion modes are excited, for the trend of variation may be opposite in two different vibra-

tion modes, resulting in a larger frequency gap between them [22]. Allowing for the con-

sistency in exciting two working modes, it is beneficial for choosing working modes with 

the same deformation modes, which lead to the same variation when boundary conditions 

are changed [23–25]. 

To propose an in-plane vibrator with the same deformation mode, a minimized linear 

ultrasonic motor utilizing two identical local flexural vibration modes was proposed in 

this paper. In Section 2, the working principle of the motor was introduced. In Section 3, 

the motor operation mechanism was analyzed and simulated by the finite element 

method. The sensitivity of the motor was analyzed, and the optimization scheme was de-

veloped to reduce the frequency difference between the identical local flexural vibration 

modes. In Section 4, a prototype of the motor was made, and its performance was tested. 

2. Working Principle 

2.1. Construction 

The overall component and structure of the LUSM is shown in Figure 1a. The mech-

anism comprises three essential parts: a stator, a mover, and a base to which the stator and 

mover are fixed. The motor transfers the ultrasonic vibration of the stator into the unidi-

rectional movement of the mover via frictional coupling. The guider, which is utilized in 

conjunction with the mover, balances the stator’s normal contact toward the mover and 

simultaneously maintains the linear shear contact.  

The frictional coupling between the stator and mover is created based on two factors: 

• Constant pre-load force being applied to normal contact.  

Solution: The pre-loaded spring is employed to generate the pre-load force onto the 

stator.  

• The appliance holding the stator is able to balance the shear force between the 

stator and mover.  

Solution: The roller bearing device on both sides of the base is installed to balance the 

force between the stator and mover  

After the above criteria have been met, the stator is stabilized inside the fixed box 

and clamped with a rubber mat on both sides. To achieve the force balance of the stator, 

a sliding table is also adopted to reinforce the fixed box. When the device is powered, the 

friction in between the driving tip and the mover triggers the mover to slide along the 

guider, consequently outputting linear movement. 

  

(a) (b) 

Figure 1. (a) Construction of the motor; (b) Stator structure. Figure 1. (a) Construction of the motor; (b) Stator structure.

The frictional coupling between the stator and mover is created based on two factors:

• Constant pre-load force being applied to normal contact.
Solution: The pre-loaded spring is employed to generate the pre-load force onto
the stator.

• The appliance holding the stator is able to balance the shear force between the
stator and mover.
Solution: The roller bearing device on both sides of the base is installed to balance the
force between the stator and mover.

After the above criteria have been met, the stator is stabilized inside the fixed box
and clamped with a rubber mat on both sides. To achieve the force balance of the stator, a
sliding table is also adopted to reinforce the fixed box. When the device is powered, the
friction in between the driving tip and the mover triggers the mover to slide along the
guider, consequently outputting linear movement.

Based on the stator’s function in the above-mentioned LUSM, the methodology of
generating the elliptical movement of the driving tip becomes one of the main issues to be
resolved during the design of the stator. As shown in Figure 1b, the structure of the stator
in this thesis is composed by an arch-shaped linkage and two identical flexural beams, with
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two additional rectangular piezoelectric ceramic sheets attached to the outer side of both
beams symmetrically to stimulate the resonance.

2.2. Working Principle

The working mode of the stator is composed by two identical local flexural modes.
When the two flexural beams vibrate in the reverse phases, the driving tip deforms and
fluctuates along the y-axis. This is called the Symmetrical Flexural Mode, as illustrated in
Figure 2a. Contrarily, when the flexural beams vibrate in the identical phase, the deformation
of the beam triggers the driving tip to vibrate along the x-axis, which is called the Anti-
symmetric Flexural Mode, as demonstrated in Figure 2b.
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Figure 2. Flexural mode of the stator with patch structure: (a) Symmetrical flexural mode;
(b) Anti-symmetric flexural mode.

As shown in Figure 2, the piezoelectric ceramic sheets are pasted to the section that
encounters the most strain. This configuration increases the processing efficiency upon the
shearing strength in between the piezoelectric ceramic sheet and the beam structure. Under
these two vibration modes in Figure 2, the driving tip generates horizontal and vertical
displacement, respectively.

