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Abstract: The recent development of 3D flash memories has promoted the widespread application of
SSDs in modern storage systems by providing large storage capacity and low cost. Garbage collection
(GC) as a time-consuming but necessary operation in flash memories largely affects the performance.
In this paper, we perform a comprehensive experimental study on how garbage collection impacts
the performance of flash-based SSDs, in the view of performance cliff that closely relates to Quality
of Service (QoS). According to the study results using real-world workloads, we first observe that GC
occasionally causes response time spikes, which we call the performance cliff problem. Then, we find
that 3D SSDs exacerbate the situation by inducing a much higher number of page migrations during
GC. To relieve the performance cliff problem, we propose PreGC to assist normal GC. The key idea
is to distribute the page migrations into the period before normal GC, thus leading to a reduction
in page migrations during the GC period. Comprehensive experiments with real-world workloads
have been performed on the SSDsim simulator. Experimental results show that PreGC can efficiently
relieve the performance cliff by reducing the tail latency from the 90th to 99.99th percentiles while
inducing a little extra write amplification.

Keywords: solid-state drives; 3D flash memory; performance cliff; tail latency; garbage collection

1. Introduction

Due to shock-resistance, high access speed, low energy consumption, and increased
capacity, Solid-State Drives (SSDs) [1–3] gradually gain popularity as the main storage
device or data buffer on modern big data or AI applications [4–8]. The development of new
flash memories such as 3D-stacked charge-trap (CT)-based ones largely benefits the storage
density of modern SSDs. Meanwhile, they show some new physical characteristics, e.g.,
the increased block size and layer speed variation, the effect of which on performance have
not been fully investigated [9].

Garbage collection (GC) is responsible for reclaiming blocks with a large proportion
of invalid pages. A GC operation consists of two main phases: valid page migration and
block erase. GC often has a great impact on system performance. Paik et al. [10] and
Wu et al. [11] considered avoiding GC blocking on read requests by directly delaying GC
or by exploiting the data redundancy of multiple SSD arrays. Chen et al. [12] proposed
an erase efficiency boosting strategy to reduce block erase latency by exploiting the multi-
block erase characteristic of 3D CT-based SSDs. ShadowGC [13] was designed to hide GC
latency by exploiting the host-side and device-side write buffers. Yan et al. [14] proposed
a Tiny-Tail Flash to hide GC latency in paralleled and redundant SSD structures. Choi
et al. [15] and Guo et al. [16] proposed scheduling I/O requests and GC operations together
by considering the paralleled structure of SSDs. Shahidi et al. [17] combined a cache
management policy with GC and proposed CachedGC to postpone writing back valid
pages during the GC.
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In this paper, we perform a comprehensive experimental study on how garbage col-
lection affects the system performance of SSDs in the view of performance cliff that closely
relates to tail latency and affects Quality of Service (QoS). According to preliminary study
results, we first observe that SSD response time shows occasional spikes. By comparing
with 2D SSDs, these spikes in 3D SSDs have much higher values and occur more frequently,
which makes the performance situation worse. We call this phenomenon of response time
spikes the problem of “performance cliff”. This directly induces the sharp increase of tail
latency that is often used as the evaluation of Quality of Service (QoS) by the industry.

In order to study the cause of performance cliff, we collect some experimental results
about garbage collection and obtain two extra observations. On the one hand, the number
of page migrations during GC sharply increases, especially in 3D SSDs. On the other hand,
page migration latency takes up the majority of GC latency while block erase only takes up
a small proportion.

According to the above observations, we propose a GC-assisting method, called PreGC
to mitigate the GC latency and to optimize tail latency. The key idea of PreGC is to migrate
part of valid pages in advance of normal GC, which can distribute heavy page migrations
into the other system time. The challenge to implement PreGC is to decide when and how
many pages to migrate. PreGC is invoked near by the normal GC and migrates valid pages
during system idle time in a fine-grained incremental way. In this way, it can mitigate
unnecessary migrations that overlap with page updates between PreGC and normal GC
and reduces the effect of pre-migrations on normal requests.

