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Abstract: In this work, we used a co-flow microfluidic device with an injection and a collection tube
to generate droplets with different layers due to phase separation. The phase separation system
consisted of poly(ethylene glycol) diacrylate 700 (PEGDA 700), PEGDA 250, and sodium alginate
aqueous solution. When the mixture droplets formed in the outer phase, PEGDA 700 in the droplets
would transfer into the outer aqueous solution, while PEGDA 250 still stayed in the initial droplet,
breaking the miscibility equilibrium of the mixture and triggering the phase separation. As the phase
separation proceeded, new cores emerged in the droplets, gradually forming the second and third
layers. Emulsion droplets with different layers were polymerized under ultraviolet (UV) irradiation
at different stages of phase separation to obtain microspheres. Microspheres with different layers
showed various release behaviors in simulated gastric fluid (SGF) and simulated intestinal fluid
(SIF). The release rate decreased with the increase in the number of layers, which showed a potential
application in sustained drug release.

Keywords: PEGDA; microfluidic; phase separation; microsphere; drug delivery

1. Introduction

Microparticles with complex structures, such as core-shell [1,2], porous [3], Janus [4,5],
and multi-layered structures [6], have promising applications in drug delivery [7–9], cell
encapsulation [8,10,11], cosmetics [12,13], and biosensors [14]. Droplet microfluidics pro-
vides a unique method for the fabrication of monodisperse microparticles with control over
the size, morphology, and functionality in a high throughput manner [15]. Droplets can
be converted into solid microparticles by polymerization [16], ionic crosslinking [17,18],
solvent evaporation [16], etc. Among the applications of microparticles, the encapsulation
of drugs with biocompatible polymers has attracted the interest of many researchers in
recent years. The encapsulation of the drug in polymeric microparticles or microfibers
allows a sustained and slow release of drugs, preventing premature metabolism of the
drug in the organism [19]. Many researchers have studied the application of microparticles
with different shapes in drug delivery. It has been shown that many drugs need to be
administered at varying rates, and for some drugs, such as those used at the beginning of
wound treatment, an initial burst provides immediate relief followed by prolonged release
to promote gradual healing [20]. Huang et al. studied silk fibroin/alginate microspheres
for rapid hemostasis. Both in vitro and in vivo coagulation experiments demonstrated
that the burst release of the drug in microspheres could reduce bleeding time and volume
and consequently improve hemostatic efficiency [21]. For some drugs, such as those used
for long-term treatment, sustained release was needed to prolong the time that the drug

Micromachines 2021, 12, 723. https://doi.org/10.3390/mi12060723 https://www.mdpi.com/journal/micromachines

https://www.mdpi.com/journal/micromachines
https://www.mdpi.com
https://orcid.org/0000-0003-1750-6406
https://doi.org/10.3390/mi12060723
https://doi.org/10.3390/mi12060723
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/mi12060723
https://www.mdpi.com/journal/micromachines
https://www.mdpi.com/article/10.3390/mi12060723?type=check_update&version=1


Micromachines 2021, 12, 723 2 of 13

remains in the body at the therapeutic level. Hayashi et al. prepared red blood cell-shaped
microparticles with a red blood cell membrane and demonstrated prolonged circulation
time in blood [22]. Zhang et al. studied the preparation and evaluation of alginate–chitosan
microspheres for oral delivery of insulin, hoping to maintain proper glucose concentration
for a long time, which would bring convenience to diabetics [23].

