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Abstract: In order to realize the intervention operation in the unstructured and ample environments
such as stomach and colon, a dual-spin spherical capsule robot (DSCR) driven by pure magnetic
torque generated by the universal rotating magnetic field (URMF) is proposed. The coupled mag-
netic torque, the viscoelastic friction torque, and the gravity torque were analyzed. Furthermore,
the posture dynamic model describing the electric-magnetic-mechanical-liquid coupling dynamic
behavior of the DSCR in the gastrointestinal (GI) tract was established. This model is a second-order
periodic variable coefficient dynamics equation, which should be regarded as an extension of the
Lagrange case for the dual-spin body system under the fixed-point motion, since the external torques
were applied. Based on the Floquet–Lyapunov theory, the stability domain of the DSCR for the
asymptotically stable motion and periodic motion were obtained by investigating the influence
of the angular velocity of the URMF, the magnetic induction intensity, and the centroid deviation.
Research results show that the DSCR can realize three kinds of motion, which are asymptotically
stable motion, periodic motion, and chaotic motion, according to the distribution of the system
characteristic multipliers. Moreover, the posture stability of the DSCR can be improved by increasing
the angular velocity of the URMF and reducing the magnetic induction intensity.

Keywords: dual-spin spherical capsule robot (DSCR); posture stability; Floquet–Liapunov theory;
periodic variable coefficient; posture adjustment

1. Introduction

Compared with traditional endoscopy, the wireless capsule endoscopy gastrointestinal
examination is safe, comfortable, and non-invasive, and has obvious advantages in the
diagnosis of gastrointestinal diseases, especially for small intestine diseases [1,2]. However,
the existing capsule endoscopes lack the functions of active locomotion and position control,
so it was also called the passive capsule. Its diagnostic and therapeutic effects are not only
limited in three-dimensional ample environments such as stomach and colon [3], but also
cannot achieve future functions such as drug delivery, biopsy, and minimally invasive
surgery [4]. Therefore, it has become an urgent need to extend the scope of diagnosis and
treatment of capsule endoscopes to the three-dimensional ample environment and achieve
the active control. Taking the built-in micro-motor as the driving source, the researchers
have proposed a variety of active capsules such as bionic type [5], screw type [6], leg
type [7], propeller type [8], paddle type [9], and so on. Although the micro-motor-driven
capsule can achieve many convenient operations, the power capacity and space in the
capsule are limited. The external non-contact driven method is more attractive from the
aspects of safety and energy supply. The external non-contact driven method of the micro-
robot include the acoustic field [10], the light field [11], the electric field [12], and the
magnetic field [13]. Among all the methods mentioned above, the magnetic field actuation
is the most promising one for in vivo applications, due to the advantages of high tissue
penetration, good biocompatibility, and precise multi-degree-of-freedom control [14].
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Magnetically driven capsules can usually be divided into magnetic force and mag-
netic torque drive modes [15]. For the magnetic force mode, the gradient magnetic field
generated by the external permanent magnet or coil can apply magnetic attraction force to
the capsule embedded with the permanent magnet, so as to realize the active movement of
the capsule in the GI tract [16,17]. Although the magnetic force mode has the advantages
of a simple working principle and low cost, the precise movement and control is not
always possible, since the magnetic force can vary depending on the angle and the distance
between the capsule and the external magnet driver [18]. At the same time, this drive mode
also exists the problem of pose singularity in certain areas of the working space [19].

The magnetic torque driving method is mainly divided into two types. One is to
use the static magnetic torque generated by the gradient magnetic field to realize the
rolling locomotion of the capsule [20,21]. The other is to use the dynamic magnetic torque
generated by the uniform rotating magnetic field to drive the capsule [22]. For the preceding
type, the magnetic force is coupled with the magnetic torque. Therefore, the control
flexibility and motion accuracy seem low. For the latter type, since the uniformly rotating
magnetic field eliminates the coupling of magnetic force and magnetic torque, and the
arbitrary adjustment of the direction, strength, and rotation speed of the magnetic field
can be realized [23], it has higher controllability and flexibility. Although the researchers
have realized the active movement of the capsule using the uniform rotating magnetic
field [24], the accuracy of posture control needs to be further improved. In fact, the accurate
posture control can be achieved only by realizing the separation of the capsule posture
adjustment and locomotion. Fortunately, the dual-spin body provides the possibility to
achieve this goal.