The combination of these two vibration modes forms the working mode of the stator.
If the two longitudinal vibration modes are under the same frequency with a particular
time phase difference, the desired elliptical trajectory can be achieved via the driving tip
and mover.

In order to trigger the bending vibration modes of these two flexural beams, the
frequency range of two different voltage excitation signals were set in proximity to the
frequency of the first-order bending vibration modes of the stator. These two piezoelectric
ceramic sheets are both polarized along the direction of its thickness, as shown in Figure 3.
A phase A sine signal is applied to the piezoelectric sheet on one side, and a phase B cosine
signal, which has a 90◦ phase difference to phase A, has been applied to the ceramic sheet
on the other side. These two signals comprise identical frequency and amplitude. The
metal substrate is connecting to the ground, which indicates zero voltage potential.

When the ceramic plate on one side of the stator is actuated by a sinusoidal voltage of
phase A, the displacement response of the driving tip can be described as:

ua(x, t)= Wx sin(2π f t)+Wy sin(2π f t + ϕ), (1)
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where Wx is the displacement response amplitude along the x-direction, Wy is the displace-
ment response amplitude along the y-direction, f is the excitation frequency, and ϕ is the
displacement response phase shift between two working modes.
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When the ceramic plate on one side of the stator is actuated by a cosine voltage of
phase A, the displacement response can be expressed as:

ub(x, t)= Wx cos(2π f t)+Wy cos(2π f t + ϕ). (2)

When dual-phase voltage signals are actuated simultaneously, the vibration trajec-
tory of the driving tip should be the superposition of the above two vibrations, and the
displacement can be derived as follows:(

x
Wx

)2
+

(
y

Wy

)2
= 2[sin(2ωt)+ sin(2ωt + 2ϕ)]. (3)

When two piezoelectric ceramics are applied with two sinuous voltage signals with
phase difference π

2 , the driving tip will vibrate elliptically. When ϕ = π
2 , the ellipse

trajectory of the driving foot is Equation (4):(
x

Wx

)2
+

(
y

Wy

)2
= 2. (4)

The elliptical working trajectory of the beam is shown in Figure 4. The symmetrical
and anti-symmetrical modes emerge alternatively, and consequently, they drive the mover
via friction. When the stator vibrates in the sequence from I to IV as shown below, the
driving tip rotates elliptically in the clockwise direction. The red arrow represents the
direction of the driving tip.
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3. Finite Element Analysis of Stator

In order to validate the working mode of the stator’s structure as mentioned in
Section 2 and stimulate the two bending vibration modes under the same resonance fre-
quency, the frequency difference between these two modes is required to be minimized.

Then, the finite element method was introduced and utilized to establish the stator
model by using the ANSYS software. This methodology has analyzed the impact of the
stator’s size on the frequency of the bending vibration mode as well as optimized the
structure of the stator.

3.1. Modeling and Simulation

The finite element model as detailed in Section 2 is demonstrated in Figure 5a. The
22,802 nodes on the stator model were selected to extract the modal shapes. A Solid5
element was used for meshing the piezoelectric ceramics and a Solid45 element was
applied for meshing the metallic matrix. The number of tetrahedral elements was 7788.
The mechanical boundary condition was set as free, and the potential of the piezoelectric
ceramic substrate was determined as zero. The specific simulation time is 6 s. The initial
geometrical dimensions of the stator’s structure are illustrated in Figure 5b and Table 1.
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Table 1. Dimensions of the stator (unit: mm).

Parameters d l r w g p h

Values 6.5 10.0 1.0 6.5 3.0 12.0 18.38

The outcome from the ANSYS simulation has further proved the working modes
of the stator described in Section 2. By adjusting the structural parameter, the resonance
frequencies for these two working modes were 71,454 Hz and 70,334 Hz (1120 Hz in
difference), as shown in Figure 6. The formation of the elliptical working trajectory relies
on the minimization of the frequency difference between the two working modes.