In order to evaluate the proposed PreGC, we perform a comprehensive experiment on
the SSDsim simulator with real-world workloads. From the experimental results, we show
that PreGC is effective in reducing page migrations and optimizing system performance
with reduced 90th to 99.99th percentile tail latencies.

The contributions of this paper are listed as follows:

• We perform a preliminary experimental study on the response time and tail latency of
SSDs and observe the performance cliff problem.

• We uncover that the main cause of the performance cliff problem is the significantly
increased latency of garbage collection. These increased latency are mostly caused
by the increased number of page migrations in 3D SSDs.

• According to the above observations, we propose a GC-assisting method called PreGC
to relieve the performance cliff. By pre-migrating a part of valid pages ahead of
normal GC time, page migration latency can be distributed into other system time
and thus can be largely reduced during GC period.

• We evaluate the proposed PreGC with real-world workloads on the SSDsim simulator.
The results show that performance cliff can be significantly relieved by lowering down
the tail latency.

The rest of this paper is organized as follows. Section 2 presents the basics of 3D SSDs
and studies related works to SSD performance optimization. Section 3 illustrates the details
of our preliminary study experiment and observations on 2D SSDs and 3D SSDs. Section 4
describes the detailed designs of PreGC. The experiment setup and evaluation results of
PreGC are presented in Section 5. Section 6 concludes this paper.

2. Background and Related Works

This section first introduces the basic structure of 3D SSDs, in which the large block
problem is mentioned. Then, we illustrate the mechanism of garbage collection. At last,
layer speed variations are illustrated to show the uneven data hotness problem in 3D
charge-trap (CT) SSDs.

2.1. Basics of 3D SSDs

SSDs are composed of a controller and flash arrays. The controller is responsible
for organizing data access on flash arrays and for effectively using a flash. For example,
the flash translation layer is used to manage the mapping between physical addresses
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and logical addresses. The garbage collection mechanism cleans invalid data blocks to
overcome the out-of-place nature of flash memory. Moreover, error correction and wear
leveling are designed to make data reliable and to even cause wear on flash blocks.

The flash arrays in 3D SSDs are composed of 3D flash memory, which greatly increases
the capacity of SSDs by vertically stacking multiple layers. Figure 1 illustrates the physical
organization of flash cells in 3D flash memory. The control gates of the cells belonging to
the same layer are connected together to form a wordline. All cells with the same bitline
across multiple layers form a block. It can be found that the block size would be sharply
increased because of the layer stacking, compared with 2D flash memory. This induces the big
block problem that has been widely studied in existing works [18,19]. When the block size is
larger, the block erase time and migrated page numbers would be prolonged, which induces
worse garbage collection performance as well as long tail latency.

Block N+2
Block N+1

。
。
 

。
。

Block N

Wordline

BitlineLayers

Figure 1. The layer-stacked structure of 3D flash memory.

Due to the out-of-place update feature of flash memory, a lot of invalid data would
be generated after SSD has been used for a while. Garbage collection is used to reuse
the space occupied by these invalid data. The granularity to perform GC is a block, but
the basic unit of read and write is page. The process of GC is mainly divided into two
stages: valid data migration and block erase. After a victim block is selected, valid pages
are first migrated into another block. After all valid pages are migrated, block would be
erased to be a free block again. Thus, the latency of GC is decided not only by block erase
but also by page migrations.

2.2. Layer Speed Variations

This part introduces the charge trap (CT)-based flash memory, a special type of 3D flash
memory widely used in 3D SSDs, which utilizes an effective way to construct a vertical
flash structure. There are multiple gate stack layers and vertical cylinder channels in 3D CT
flash [20,21], as shown in Figure 2. A special chemical liquid is used to erode the stacked
layers. The physical properties of this liquid cause the upper layer to have a larger opening
than lower layers, which leads to asymmetric feature process size across the stacked layers.
The electric field strength of each layer is different, and for the larger opening, the electric
field strength would be high, which induces a slower access speed. Thus, access speed on
lower layers is faster than that on upper layers. This phenomenon is called the layer speed
variations.
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Figure 2. Three-dimensional CT-based flash.