Meanwhile, to ensure the safe and reliable operation in the GI tract, the stability of
the capsule robot needs to be studied. For the stability of the dual-spin body, researchers
have launched a series of studies. Likins [25] obtained the posture stability region of the
dual-spin spacecraft by using the Routh–Hurwitz criterion. Ling Dehai [26] deduced the
posture stability criterion of the dual-spin satellite through the Lyapunov method. Han
and Zhang [27] derived the free posture dynamics equation of the dual-spin spacecraft
and obtained the conditions for posture stability. Aslanov and Yudintsev [28] studied
the posture dynamics and control of a free dual-spin gyroscope spacecraft with variable
structure. The posture stability of the aforementioned dual-spin bodies was studied by the
sign of the real part of the characteristic root of the differential equation or by constructing
of the Lyapunov function. However, the above studies all neglected the effect of external
torque. In fact, the external torque has significant impact on the posture stability of the
dual-spin body [29]. At the same time, the above stability research methods are only
suitable for the linear systems with constant coefficients, rather than the periodic system
with variable coefficients. Fortunately, the stability of periodic systems with variable
coefficients can be studied by the eigenvalues of the system transition matrix based on the
Floquet–Lyapunov theory.

To achieve the accurate posture control of the capsule robot, this paper proposes a
dual-spin spherical capsule robot (DSCR) driven by pure magnetic torque, which can
achieve the separation and conversion of the posture adjustment and rolling locomotion.
Considering the actual working conditions in the GI tract, the posture dynamics equation of
the DSCR under the action of external torque was established. By using Floquet–Lyapunov
theory, the stability of the periodic variable coefficient dynamic system was studied. The
influences of the parameters such as the magnetic induction intensity, the angular velocity
of the universal rotating magnetic field (URMF), and the centroid deviation to the system
stability were analyzed.

The contributions of this paper includes: (1) A dual-spin structure capsule robot
driven by the URMF was proposed, which solves the problem of coupling between mag-
netic force and magnetic torque of the magnetic-driven capsule robot. (2) The posture
dynamics equation of the DSCR under complex torque was established, which expands
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the research scope of double-spin body. (3) The posture stability domain of the DSCR for
the asymptotically stable motion and periodic motion were obtained.

The rest of the paper is organized as follows. The structure and the working principle
of the DSCR are introduced in Section 2. The posture dynamic modeling of the DSCR is
presented in Section 3. In Section 4, the posture stability of the DSCR is analyzed, then,
experiments are conducted for validation in Section 5. Finally, in Section 6, conclusions
are drawn.

2. System Overview
2.1. The Structure of the DSCR

The prototype and cross-sectional view of the DSCR are shown in Figure 1a,b, respec-
tively. The DSCR is composed of the upper and lower hemispheres, in which the upper
hemispherical shell, the sleeve, and the NdFeB permanent magnet are consolidated to form
the upper hemisphere. The wireless image transmission module (WITM), the central axis,
and the lower hemispherical shell are consolidated to the lower hemisphere. The upper
and lower hemispheres are connected by the bearing, and they can rotate relative to each
other around the central axis.
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Figure 1. The structure of the dual-spin spherical capsule robot (DSCR). (a) The prototype, (b) the 
3D cross-sectional view. 