A distinctive feature of microfluidics is that the combination of single-stage channels
can be upgraded to a complex microchannel network system, providing conditions for the
controlled construction of double and multiple emulsion droplets [24]. Single emulsion
droplets are usually produced by two immiscible liquid phases, with one phase dispersed
into the second [25], the double emulsion can be viewed as the dispersion of a primary
emulsion in another aqueous or oil phase [26–28], and multiple emulsion can be formed by
multiple-step emulsification of multiphase fluids in microchannels [29]. In order to prepare
multi-layered microparticles, a microfluidic device with several nested microchannels
is usually required. For instance, to make droplets with three layers, four cylindrical
glass capillary tubes are needed, as shown in Figure 1a. The flow rate of each phase
needs to be precisely controlled to ensure that the droplets in the previous channel can be
successfully encapsulated, as shown in Figure 1b. In addition, precise and complicated
hydrophilic/hydrophobic treatment of the microchannels is also required according to the
property of multiple droplets [24].
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Figure 1. (a) Digital photographs of the microfluidic device with four cylindrical glass capillary tubes.
From the inside out, each number represents a glass capillary. To make droplets with three layers,
four cylindrical glass capillary tubes are needed to be arrayed into a critical structure. (b) The optical
microscopic image of the process to produce droplets with three layers. The droplet produced by the
device is shown to the right. Scale bar = 500 µm. (c) Microfluidic device with a co-flow structure.
It was composed of two cylindrical glass capillary tubes called the injection tube and the collection
tube, respectively. When using it to prepare droplets, inner fluid and outer fluid are injected into the
injection tube and the collection tube by syringe pumps, respectively. (d) The optical microscopic
image of the process to produce droplets with different layers. Scale bar = 200 µm.
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In recent years, liquid−liquid phase separation has been used to prepare multi-layered
micro-emulsion droplets [6,30,31]. This technology refers to the phenomenon that when
the external environment changes, the miscibility of several solutions dissolved together
changes, and a certain phase or several phase solutions separate from the mixed solu-
tion [6]. Usually, a homogeneous emulsion droplet can subsequently generate complex
emulsions due to phase separation [32]. At present, the external factors that induce the
phase separation are mainly mass transfer between the droplet and external solution [33],
temperature [34], and polymerization [35], etc. Once the experimental conditions such as
liquid ratio and temperature are set, phase separation can proceed spontaneously, so phase
separation is also considered an intelligent process. Compared with using the complex
microfluidic device to control the structure of microparticles, phase separation technology
is easy to operate. By mixing hexane with perfluorohexane, for instance, Zarzar et al. suc-
ceeded in transforming single emulsion droplets into multi-layered and Janus-like droplets
by changing the temperature [34]. Guo et al. found that the polymerization of polymers
could also induce phase separation. They dissolved polyethylene glycol and acrylamide
in water and found that with the increase in temperature, acrylamide polymerized, and
a core of polyacrylamide was gradually formed inside the droplet, thus separating into
a core-shell structure of particles [36]. Some polymers are often used in phase separation
systems, such as poly(methyl methacrylate) (PMMA) [37] and some light-curable mate-
rials like poly(ethylene glycol) diacrylate (PEGDA) and ethoxylated trimethylolpropane
triacrylate (ETPTA) [38,39]. When preparing microparticles using microfluidic devices, the
size of microparticles can be controlled by adjusting the flow rate of each phase [39,40],
and the shape of the microparticles can be controlled by adjusting the ingredient content,
surfactant content, and surfactant type to change interfacial tension [38]. Hence, phase
separation technology can realize the preparation of complex microparticles by using a
microfluidic device with a simple structure, and microparticles with different structures
can be obtained by changing the parameters. However, the material system of phase
separation still needs to be explored and studied, and, in addition, few studies have been
conducted on the properties of the drug delivery of microparticles with different layers
after phase separation.

Herein, we combined a co-flow microfluidic device (Figure 1c) with phase separation
to firstly generate single emulsion droplets, and then we prepared microspheres with
different layers for drug delivery, as shown in Figure 1d. We selected PEGDA, whose
properties such as hydrophilicity, crosslinking density, and mechanical strength are de-
termined by molecular weight [41], as the ingredients of the phase separation system.
PEGDA can be immediately cured by UV and it is non-toxic and biodegradable [42], and
it has been approved for clinical use by the U.S. Food and Drug Administration (FDA).
The smaller the molecular weight of PEGDA, the more hydrophobic it is [43], resulting in
PEGDA 250 being hydrophobic, while PEGDA 700 is soluble in both oil and water. Calcium
alginate hydrogel prepared from sodium alginate, a plant extract of brown algae, has good
biocompatibility and biodegradability, making it have great potential application in drug
carriers [44] and surgical dressings [45]. Thus, we used PEGDA 700 as a co-solvent in the
phase separation system, and PEGDA 250 and sodium alginate aqueous solution as two
immiscible phases. The microspheres were fabricated from a microfluidic device with an
easy co-flow structure by using the mixed solution consisting of these three contents as
the inner phase and poly (vinyl alcohol) (PVA) aqueous solution as the outer phase. As
PEGDA 700 is miscible with both PEGDA 250 and water, part of PEGDA 700 was rapidly
transferred from the initial droplet to the external aqueous solution once the single droplet
was prepared in PVA aqueous solution. Therefore, mass transfer-induced phase separation
took place, forming droplets with one, two, and three layers. Droplets could be converted
into solid microspheres with different layers by UV curing at different times during the
phase separation process. Furthermore, the model drug was loaded in the microspheres
and it was found that microspheres with different layers have different release rates, which
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can provide a method in designing particles with a controlled drug release profile for
drug delivery.