2.3. Related Works

This paper focuses on optimizing the performance of 3D SSDs in the view of garbage
collection. As previous works related to garbage collection schemes have been discussed
in Section 1, this section investigates existing works that optimize 3D SSD performance,
most of which study or exploit the special characteristics of 3D layer-stacked structures.
In detail, these characteristics can be divided into two types: the logic in programming
and reads, and the physical feature of layer-to-layer structures such as process variations.
We discuss these existing works as follows.

By utilizing the logic in programming and reads, several works have been proposed.
Wu et al. [22] proposed a new data allocation policy to exploit the special one-shot program-
ming scheme in CT-based 3D flash memories. Logically sequential data are re-distributed
into different parallel units to enhance read parallelism. Shihab et al. [23] relieved the fast
voltage drift problem of 3D flash by applying an elastic read reference scheme (ERR)
to reduce read errors, which can decrease read latency with advanced ECC codes. Ap-
proxFTL [24] considers storing data by reducing the maximal threshold voltage and by
applying an approximate write operation to store error-resilient data Pletka et al. [25]
studied the shifts of threshold voltage distributions in 3D flash memory and proposed
a new framework to manage 3D TLC flash errors for high SSD performance and lifetime.
Ho et al. [26] proposed a one-shot program design to accelerate programming speed of 3D
flash memories and to reduce data error rates. Zhang et al. [27] considered to improve
the read performance of 3D SSDs in the view of ECC efficiency and proposed a RBER
aware multi-sensing scheme to decrease the number of read thresholds.

By exploiting the physical feature of layer-to-layer structures, other works have been
proposed. Chen et al. [28] exploited the asymmetric speed feature across layers of CT-based
3D flash and proposed a progressive scheme to boost access performance. Chen et al. [12]
optimized the garbage collection performance in the view of block erase efficiency and
proposed a multi-block erase strategy. Xiong et al. [29] and Wu et al. [30] studied the char-
acteristics and challenges of 3D flash memories with the floating-gate (FG) type and
the charge-trap (CT) type, respectively. Hung et al. [31] studied the cross-layer process
variation problems of 3D vertical-gate flash and proposed three layer-aware program-and-
read scheme to reduce P/E cycle numbers and to improve read performance. Liu et al. [32]
proposed a new read operation called “single-operation-multiple-location” for small reads
to enhance the chip-level parallelism of 3D NAND SSDs. Wang et al. [33] proposed a relia-
bility management method, named as P-Alloc to tolerate process variation of 3D CT flash.
As our proposed PreGC method considers the effect of layer-to-layer speed variations on
GC performance, it belongs to this category. In addition, we are the first work to uncover
the root cause of the performance cliff problem in 3D SSDs.

Different from the above method of hiding the necessary latency or a method of im-
proving the long tail latency by reducing the frequency of GC blocking I/O such as GFTL [34],
which provides deterministic service guarantees by leveraging the request intervals to
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perform partial GC, and AGC+DGC [35], which significantly reduces GC overhead to
provide stable SSD performance by scheduling GC operations from busy to idle periods,
our work assists GC in improving performance by reducing the time that GC blocks I/O
in a novel way and is orthogonal with these works.

3. Preliminary Study

This section presents our preliminary study on 3D SSD performance based on the two
problems of big block size and data unevenness. First, we introduce the experimental setup
of this study, including 3D SSD configurations and workloads. Then, three observations
from the studied results are explained in details. At last, through analysis and comparison,
it is concluded that sharply increased page migrations during GC are the main cause of
severe performance cliffs in 3D SSDs.

3.1. Experiment Setup

We used SSDsim to simulate 2D SSDs, and some of its components were modified
to simulate 3D SSDs by adding layer information for data. The parameter configurations
for 2D and 3D SSDs are shown in Table 1. The variation of the layer difference was
simulated as the fastest layer speed was twice the speed of the slowest layer, and the middle
layer gradually increased in speed. The number of pages per block in 3D SSDs were set
as the double of that in 2D SSDs and the other parameters were set as the same value to
reflect the big block size problem.

Table 1. Parameter configurations of 2D SSDs and 3D SSDs.