Since the frequency difference of the symmetrical and anti-symmetrical modes is
still considered substantial, the structural parameter of the stator is required to be further
modified and optimized.

3.2. Structure Optimization

The sensitivity analysis was employed to reduce the frequency difference between the
two working modes by altering the structural parameters of the stator.



Micromachines 2021, 12, 958 6 of 14Micromachines 2021, 12, x FOR PEER REVIEW 6 of 14 
 

 

(a) (b) 

Figure 6. The stator finite element model of the patch structure: (a) Symmetrical mode frequency 

71,454 Hz; (b) Anti-symmetrical modal frequency 70,334 Hz. 

3.2. Structure Optimization 

The sensitivity analysis was employed to reduce the frequency difference between 

the two working modes by altering the structural parameters of the stator. 

To minimise the frequency difference within the two working modes mentioned in 

Section 3.1, the sensitivity analysis was adopted upon the parameters that have greater 

impacts on the working mode of stator. The corresponding expression for sensitivity can 

be written as: [26]: 

S(a,b)j = 
�f(a,b)j

Pj

�Pj

Pj

 = ∆f
(a,b)j

∆Pj
, (5)

where f
aj

 is the frequency of the symmetric mode and f
bj

 is the frequency of the anti-sym-

metric mode. Pj represents the structural parameters. ∆f
aj

 is the small change of symmetric 

working mode frequency and ∆f
bj

 is the small change of anti-symmetric working mode 

frequency, where ∆Pj  is the small change of the stator structure Pj . The sensitivity of 

modal frequency difference to the structural parameters is: 

Sfj = S(a,b)j = ∂f
(a,b)j

∂Pj
 = �f

aj
 - f

bj
� - �f

aj0
 - f

bj0
�

∆Pj
, (6)

where  f
aj

, f
bj

 are modal frequencies of symmetrical modes and anti-symmetrical mode be-

fore changes of geometrical parameters Pj. faj
, f

bj
 are the modal frequencies of the symmet-

rical modes and anti-symmetrical mode after changes of geometrical parameters Pj. Using 

the finite element model in Section 3.1 and Equation (6) to calculate the geometric param-

eters of the stator, the sensitivity of frequency difference to each geometric parameter can 

be obtained. 

The result from the sensitivity analysis is shown in Figure 7. In comparison, struc-

tural parameters d, l, w, and h have a more substantial influence than other parameters 

on the working modes. By adjusting these parameters and conducting another simulation, 

the frequency difference was proven been further reduced to a minimum of 840 Hz. 

Figure 6. The stator finite element model of the patch structure: (a) Symmetrical mode frequency
71,454 Hz; (b) Anti-symmetrical modal frequency 70,334 Hz.

To minimise the frequency difference within the two working modes mentioned in
Section 3.1, the sensitivity analysis was adopted upon the parameters that have greater
impacts on the working mode of stator. The corresponding expression for sensitivity can
be written as: [26]:

S(a,b)j =

∂ f(a,b)j
Pj

∂Pj
Pj

=
∆ f(a,b)j

∆Pj
, (5)

where faj is the frequency of the symmetric mode and fbj is the frequency of the anti-
symmetric mode. Pj represents the structural parameters. ∆ faj is the small change of
symmetric working mode frequency and ∆ fbj is the small change of anti-symmetric work-
ing mode frequency, where ∆Pj is the small change of the stator structure Pj. The sensitivity
of modal frequency difference to the structural parameters is:

S f j = S(a,b)j =
∂ f(a,b)j

∂Pj
=

(
faj − fbj

)
−

(
faj0 − fbj0

)
∆Pj

, (6)

where faj, f bj are modal frequencies of symmetrical modes and anti-symmetrical mode
before changes of geometrical parameters Pj. faj, f bj are the modal frequencies of the
symmetrical modes and anti-symmetrical mode after changes of geometrical parameters Pj.
Using the finite element model in Section 3.1 and Equation (6) to calculate the geometric
parameters of the stator, the sensitivity of frequency difference to each geometric parameter
can be obtained.