2. Materials and Methods
2.1. Materials

The mixture of PEGDA 700 (Mn = 700, SigmaAldrich, St. Louis, MO, USA), PEGDA
250 (Mn = 700, Sigma Aldrich, St. Louis, MO, USA), and sodium alginate (Macklin
Chemical Reagent Shanghai Co., Ltd, Shanghai, China) (1 wt%) aqueous solution (Na-
Alginate) was used as the inner phase fluid. 2-Hydroxy-2-methylpropiophenone (2% v/v)
was added into the mixture of PEDGA 700 and PEDGA 250 as the photoinitiator for UV
light curing. Poly (vinyl alcohol) (PVA) (97.5–99% hydrolyzed, Aladdin Reagent Shanghai
Co., Ltd, Shanghai, China) was added into deionized water (DI) to achieve a concentration
of 5 wt% to be used as the continuous phase fluid. Doxorubicin hydrochloride (DOX)
was used as a model drug. Simulated gastric fluid (SGF, pH = 1.2, Shanghai Yuanye
Bio-Technology Co., Ltd. Shanghai, China) and simulated intestinal fluid (SIF, pH = 7.2,
Shanghai Yuanye Bio-Technology Co., Ltd. Shanghai, China) were used to simulate the
environment of the human digestive tract in the drug release experiment. Silicone oil
(Aladdin Reagent Shanghai Co., Ltd, Shanghai, China; 20 mPa.s) was used as the oil phase
to obtain homogeneous “cup-shaped” microparticles.

2.2. Microfluidic Device Setup

The microfluidic device had a co-flow structure, which was composed of two cylin-
drical glass capillary tubes called an injection tube and collection tube, respectively. The
injection glass tube with an inner diameter of 300 µm was coaxially positioned inside the
collection tube with an inner diameter of 900 µm. Two glass tubes were fixed on the glass
sheet with epoxy glue, and the entrance of each glass tube was connected with a dispensing
needle, as shown in Figure 1c.

2.3. Preparation of Emulsion Droplets with Different Layers

The inner and continuous phase fluids were injected into the injection tube and the
collection tube, respectively. Each liquid was connected with a syringe pump (Longer Pump
LSP01-3A) through a polyethylene tube (Scientific Commodities Inc, Lake Havasu City, AZ,
USA). The initial single emulsion can be obtained due to the shear force of the outer fluid
to the inner fluid. As the droplets flowed downstream, PEGDA 700 in the droplets would
transfer into the outer aqueous solution, while PEGDA 250 still stayed in the initial droplet,
breaking the miscibility equilibrium of the mixture and triggering the phase separation. As
the phase separation proceeded, new cores emerged in the droplets, gradually forming the
second and third layers. Different periods of the phase separation process were captured
using the microscope (Leica DM4B, Leica Camera, Wetzlar, Germany). The inner mixture
was dyed with Nile red in order to provide distinct images for the investigation of the mass
transfer process during phase separation.

2.4. Preparation of Microparticles with Different Layers

For the preparation of microparticles with different layers, a 2 v/v% photoinitiator
was added into the inner fluid, and an ultraviolet beam was applied over the downstream
of the PTFE tube. PEGDA 700 and PEGDA 250 are both photocurable, so the emulsion
droplets were polymerized under UV irradiation at different stages of phase separation to
obtain microparticles with different layers. The cured microparticles were washed by DI
water and were dried at room temperature for at least 12 h.

2.5. Drug Loading and Controlled Release

The drug of DOX hydrochloride (500 µg mL–1) was dissolved in the inner mixture.
For controlled release, the DOX-loaded microparticles were dispersed in a cuvette of 4 mL
simulated gastric fluid (SGF) for 2 h and 4 mL simulated intestinal fluid (SIF) for six hours
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at room temperature. The concentration of DOX was measured using an ultraviolet−visible
spectrophotometer at a wavelength of maximum absorbance (480 nm) at regular intervals.