Parameter vs. Type 2D SSDs 3D SSDs

Overall capacity 16 G 16 G
Page size 4 k 16 k

Page number per block 64 128
Page read latency (µs) 20 90
Page write latency (µs) 200 1100
Block erase latency (µs) 1500 10,000

GC Threshold (µs) 10% 10%
Over-provisioning (µs) 20% 20%

Six real-world workloads [36] were chosen and are shown in Table 2, in which
usr0 is a user workload and the remaining five are the workloads from the server. As
the read/write request ratios and average request interval time of these workload are
different, the experiment results are more representative for various applications.

Table 2. Statistics of six real-world workloads.

Trace vs. Stat Reads Writes Read Ratio Averge Interval
Time (ns)

usr0 903,491 1,333,345 40% 27,037,999,239
src0 176,729 1,381,085 11% 44,862,657
ts0 316,689 1,484,799 18% 38,800,309

rsrch0 133,625 1,300,030 9% 42,185,614
fiu_web 78,613 5,604,382 1% 105,356,789

mds1 133,625 1,300,030 93% 36,646,192

3.2. Observations on SSD Performance

Based on these settings, the SSD performance cliff by GC was first observed by analyz-
ing request response time series. Then, in order to find the reason behind this phenomenon,
extra two experimental results including migrated page numbers and latency distribution
in the GC period were then shown and analyzed.
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3.2.1. The Problem of Performance Cliff

A main indicator for SSD performance is its response time, which is the latency in
processing read and write requests. Request response time during a period of about two
milion requests in the workload hm0 was collected and shown in Figure 3 and Figure 4. It
can be seen that response time peaks occasionally appear both in 2D and 3D SSDs, which
we call the performance cliff problem. In addition, through the comparison of two figures,
it can be seen that the performance cliff of 3D SSDs is far more serious than that of 2D SSDs.
We further study this phenomenon in the following sections.

Figure 3. Request response time distribution in 2D SSDs.

Figure 4. Request response time distribution in 3D SSDs.The performance cliff phenomenon of 3D
SSDs is much more serious than that of 2D, which is manifested in a sudden high latency as shown
in the figure.

3.2.2. The Number of Page Migrations

As GC performance in 3D SSDS is affected by the big block problem, which would
induce increased page migrations, we collected page migrations numbers of each GC in
workload hm0, as shown in Figure 5. From the figure, we can see that the number of valid
pages to be migrated in GC of 3D SSDs has a sharp increase with respect to 2D SSDs when
serving the same traces. Additionally, when the GC number increased, the page migration
difference between two SSDs increases greatly. These results show that 3D SSDs migrated
more pages as a larger block size was used, latency induced by these migrations would
also be high, as shown in the next study.
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Figure 5. The number of page migrations in garbage collection. The abscissa in the figure is the serial
number of GC, and the ordinate represents the number of page migrations in the current GC.
The number of GC page migrations is significantly higher in 3D SSDs (blue broken line) than in 2D
SSDs (red broken line).

3.2.3. Latency Distribution in GC

As illustrated in Section 2.1, the latency caused by GC is mainly composed of the la-
tency of page migrations and block erase. This section analyzes the latency distribution
of these two stages among the overall GC latency, as shown in Table 3. In this table, not
only the latency distribution in GC but also the times of page migrations on block erase
are presented. It can be seen from the results that the proportion of page migrations in 3D
SSDs significantly increases when compared with that in 2D SSDs. For the workload src0,
the latency of page migrations can reach up to 11.45 times that of block erase in 3D SSDs,
while this value only reaches to 5.23 in 2D SSDs.

Table 3. Distribution of GC latency on page migration and block erase.

Ratio vs. Workload usr0 src0 ts0 rsrch0 wdev0

2D erase 44% 16% 40% 89% 34%
2D migration 56% 84% 60% 11% 66%

migration/erase 1.28 5.25 1.52 0.12 1.95
3D erase 9% 8% 20% 23% 26%

3D migration 91% 92% 80% 77% 74%
migration/erase 9.98 11.45 4.10 3.29 2.85

As the block erase time for both SSDs is similar because of the technology develop-
ment of 3D flash memory, the latency of page migrations is the main cause of high GC
latency. Therefore, the server performance cliff problem of 3D SSDs uncovered above is
mainly caused by the sharply increased number of page migrations. According to this con-
clusion, this paper proposes a reduction in page migrations for 3D SSDs by pre-migrating
valid pages near the time when GC is invoked. Next, the detailed design of our method
would be presented.