The result from the sensitivity analysis is shown in Figure 7. In comparison, structural
parameters d, l, w, and h have a more substantial influence than other parameters on the
working modes. By adjusting these parameters and conducting another simulation, the
frequency difference was proven been further reduced to a minimum of 840 Hz.

The frequency difference of 840 Hz is not conducive to the stability of the motor; hence,
apart from only adjusting the structural parameters, the design concept and methodology
of the stator optimization are also required to be further assessed. In accordance with the
sensitivity analysis, the central distance in between the symmetrical opening also impacts
on the working mode frequency.

By introducing new openings on the stator (as shown in Figure 8) and implementing
another simulation, the frequency difference was further reduced to less than 840 Hz.
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Then, the finite element model was reviewed and re-established based on the modified
parameters, and further modal analysis was developed upon the optimized stator. Figure 9
demonstrates the final structural dynamic. The frequency of the symmetrical mode is
70,829 Hz, and for the anti-symmetrical mode, the frequency resulted in 70,853 Hz, which
only has 24 Hz in difference. It ensured the effectiveness and validity of the analysis on the
working mode. The amplitude and phase frequency response collected from the surface
nodes on the driving feet are illustrated in Figure 10.

To verify the effectiveness of the optimized stator, two voltage signals, phase A and
phase B, have been applied to the piezoelectric ceramic sheets, and harmonic analysis was
conducted in accordance with the finite element model. The phase difference between
these two voltage signals is π

2 , and the amplitude is 150 V, as shown in Figure 11.
The elliptical trajectory, in terms of its phase shift and amplitude, deforms in accor-

dance with the frequency of the voltage signal. The trajectory is derived from the vibration
response of the superposition of the two working modes. When different voltage signals
are implemented with separate frequencies, the vibration response of the superposition
also changes, and it consequently generates various elliptical trajectories with different
sizes and directions. As the ratio between the phase shifts of these two modal frequency
responses approaches 1, the ellipse becomes flatter.
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The result indicates that under the voltage simulation with a 90◦ phase difference,
the working track of the driving tip is not an absolute ellipse but rather shifting along the
direction of half axis based on the frequency.

The optimized stator has now achieved the desired elliptical trajectory. By considering
and analyzing the amplitude and frequency of the stator, as well as the phase frequency
response characteristic, the stimulation frequency of the voltage signal has a significant
impact on the driving tip’s working track, and it consequently affects the output of the
motor. In the practical working environment, due to the rise of temperature, drifting of the
driver frequency, and other potential factors, the vibration of the stator will be consistently
altered and hence lose the stability and controllability of the motor.
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4. Experimental Study
4.1. Vibration Characteristic Experiments

To validate the function of the optimized stator in Section 3, the vibration mode of
the stator and the output characteristic of the motor were both experimented separately to
conduct observation and assess the workability of the stator. If the stator’s vibration mode
is identical to the simulation, it will consequently verify the vibration characteristic of the
stator as well as the validity of the design.

The experiment was established by utilizing the Renishaw XL-80 (Renishaw, Wotton-
under-Edge, UK) laser interferometer.

By observing the stator simulation as mentioned in Section 3, the lateral side of the
stator encounters the most deformation of bending. In addition, due to the symmetrical
feature of the stator, the vibration at the underside of the two flexural beams has sufficiently
indicated the two working modes (i.e., Symmetrical and Anti-Symmetric Flexural Mode).
Thus, the lateral and bottom side of the stator were selected to conduct the vibration
characteristic experiment. The experimental procedure is below:

• Set the scanning point on the sample;
• Establish grids on the testing surface of the stator;
• Apply the voltage signal as described in Section 2.2 and assess the motor’s work-

ing mode.

The color change and amplitude variation of the grid reveals the vibration status of
the testing face. When the testing face achieves the most bending deformation, the color
of the corresponding grid changes to red, which indicates the peak value of the bending
mode. Contrarily, the grid shown in blue demonstrates the nadir of the modal.