2.6. Characterization

Leica DFC450 C camera with a green fluorescence module (Leica 11513878 BZ: 01) was
used to image all experiments which were performed on a microscope (Leica DM4B). The
morphology of dried microparticles was observed by scanning electron microscope (SEM,
JSM-6610LV) using an accelerating voltage of 5 kV, and the samples were coated with gold
before measurement. A digital microscopic system (Keyence VHX-2000) was also used to
measure the size of the microparticles. Varian Cary 100 Bio UV−visible spectrophotometer
was used to measure the concentration of DOX.

3. Results and Discussion
3.1. Preparation of Emulsion Droplets with Different Layers

Mass transfer-induced liquid–liquid phase separation requires at least two immiscible
liquids and one co-solvent. PEGDA contains double-bond acrylate groups at each end of
the PEG chain [46] and is a light-curable material. PEGDA is available in various MWs,
making it ideal for obtaining the required hydrophilicity or hydrophobicity, and the smaller
the molecular weight of PEGDA, the more hydrophobic the polymer [43]. Through the
experiments, we found that PEGDA 250 was immiscible with water, but PEGDA 700 was
miscible with both PEGDA 250 and water. To make the phenomenon easier to observe,
we mixed PEGDA 250 with water, PEGDA 700 with water, and PEGDA 250 with PEGDA
700, respectively, in small glass bottles, as shown in Figure 2a. The DI water contained a
water-soluble blue dye, and PEGDA 250 contained an oil-soluble red dye when mixed with
PEGDA 700. After enough time for mixing, the bottles stood for 2 h, and we observed that
PEGDA 250 and water formed two distinctive layers, while the liquids in the other two
bottles were miscible. In order to know the miscibility of PEGDA 700, PEGDA 250, and
Na-Alginate, we mixed three liquids in different proportions in a centrifuge tube to a total
volume of 1 mL. The miscibility of this phase separation system is represented in a ternary
phase diagram, which can be used to analyze the process of droplet phase separation, as
shown in Figure 2b. The blue dots mean that the three solutions were miscible at that
volume ratio and the red crosses indicate that the three solutions were immiscible at that
volume ratio.

A microfluidic device with a co-flow structure was used to prepare single emulsion
droplets of different sizes, as shown in Figure 3a. We used a mixture containing 50 v/v%
PEGDA 250, 40 v/v% PEGDA 700, and 10 v/v% Na-Alginate aqueous solution as the
inner phase and 5 wt% PVA aqueous solution as the continuous phase. Additionally,
the flow rates of the inner and outer fluid were 0.5 mL/h and 5 mL/h, respectively.
Once the droplets formed at the outlet of the injection tube, PEGDA 700 in the droplet
gradually diffused to the external solution. Therefore, the miscibility equilibrium between
PEGDA 250 and the aqueous solution was broken, leading to the phase separation. We
recorded the droplet phase separation process by microscopy, as shown in Figure 3b. The
hydrophobic fluorescent indicator Nile red was premixed into the inner phase mixture
and automatically assembled into the PEGDA 250-rich layer during the phase separation
process. The PEGDA 250-rich layer was labeled with a bright yellow fluorescent region,
making it clear to recognize the distribution of different compositions in droplets. As
the phase separation proceeded, the original single emulsion droplet gradually separated
into a bilayered emulsion droplet and progressively formed a tri-layer emulsion droplet.
During the phase separation, the PEGDA 250-rich phase and the PEGDA 700-rich phase
were alternated.
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Figure 3. (a) Schematics of the microfluidic device used for preparing initial single emulsion droplet
and the droplet changed from one layer to two and three layers. (b) Formation of single, double, and
triple emulsion droplets over time due to phase separation. The scale bar is 100 µm. The hydrophobic
fluorescent indicator Nile red was premixed into the inner phase mixture and automatically assem-
bled into the PEGDA 250-rich layer during the phase separation process. The PEGDA 250-rich layer
was labeled with a bright yellow fluorescent region.