4. The PreGC Method

This section introduces our proposed PreGC method from three aspects: overview,
workflow, and cooperation with normal GC. First, the architectural overview of PreGC
is presented. Then, the workflow of PreGC is illustrated to show when to trigger PreGC,
how to perform page migrations in PreGC, and when to stop these migrations. Lastly, how
PreGC can assist normal GC for performance cliff reduction is shown.
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4.1. Overview

The overview of 3D SSDs with PreGC is shown in Figure 6, in which the SSD con-
troller acts as the medium for communication between the host and the storage. The
SSD controller mainly includes some components such as host interface, RAM, processor,
and FTL. The host interface is used to interact with the host, the RAM is used to store
mapping tables between physical addresses, and logical addresses are used to facilitate
data read and placement. The processor manages the request flows and performs some
basic computations for SSD control algorithms.

As PreGC is a method of performing partial page migrations ahead of normal GC
time, it has to work together with existing GC methods. PreGC mainly contains two
components to judge when to invoke and stop the pre-migration operations: invoking
and stopping. Briefly speaking, the invoking condition depends on the ratio of free blocks,
which is similar to that in normal GC. However, in order to make a balance between write
amplification and GC page migration reduction, the threshold ratio for invoking PreGC
should be deliberately designed. The stopping condition of PreGC depends on how many
valid pages exist in the victim block. As there is no need to migrate all valid pages, which
may make normal GC ahead of its original, the threshold ratio is set to a value a little
below the invoking threshold of normal GC. Details of the workflow to use PreGC within
the right module of Figure 6 are presented next.

Figure 6. Overview of PreGC in 3D SSD controller. The Pregc mechanism is located in the SSD
controller and works with the FTL, processor, etc., including the invoking module and the stopping
module; the workflow of Pregc is shown on the right.

4.2. Workflow of PreGC

In order to better describe the specific implementation process of PreGC, a workflow
chart is presented in the right part of Figure 6. It mainly involves three judgements,
the invoking and stopping conditions of page pre-migration operations, and the current
system status. Two threshold parameters are involved in PreGC, Tblock indicating the ratio
of free blocks and Tpage indicating the ratio of valid pages. The workflow of PreGC performs
as follows. First, PreGC judges whether the current number of free blocks is less than
Tblock. When this condition is satisfied, the victim block with the least valid pages would
be determined according to the greedy algorithm. Then, the valid page ratio Tpage in this
block is further detected. Once the valid page ratio is less than this threshold, the current
system status would be judged. Once system becomes idle, one valid page in the victim
block would be migrated. When the first migration is finished, system status should be
judged again to avoid delaying subsequent requests for long. Moreover, the valid page
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ratio would also be re-checked again. Thus, the conditions to stop PreGC can be triggered
when the system becomes busy or when the valid page ratio is larger than Tpage.

From the above workflow, we can find that the effectiveness of PreGC largely depends
on system idle time as well as the pre-migration numbers. Thus, it would be evaluated
comprehensively with multiple workloads having varied system idle time and with multi-
ple parameter settings of Tblock and Tpage as the sensitivity study. Details of the evaluation
would be presented in Section 5.

4.3. Cooperating with Normal GC

PreGC is a novel method to improve the performance of SSD by working together
with GC and is actually not a replacement for existing GC methods that we call normal GC
in this paper. Thus, PreGC is orthogonal with normal GC methods. This section presents
how PreGC assists the normal GC to reduce page migrations. PreGC is often used before
the normal GC on the victim block, as shown in Figure 7. In the period of 3D SSDs in
Figure 7, PreGC and normal GC are both used. When the system is idle, part of the pages
in a victim block are migrated during the yellow time slot. Then, the system becomes busy;
as shown in the dark gray time slot, the migrations are stopped because of the system
status. When the system becomes idle again, pre-migrations begin again. In this invoking,
PreGC is stopped because that valid page ratio is satisfied. Consequently, normal GC is
invoked and normal page migrations occur. From the changes of valid page distribution
among several blocks, as shown in Figure 7, PreGC actually increases the number of valid
pages. This also means that PreGC increases the extra write number for the case that valid
pages are updated during the period between PreGC and normal GC. Thus, PreGC would
induce write amplification, which also would be evaluated in Section 5.