The main structural parameters of the DSCR are listed in Table 1. The diameter and 
weight of the DSCR are 20 mm and 10 g, respectively. The brand of the radially magnet-
ized NdFeB permanent magnet is N50 and the magnetic torque amplitude is 0.2 A.m2. 
The shell of the upper and lower hemispheres can be fabricated by additive manufac-
turing. 
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Name Value/ Material 
The upper hemisphere shell ABS Plastics 

The sleeve Aluminum alloy 
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Because the upper hemisphere is fixated with the NdFeB permanent magnet, it can 
rotate about the central axis under the action of the URMF generated by the tri-axial or-
thogonal square Helmholtz coils (TOSHC), and the lower hemisphere is under-actuated 
because of the lack of driving source. Since the upper and lower hemispheres form a co-

Figure 1. The structure of the dual-spin spherical capsule robot (DSCR). (a) The prototype, (b) the 3D
cross-sectional view.

The main structural parameters of the DSCR are listed in Table 1. The diameter and
weight of the DSCR are 20 mm and 10 g, respectively. The brand of the radially magnetized
NdFeB permanent magnet is N50 and the magnetic torque amplitude is 0.2 A.m2. The shell
of the upper and lower hemispheres can be fabricated by additive manufacturing.

Table 1. The main structural parameters of the DSCR.

Name Value/Material

The upper hemisphere shell ABS Plastics
The sleeve Aluminum alloy

The NdFeB permanent magnet Φ7.5 × Φ6 × 5 mm
The wireless image transmission module (WITM) -

The central axis Aluminum alloy
The lower hemisphere shell ABS Plastics

The bearing Φ6 × Φ3 × 2.5 mm

Because the upper hemisphere is fixated with the NdFeB permanent magnet, it can
rotate about the central axis under the action of the URMF generated by the tri-axial
orthogonal square Helmholtz coils (TOSHC), and the lower hemisphere is under-actuated
because of the lack of driving source. Since the upper and lower hemispheres form a
coaxial body and have different rotation speed around the center axis, the coaxial body
further constitutes a dual-spin body [30]. The rotation of the upper hemisphere makes
the DSCR have the attribute of gyroscope, while the under-actuated lower hemisphere
provides a stable platform for the WITM.
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2.2. Three-Phase Current Superposition Formula of the URMF

As shown in Figure 2, the three-phase alternating current feeding into the TOSHC can
generate the URMF after electromagnetic induction and the superposition polarization.
The three-phase current superposition formula of the URMF can be expressed as [31]

I =

 Ix
Iy
Iz

 =

 I0 sin a sin(ωt− φx)
−I0 sin b sin(ωt + φy)
I0 sin c sin(ωt + π/2)

 (1)

where, I0 is the amplitude of the applied electrical current. cosa, cosb, and cosc are the
direction cosines of the normal vector nB of the URMF. φx, φy are the phase angles, and φx
= arctan (cosc*cosa/cosb), φy = arctan (cosc*cosb/cosa).
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Figure 2. Application scenario of the DSCR and the control system of the universal rotating mag-
netic field (URMF). A: Double working mode of the DSCR: The fixed-point panoramic observation 
in the passive mode (n2, n3, n4); The rolling locomotion in the active mode (n1, n5). B: The tri-axial 
orthogonal square Helmholtz coils (TOSHC). C: The URMF controller. D: The Joystick. E: The in-
teractive interface. 

Figure 2. Application scenario of the DSCR and the control system of the universal rotating magnetic
field (URMF). A: Double working mode of the DSCR: The fixed-point panoramic observation in
the passive mode (n2, n3, n4); The rolling locomotion in the active mode (n1, n5). B: The tri-axial
orthogonal square Helmholtz coils (TOSHC). C: The URMF controller. D: The Joystick. E: The
interactive interface.

2.3. Working Principle of the DSCR

Figure 2 shows the overall medical application scenario of the DSCR inside the stom-
ach. The whole system mainly consists of three parts: (1) the DSCR (A); (2) the TOSHC (B);
and (3) the control unit of the URMF (C, D, E).

The implementation scheme is as follows: after the DSCR is swallowed and entered
the A1 position of the stomach cavity, the doctor adjusts the normal vector of the URMF nB
to the horizontal position n1 by manipulating the joystick (D) of the controller (C) according
to the real-time image transmitted by the WITM. Under the action of the magnetic torque
follow-up effect [32], the axis nf of the DSCR can follow n1 to reach the horizontal position,
and then the DSCR works in the active mode, which can realize rolling locomotion on the
surface of the stomach.