The phase separation process of droplets can be analyzed by using the phase diagrams
of PEGDA 250, PEGDA 700, and Na-Alginate solution. As shown in Figure 4b, the blue
region means that the three solutions were miscible at that volume ratio, and the yellow
region indicates that the three solutions were immiscible at that volume ratio. According to
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the solubility of three liquids, the binodal line in the phase diagram could be determined
through experiments to represent the boundary between the miscible and immiscible
states. The spinodal line in the phase diagram was an imaginary curve to represent the
spontaneous phase separation in this state. The droplet was made from a mixture of
PEGDA250, PEGDA 700, and Na-Alginate solution with a volume ratio of 5:4:1, and it
was located at point A in the diagram. When the droplet entered the external aqueous
solution, PEGDA 700 decreased, and water infiltrated (Figure 4(a1)). The volume ratio
gradually moved from point A across the binodal line to point B on the spinodal line,
causing phase separation in the droplet to begin. The droplet would spontaneously form a
PEGDA 700-rich phase and a PEGDA 250-rich phase, whose volume ratios were located at
points C and D of the phase diagram, respectively, resulting in a double emulsion shown
in Figure 4(a2). According to the level rule in phase separation [47], both points C and
D were located on the binodal line of the phase diagram. As PEGDA 700 continued to
decrease, the composition of point C continued to move to point E and then spontaneously
separated into a PEGDA 250-rich phase H and a PEGDA 700-rich phase G. Meanwhile,
point D would continue to move to point F and then spontaneously separated a PEGDA
700-rich phase I and aqueous solution and a PEGDA 250-rich phase J. At this moment, the
state of the droplet is a triple emulsion droplet, as shown in Figure 4(a3).
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3.2. Preparation of Microparticles with Different Layers

Depending on the droplet structure at different times, microspheres with one, two,
or three layers could be obtained by adjusting the position of UV light irradiation. We
collected microspheres in a Petri dish with different layers by curing them at 10 s, 30 s, and
120 s, respectively, and observed them in a microscope to record the structure and size of
microspheres, as shown in Figure 5(a1–a3). It can be seen clearly from Figure 5(a1) that
inside the microspheres, there were a lot of small scattered particles, showing that mass
transfer between the droplets and the ambient solution was taking place, but the second
layer had not formed yet at that moment. The double emulsion droplets were cured to
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form core-shell microspheres, as shown in Figure 5(a2). Additionally, we also prepared
microspheres with three layers, as shown in Figure 5(a3). Then, we rinsed the microspheres
using DI water to remove the PVA around the microspheres and observed them in a
scanning electron microscope. As shown in Figure 5(b1), the microspheres had good
monodispersity and sphericity. Figure 5(b2,b3) are magnified SEM images, and it could
be found that the surface of the microspheres was solid, smooth, and dense. Figure 5c
shows the SEM images of a cross-section of microspheres with different layers, which
clearly shows the monolayer structure (Figure 5(c1)), core-shell structure (Figure 5(c2)),
and triple-layer structure (Figure 5(c3)). Here, the third layer is marked with a red line in
the image.
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3.3. The Effect of Droplet Size on Phase Separation Process

In the process of droplet preparation, we found that the droplet size had an influence
on the phase separation process. Phase separation proceeded more slowly when the
microspheres were slightly larger. Hence, we prepared droplets with different sizes and
observed their structure after the same amount of time, as shown in Figure 6. Droplets
were denoted as a, b, c, and d from big to small, in which (c1) was the same size as (c2).
The droplets with different sizes would be in different stages of phase separation after the
same time and showed different structures. As shown in Figure 6, the droplet (a) had just
started to change and was in the core formation stage, droplet (b) was double emulsion,
droplet (c1) and (c2) formed a triple-layered structure, and droplet (d) had finished phase
separation and presented the final single emulsion droplet.
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Droplets with two initial sizes (280 µm and 580 µm) were studied specifically, and
the diameters of each layer of droplets at different times were recorded, as shown in
Figure 7a,b. It could be seen that the size variation trend of the two microspheres was
similar. The diameter of the first layer gradually decreased, the diameter of the second layer
increased and then decreased, and the diameter of the third layer gradually increased. The
difference was that the small-size microsphere had formed the third layer at 18 s (S), while
the large-size microsphere still had two layers. The small-size microspheres had completed
phase separation and became single emulsion droplets at 128s. In contrast, the large-size
microsphere still had three layers at this time and did not become single emulsion droplets
until 226 s. In the previous work performed by Liang et al. [40], the mass transfer velocity
of an emulsion droplet was determined by its surface area, which was proportionate to the
diameter of the pristine single emulsion droplet (d0), and the mass transfer velocity per
unit volume of the droplet should be proportionate to 1/d0. Therefore, this tendency could
be understood easily.
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3.4. Drug Controlled Release of Microspheres