As shown in Figure 12a, the modal on the lateral side resulted in a sine wave, which is
identical to the first-order bending mode in the simulation. Hence, the vibration mode of
the stator was testified to be the local bending mode. Figure 12b,c illustrates the vibration
at the underside of the stator, which has reached the peak value at the center and both
ends, which jibes to the Symmetrical and Anti-Symmetrical Flexural Mode as shown in
Figure 9, given that the vibration amplitude changes uniformly.

The above experimental outcome has verified the validity of the design as well as the
vibration characteristic of the stator. Furthermore, the frequency gap of the working mode



Micromachines 2021, 12, 958 10 of 14

and the difference in the theoretical value also form part of the assessment criteria for the
stator’s functionality.

Figure 13 shows the amplitude-frequency chart established based on the experimental
data. The motor frequencies of the two working modes are 70.95 Hz and 70.16 Hz. Com-
paring to the finite element model in Figure 9 (70.829 Hz and 70.853 Hz), the relative error
is 0.17% for Symmetrical Mode and −0.97% for Anti-Symmetrical Mode. The potential
root causes are listed as below:

• The rubber packer was utilized to stabilize the stator, which in fact simplified the device;
• The boundary condition is not identical for practical experiments and lab simulation;
• Geometrical tolerance during the manufacturing process for the prototype motor can

also contribute to this error;
• The material of the prototype can potentially vary from the design in terms of the

uniformity and technical parameter.
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4.2. Performance Evaluation

The experimental error of the working mode frequency in Section 4.1 is within the
tolerance, hence indicating that the design of the stator conforms to the design criteria and
performs steadily. Based on the result of the finite element simulation, a prototype was
fabricated to verify the functionality. The actual motor being tested during the experiment
was illustrated in Figure 14. An optimized stator was placed in the fixed box, and all other
components are same as the structure figure in Section 2.

The overall setup of the experiment was illustrated in Figure 15. The Renishaw XL-80
(Renishaw, Wotton-under-Edge, UK) laser interferometer was applied to measure the
vibration of the stator. A heavy mass object was suspended from the mover to simulate the
load via rope and pulley.
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The experiment was conducted inside a Class 100,000 cleanroom. The reflector moves
simultaneously with the mover. The mechanical performance curve is shown in Figure 16.
The data were captured when the voltage signal frequency reached 69.95 kHz.
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Figure 16. The influence of load on the motor output speed.

In accordance with the mechanical performance curve, the output voltage from the
motor was evaluated to be 300 Vp-p under 5 N of load. The maximum speed reached
245 mm/s when no load was applied. The minimum speed in the test reached 25 mm/s
when 1.6 N load was applied.

This result differed from the simulation analysis, which can be interpreted from the
perspective of boundary conditions. The driving tip was under stress from the spring,
and a silicone pad was applied to both the lateral and bottom side of the stator to dis-
tribute the stress. These factors have resulted in the experimental error comparing to the
simulation result.

The friction between the driving tip and mover has impacted on the output efficiency
of the motor. A potential solution is to add the friction pair to increase the friction resistance,
hence enhancing the wear resistance of the driving tip.

Since the main objective of this thesis is to testify the working principal, hence, the
driving tip was not treated regarding the wear-and-tear. To optimize the contacting face
between the driving tip and mover, the aluminum oxide ceramic coating will be applied to
the surface of the mover.
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5. Conclusions

In this paper, a criterion is proposed in which working modes with the same defor-
mation mode can reduce the frequency gap between vibration modes. According to the
criterion, a minimized linear ultrasonic motor utilizing two identical local flexural vibration
modes was proposed. The working principle of the motor was analyzed, and the finite
element method was used to simulate it. The stator structure was optimized according
to the sensitivity analysis of various parameters. The relationship between the load and
speed of the optimized motor was tested. The weight of the miniature piezoelectric motor
is about 3 g. The resonance frequency of the motor has been designed and tested to be ap-
proximately 70.8 kHz. The maximum speed of the prototype is 245 mm/s, and its maximum
thrust is 1.6 N. Since the present prototype was designed without considering the wear of
the driving tip and the influence of the clamping mechanism on the consistency between
working modes, the following research will focus on improving the life span and a better
clamping mechanism.
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