When the DSCR reaches the position A2, nB is adjusted from the horizontal position
to the non-horizontal position, and the conversion of the DSCR from the active mode to
the passive mode can be realized. When nB is adjusted to the orientations of n2, n3, and n4,
the axis nf of the DSCR can be adjusted to nf2, nf3, nf4 in sequence following nB. Therefore,
the fixed-point panoramic observation can be achieved with the help of the DSCR vision.
If the next region needs to be observed, nB can be adjusted again to the horizontal position,
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as shown by n5 in Figure 2. After the DSCR rolls to the position A3, the above inspection
operation process can be repeated.

In summary, the DSCR with the dual-spin structure not only can realize posture control
arbitrarily, but can also realize the separation and mutual conversion of the fixed-point
posture adjustment and the rolling locomotion.

3. Posture Dynamic Modeling

Since the fixed-point posture adjustment function in the passive mode is the key to
the conversion of the dual mode, this paper only studies the passive mode of the DSCR.

3.1. The Description of the Posture

As shown in Figure 3, the posture of the DSCR can be described by the orientation of
the oz2 axis of the coordinate system ox2y2z2, which is connected to the lower hemisphere
of the DSCR, and the oz2 axis is coincident with the axis nf. The coordinate system ox2y2z2
can be obtained by rotating the fixed coordinate system oxyz around the oy axis by angle α
(altitude angle), and then around the ox2 axis by angle β (azimuth angle). Since the rotation
along the oz2 axis does not affect the orientation of the DSCR, the posture of the DSCR can
be represented by the altitude angle α and the azimuth angle β, and ox2y2z2 is the résal
coordinate system. Considering that the DSCR is an axisymmetric structure and the résal
coordinate system ox2y2z2 is the principal axis coordinate system, then the axis nf is the
polar axis.

Micromachines 2021, 12, x FOR PEER REVIEW 5 of 20 
 

 

When the DSCR reaches the position A2, nB is adjusted from the horizontal position 
to the non-horizontal position, and the conversion of the DSCR from the active mode to 
the passive mode can be realized. When nB is adjusted to the orientations of n2, n3, and n4, 
the axis nf of the DSCR can be adjusted to nf2, nf3, nf4 in sequence following nB. Therefore, 
the fixed-point panoramic observation can be achieved with the help of the DSCR vision. 
If the next region needs to be observed, nB can be adjusted again to the horizontal posi-
tion, as shown by n5 in Figure 2. After the DSCR rolls to the position A3, the above in-
spection operation process can be repeated. 

In summary, the DSCR with the dual-spin structure not only can realize posture 
control arbitrarily, but can also realize the separation and mutual conversion of the 
fixed-point posture adjustment and the rolling locomotion. 

3. Posture Dynamic Modeling 
Since the fixed-point posture adjustment function in the passive mode is the key to 

the conversion of the dual mode, this paper only studies the passive mode of the DSCR. 

3.1. The Description of the Posture 
As shown in Figure 3, the posture of the DSCR can be described by the orientation 

of the oz2 axis of the coordinate system ox2y2z2, which is connected to the lower hemi-
sphere of the DSCR, and the oz2 axis is coincident with the axis nf. The coordinate system 
ox2y2z2 can be obtained by rotating the fixed coordinate system oxyz around the oy axis by 
angle α (altitude angle), and then around the ox2 axis by angle β (azimuth angle). Since 
the rotation along the oz2 axis does not affect the orientation of the DSCR, the posture of 
the DSCR can be represented by the altitude angle α and the azimuth angle β, and ox2y2z2 

is the résal coordinate system. Considering that the DSCR is an axisymmetric structure 
and the résal coordinate system ox2y2z2 is the principal axis coordinate system, then the 
axis nf is the polar axis. 

 
Figure 3. Posture representation of the DSCR. 