DOX is a hydrophilic fluorescence indicator with red fluorescence, which could be
automatically assembled into the hydrophilic areas during the multistep phase separation.
It was also easy to monitor the behavior of the drug in the microspheres by fluorescent
microscopy and visualize its distribution in microspheres. The fluorescence images of micro-
spheres with one layer, two layers, and three layers are shown in Figure 8(a1–a3), respectively.
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In order to simulate the process of microspheres moving from the stomach into the
intestine, the DOX-loaded microspheres were dispersed into 4 mL of SGF for 2 h, and
after 2 h, the microspheres were transferred to 4 mL SIF for 6 h at room temperature. The
fluorescence images of microspheres with one layer, two layers, and three layers after
drug release are shown in Figure 8(b1–b3), respectively. The drug concentrations were
determined at regular intervals, and the profiles of DOX released from microspheres with
different layers are shown in Figure 8c. The corresponding fluorescence intensity along the
diameter of the microspheres before and after drug release is shown in Figure 8d, and it
can be seen that the fluorescence intensity reduced, indicating that the drug released from
the microspheres into the ambient solution. The figure shows that the DOX released from
microspheres over time, and it can be seen that the release behavior of microspheres with
different layers was variable, among which the microspheres with one layer showed the
fastest release, the microspheres with two layers released second, and the microspheres
with three layers released the slowest.

As mentioned in Section 3.1, the mass transfer between PEGDA 700 and the external
solution resulted in an increase in the number of layers of microspheres, as well as the
proportion of PEGDA 250 in the microspheres. The lower PEGDA molecular weight
resulted in a denser and more tightly crosslinked system [46,48,49], inhibiting drug release
and leaving the DOX molecule trapped within the microspheres. In contrast, higher
molecular weight PEGDA systems resulted in faster drug release. Figure 8(b1) shows that
the drug was released from the edge of the microsphere. When the microsphere became
two layers, the drug was mainly distributed in the inner layer and therefore needed to
diffuse through the dense outer layer to the external environment. When the microspheres
became three layers, the innermost drug was trapped by the dense structure. Therefore, it
was not easy to release the drug in the innermost layer, showing slightly more brightness
than the second layer after release.
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3.5. Preparation of “Cup-Shaped” Microparticles

In addition to loading hydrophilic drugs during phase separation, we also used a
microfluidic device with three capillary tubes to prepare microparticles capable of encapsu-
lating oil cores. All of the tubes were set in good alignment to form a coaxial geometry, as
shown in Figure 9a. The inner phase consisted of silicone oil dyed red, the middle phase
was composed of 50 v/v% PEGDA 250, 40 v/v% PEGDA 700, and 10 v/v% Na-Alginate
aqueous solution, and the outermost phase was 5 wt% PVA aqueous solution. It was
found that the oil core can be wrapped to form double emulsion droplets at the beginning.
However, with the mass transfer between PEGDA 700 in the intermediate and outermost
solutions, PEGDA 700 gradually converges and nucleates and was expelled by the PEGDA
250 shell because of interfacial tension and the presence of the oil core [50]. Then, the
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particles gradually shrank into a shape with an open hollow structure, which was also
known as the “cup” shape [51], as shown in Figure 9b. The large cavity and appropriate
openings enable microparticles to have potential applications in the encapsulation and
release of hydrophobic drugs, as well as enhancing cancer therapies [51].
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4. Conclusions

In this work, we developed a microfluidic device with a co-flow structure to fabricate
microspheres with different layers based on mass transfer-induced phase separation. The
structure of solid microspheres could be controlled by UV treatment at different times
during the liquid–liquid phase separation process. From the release curves, it could be seen
that the microspheres showed a controllable release of DOX in SGF and SIF. In the reported
data, the microspheres with more layers had lower release due to more PEGDA 250 in
them, indicating that this process had the capability to control the drug release by varying
the number of layers in the microspheres. These features of the microspheres showed their
great potential applications in drug delivery and other fields.
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