PreGC Normal GC 

valid data 

invalid data 

system idle 

pre-migrated data 

system busy 

Pre-migrations 

System status 

Figure 7. The cooperation between PreGC and normal GC. The box on the lower side of the figure
represents the system status progress bar in the SSD, while the box on the upper side represents
the page status. The figure shows the system status that will trigger PreGC and Normal GC as well
as the current page status and the PreGC process that occurs between them.

5. Experiment and Evaluation

This section first describes the experiment platform and parameter configurations
to evaluate our proposed PreGC. Then, the experimental results about performance and
overhead of PreGC are shown and analyzed under five real-world workloads by comparing
with the original GC method.

5.1. Experiment Setup

The experiment designed for PreGC evaluation is illustrated from the following
four aspects. First, SSD configurations using the SSDsim simulator [37] are presented
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and the five real-world workloads are introduced. Then, the parameters settings in our
experiment and sensitivity study are described. Lastly, we compare methods to evaluate
the proposed PreGC method.

SSD configurations: The proposed PreGC method was integrated into the controller
of 3D SSDs, and all experiments were conducted on a flash simulator named SSDsim [37],
which is a reliable platform that has been widely used in many research works about
SSDs [14,38,39].

Real-world workloads: To evaluate the effectiveness of PreGC on performance cliff
and tail latency reduction, five real-world workloads with different features were chosen
from Umass [40], as listed in Table 2. In our experiment, the duration of these workloads
was about 18 hours.

Parameter settings: There were two thresholds involved in the PreGC flow chart,
as illustrated earlier, which are the free block ratio threshold Tblock used to invoke page
migrations in PreGC and the valid page ratio threshold Tpage used to determine whether to
proceed PreGC. By conducting a series of threshold value tests, we determined Tblock to
be 11% and Tpage to be 10% for all workloads. The trigger condition of normal GC is when
the free block ratio reaches to 10%.

Compared methods: Our PreGC method is designed to assist the traditional GC
methods, and we are the first to propose such a GC assistance from the aspect of page
migrations. Thus, we compare the performance and overhead of SSD systems with and
without ProGC together with the original GC method, and the excellent partial GC method
GFTL. Moreover, we combined PreGC and GFTL to prove that our approach can work
with other methods. The four compared methods are denoted as PreGC, Original, GFTL,
and GFTL after PreGC.

It is worth mentioning that the comparison of the methods from GFTL and PreGC
shows in Figure 8. The GFTL method divides the GC into several operations with a required
time less than or equal to one erase latency after the GC condition is triggered and executes
it one by one in the request interval, which is equivalent to delaying the normal foreground
GC into a background GC to hide its latency, so it also requires a large amount of space as a
buffer, for example, 16% in this experiment. The PreGC we proposed was to migrate valid
pages of to be erased blocks ahead of time before the GC condition was triggered and to
move one page at a time, thus reducing the current GC latency and avoiding blocking I/O
for too long. PreGC does not interfere with normal GC operation because the GC operation
is indispensable although it has some bad effects. In summary, PreGC has the following
advantages: First, it does not interfere with the execution of normal GC but cooperates
with it. Second, no additional buffer space is required. Finally, the time granularity of
the step-by-step operation is smaller and more flexible.

Figure 8. Comparison of two methods. The box in the figure represents the non-idle system state,
and different colors indicate different states. The upper side of the figure shows the existing GFTL
method, while the lower side shows the PreGC method proposed in this paper.
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5.2. Results and Analysis

We first analyze the results of PreGC on normal page migration, which indicates
the number of migrated pages when GC happens. As PreGC migrates some valid pages in
advance, page migrations when GC happens are reduced, noting that our PreGC method
does not reduce the overall migrated pages. We call page migrations in GC normal. Details
about the reduction are presented in Table 4. Then, the performance results including
the prorformance cliff phenomenon and tail latency after pre-migrating valid pages are
presented to verify the effectiveness of PreGC. Moreover, the overhead of PreGC on the
write amplification is also evaluated. Lastly, the workload characteristics are discussed in
which PreGC can play the role more effectively.