According to Figure 3, the homogeneous transformation matrix A1 from the résal 
coordinate system ox2y2z2 to the fixed coordinate system oxyz can be obtained as  

α α β α β
β β

α α β α β

 
 − 
 − 

A1

cos sin sin sin cos
= 0 cos sin

sin cos sin cos cos
 (2) 

3.2. Torque Analysis 
The external torques acting on the DSCR include: the coupling magnetic torque of 

the URMF and the NdFeB permanent magnet, the viscoelastic friction torque between the 

Figure 3. Posture representation of the DSCR.

According to Figure 3, the homogeneous transformation matrix A1 from the résal
coordinate system ox2y2z2 to the fixed coordinate system oxyz can be obtained as

A1 =

 cos α sin α sin β sin α cos β
0 cos β − sin β

− sin α cos α sin β cos α cos β

 (2)

3.2. Torque Analysis

The external torques acting on the DSCR include: the coupling magnetic torque of
the URMF and the NdFeB permanent magnet, the viscoelastic friction torque between
the DSCR and the GI tract, and the gravity torque introduced by the deviation of the
DSCR centroid.

3.2.1. The Coupled Magnetic Torque

To describe the basic unit of the URMF—the rotating magnetic vector B, the URMF
coordinate system ox3y3z3 is introduced with the DSCR spherical center o as the coordinate
origin. Where, the oz3 axis coincides with the normal vector of the URMF nB, the ox3,
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oy3 axis are located in the rotation plane of the rotating magnetic vector B, and form a
right-handed coordinate system with oz3 axis, as shown in Figure 4.

Micromachines 2021, 12, x FOR PEER REVIEW 6 of 20 
 

 

DSCR and the GI tract, and the gravity torque introduced by the deviation of the DSCR 
centroid. 

3.2.1. The Coupled Magnetic Torque 
To describe the basic unit of the URMF—the rotating magnetic vector B, the URMF 

coordinate system ox3y3z3 is introduced with the DSCR spherical center o as the coordi-
nate origin. Where, the oz3 axis coincides with the normal vector of the URMF nB, the ox3, 
oy3 axis are located in the rotation plane of the rotating magnetic vector B, and form a 
right-handed coordinate system with oz3 axis, as shown in Figure 4. 

 
Figure 4. The URMF coordinate system ox3y3z3. 

Similar to the rotation relationship of Figure 3, ox3y3z3 can be obtained by rotating 
the fixed coordinate system oxyz about the oy axis by α1 firstly and then about the ox3 ax-
is by β1, then the oz3 axis can be coincide with nB. Therefore, the orientation of the URMF 
can be expressed by the altitude angle α1 and the azimuth angle β1. 

According to the Figure 4, the homogeneous transformation matrix A2 from the 
URMF coordinate system ox3y3z3 to the fixed coordinate system oxyz can be obtained as 

α α β α β
β β

α α β α β

 
 − 
 − 

2A
1 1 1 1 1

1 1

1 1 1 1 1

cos sin sin sin cos
= 0 cos sin

sin cos sin cos cos
 (3) 

The orientation of the URMF can be expressed in the coordinate system ox3y3z3 as 

( )3 =B

T
0 0 1n  (4) 

The orientation of the URMF can be expressed in the fixed coordinate system oxyz 
as 

( )T
a b c=B cos cos cosn  (5) 

where, a, b, and c are the angles between the nB and each coordinate axis of the fixed co-
ordinate system oxyz. 

Since nB and nB3 are all the orientations of the URMF, the following relationship are 
satisfied 

3

α α β α β
β β

α α β α β

= ⋅
  
  = −  
  −  

B 2 BA

1 1 1 1 1

1 1

1 1 1 1 1

cos sin sin sin cos 0
0 cos sin 0

sin cos sin cos cos 1

n n

 (6) 

From the Equation (6), Equation (7) can be derived 

Figure 4. The URMF coordinate system ox3y3z3.