Table 4. Page migration statistics.

Trace vs. Stat Mig w/o PreGC Mig w/ PreGC Reduction NPreGC PreMIG

usr0 44 31 29.5% 13,095 63
src0 60 42 30% 10,351 29
hm0 22 13 40.9% 5763 27
ts0 17 10 41.2% 11,851 23

rsrch0 25 14 44% 9116 25
wdev0 16 10 37.5% 1926 44
Avg. 30.6 20 34.6% 8684 35.2

5.2.1. The Number of Normally Migrated Pages in GC

In order to show the effect PreGC on page migrations, the average number of normally
migrated pages is computed as Equation (1), in which MIGGC is the totally migrated pages
when GC happens and the NGC represents the overall GC number. Moreover, the average
number of pre-migrated pages for each workload computed according to Equation (2),
in which MIGPreGC represents the total page migrations induced by PreGC and NPreGC
indicates the overall number of PreGC invoking.

MIGaverage =
MIGGC

NGC
(1)

PreMIGaverage =
MIGPreGC

NPreGC
(2)

The comparison results without and with PreGC, the numbers of invoked PreGC, and
the average pre-migration numbers by PreGC are presented in Table 4. According to these
results, we can first find that the number of migrated pages are different for workloads.
This is because that the situations that invoke PreGC for each workload are different from
each other. It depends on the number of overall GC during the investigated period of this
workload and mainly depends on the access density of workloads. The page reduction
for workload rsrch0 is the highest, and the average migration reduction is 34.6% for these
six workloads.

By analyzing the results of PreGC numbers and average pre-migrated page numbers,
it can be found that pre-migrated page numbers are larger than normal page migration
reduction and varies among workloads. These results are largely affected by the system
idle time in workloads; due to that, page pre-migration can only be performed during
the system is idle, the system status should be detected after each page pre-migration
operation, and the next page pre-migration operation continues when the detection result
of system status is idle. From Table 5, the average request interval time for workloads
are varied, and it is one of the reasons for different pre-migrated page numbers between
the workloads.
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Table 5. Statistics of six real-world workloads.

Trace Method MIGGC NGC MIGaverage

usr0 Original 477,346 15,575 30.65
PreGC 89,023 14,839 6.00

src0 Original 12,595 5498 2.29
PreGC 6667 5467 1.22

ts0 Original 15,532 9212 1.69
PreGC 11,074 9188 1.21

rsrch0 Original 8367 7580 1.10
PreGC 7587 7576 1.00

fiu_web Original 8,046,570 118,757 67.76
PreGC 942,405 114,740 8.21

mds1 Original 2638 579 4.56
PreGC 635 541 1.17

Average Original 1,427,174.67 26,200.17 18.01
PreGC 176,231.83 25,391.83 3.14

5.2.2. Performance Improvement

This section presents the performance results of the original and PreGC in terms of
performance cliff and tail latency.

Performance cliff: In order to intuitively compare the performance results before and
after applying our proposed PreGC method, the performance cliff for workload hm0 is
shown in Figure 9, which corresponds to the investigated period in Figure 4. It can be seen
that performance cliff is relieved by PreGC when compared with the original and GFTL.
Detailed results would be presented in the following sections.

Figure 9. Comparison of process time. The figure shows the request response of the workload hm0,
the abscissa is the request serial number, and the ordinate is the response time of the request.

Tail latency: Another quantitative evaluation of tail latency results with the 95th
percentile and 99th percentile are presented in Figure 10. It can be observed that the two
metrics have been significantly reduced by PreGC. The improvements in the 99th percentile
are especially more obvious, which means that PreGC can bring about a more efficient
reduction on the end of the long tail latency. Moreover, it can also found that the im-
provements are different among workloads. For the workload ts0, the latency is reduced
most. On average, the tail latency can be reduced by 38.2%. These performance results
show that our proposed PreGC can improve the SSD system performance and can relieve
the performance cliff problem as well as long tail latency is induced by GC.
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Figure 10. Comparison of tail latency related to GC. The figure shows the the normalized comparison
result of the tail latancy of requests that may be affected by GC in original 3D SSDs and 3D SSDs
with PreGC. Among them, based on the results of original 3D SSDs, the request tail latency of 2D
SSDs is 50% less than that of 3D SSDs with PreGC on average.

5.2.3. Overhead on Write Amplification

As PreGC would migrate valid pages in advance before normal GC is invoked, the mi-
grated pages might be updated during the pre-migration period and the victim block
chosen in PreGC may not be the victim block in normal GC. Thus, PreGC would induce an
extra write amplification, the results of which are shown in Figure 11. From the results, we
can see that the write amplification for several traces is high but others are not. This is also
decided by the characteristics of workloads. However, the average write amplification is
under 1%, which can be negligible.

Figure 11. Write amplication contrast. The figure shows the comparison of the write amplification
factor of original 3D SSDs and 3D SSDs with PreGC for different workloads.

5.2.4. Sensitivity Study

The above results have already verified the effectiveness of our proposed PreGC
method under specific parameters. This section presents the performance result for more
settings on key parameters in our implementation. Figures 12 and 13 show the compre-
hensive results when setting the threshold on free block proportion (Tblock), and valid page
ratio in a block (Tpage). According to the results, three conclusions can be made. First, when
Tblock increases below a certain value, the tail latency decreases. However, when Tblock
exceeds a value, such as 10.75% that can be seen in the figure, the tail latency increases
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as the Tblock increases. This is because, initially, an increase in Tblock means that the PreGC
threshold is easier to reach and it is easier to trigger PreGC to migrate the valid page in
advance, thereby reducing GC latency and further reducing tail latency.

However, if the value continues to increase after a suitable value, it will cause the valid
pages to be migrated too early, which will lead to a lot of invalid data to be generated and
results in more GC; then, the request may be suspended for a longer period of time, which
makes the tail latency longer. Second, the 99th tail latency increases as the value of Tpage
increases, but the 95th tail delay reaches a local peak when Tpage is 10. This is because
an increase in Tpage means that the number of pages that a PreGC needs to pre-migrate
increases, so that a more severe write amplification works in conjunction with a smaller
number of valid pages included in the victim block in the short term, causing the above-
described change in tail latency. These parameters can be adjusted in practice according to
the performance requirement.

Figure 12. Sensitivity study results on the parameter of free block proportion to invoke PreGC.

Figure 13. Sensitivity study results on the parameter of valid page ratio to invoke PreGC.

5.3. Discussion

Our PreGC method provides an assistance to existing GC methods and are orthog-
onal with many GC optimization methods. The pre-migrations would happen between
the PreGC invoking time and normal GC invoking time when SSD system is idle. Thus,
the effectiveness of PreGC can be largely exploited for workloads that have long system
idle time close to the GC invoking time. Although PreGC can relieve performance im-
provements on tail latency, the problem of write amplification caused by the pre-migration
of valid pages, that is, the amount of data actually written in the SSDs, is many times
the amount of data that the host requests to write. Although it is inevitable for pre-
migrations to cause write amplification, PreGC applies a mechanism to stop it in time to
alleviate the problem. Therefore, the write amplification brought about by this method is
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within the small range. The other overhead is to store two thresholds for triggering and
stopping PreGC. As the two parameters only take up a small space, the storage overhead
caused by our method can be ignored.

6. Conclusions

In order to satisfy the increased concerns about SSD performance, this paper studied
GC performance, which closely relates to system performance, in the view of performance
cliff and tail latency. Several observations have been found from our preliminary experi-
ments. The root cause of performance cliff, increased page migrations, has been figured out.
A new garbage collection method, PreGC, is proposed to invoke partial page migrations in
advance, which can reduce the GC latency effectively. Experimental results have shown
the effectiveness of PreGC. As our method is also suitable for optimizing wear leveling
schemes, we will study this problem in our future work.
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