Similar to the rotation relationship of Figure 3, ox3y3z3 can be obtained by rotating the
fixed coordinate system oxyz about the oy axis by α1 firstly and then about the ox3 axis by
β1, then the oz3 axis can be coincide with nB. Therefore, the orientation of the URMF can be
expressed by the altitude angle α1 and the azimuth angle β1.

According to the Figure 4, the homogeneous transformation matrix A2 from the URMF
coordinate system ox3y3z3 to the fixed coordinate system oxyz can be obtained as

A2 =

 cos α1 sin α1 sin β1 sin α1 cos β1
0 cos β1 − sin β1

− sin α1 cos α1 sin β1 cos α1 cos β1

 (3)

The orientation of the URMF can be expressed in the coordinate system ox3y3z3 as

nB3 =
(

0 0 1
)T (4)

The orientation of the URMF can be expressed in the fixed coordinate system oxyz as

nB =
(

cos a cos b cos c
)T (5)

where, a, b, and c are the angles between the nB and each coordinate axis of the fixed
coordinate system oxyz.

Since nB and nB3 are all the orientations of the URMF, the following relationship
are satisfied

nB = A2·nB3

=

 cos α1 sin α1 sin β1 sin α1 cos β1
0 cos β1 − sin β1

− sin α1 cos α1 sin β1 cos α1 cos β1

 0
0
1

 (6)

From the Equation (6), Equation (7) can be derived

α1 = arctan
cos a
cos c

, β1 = b− π

2
(7)

The rotating magnetic vector B can be represented in the ox3y3z3 as

B3 = (B cos ωt, B sin ωt, 0)T (8)

where, B is the magnetic induction intensity of the URMF, and ω is the angular velocity of
the URMF.

In order to represent the rotating magnetic vector in the résal coordinate system
ox2y2z2, B3 can be firstly transformed to the fixed coordinate system oxyz, then, transformed
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to the résal system ox2y2z2. Therefore, the rotating magnetic vector can be represented in
ox2y2z2 as

B2 = A1
−1A2B3 = B

 E1 cos ωt + E2 sin ωt
E3 cos ωt + E4 sin ωt
E5 cos ωt + E6 sin ωt

 (9)

where, the specific forms of E1, E2, E3, E4, E5 and E6 are following as

E1 = a11 cos α− a31 sin α,
E2 = a12 cos α− a32 sin α,
E3 = a11 sin α sin β + a31 cos α sin β
E4 = a12 sin α sin β + a22 cos β + a32 cos α sin β,
E5 = a11 sin α cos β + a31 cos α cos β,
E6 = a12 sin α cos β− a22 sin β + a32 cos α cos β
a11 = cos α1, a12 = sin α1 sin β1, a13 = sin α1 cos β1
a21 = 0, a22 = cos β1, a23 = − sin β1
a31 = − sin α1, a32 = cos α1 sin β1, a33 = cos α1 cos β1

Since the symmetrical axis of NdFeB permanent magnet coincides with the polar axis
nf, the magnetic dipole moment of the NdFeB magnet can be represented in the ox2y2z2 as

m2 = (m cos(ωt− δ), m sin(ωt− δ), 0)T (10)

where m is the magnitude of the magnetic dipole moment. δ is the slip angle between the
magnetic dipole moment and the rotating magnetic vector.

Based on the magnetic coupling theory [33], the coupling magnetic torque of the
URMF and the NdFeB permanent magnet can be expressed in the résal coordinate system
ox2y2z2 as (

Tx2 Ty2 Tz2
)T

= m2 × B2 =
(

C1 C2 C3
)T (11)

where
C1 = mB(E5 cos ωt sin(ωt− δ) + E6 sin ωt sin(ωt− δ))
C2 = mB(E5 cos ωt sin(ωt− δ) + E6 sin ωt sin(ωt− δ))

C3 = mB
(

E3 cos ωt cos(ωt− δ) + E4 sin ωt cos(ωt− δ)−
E1 cos ωt sin(ωt− δ)− E2 sin ωt sin(ωt− δ)

)
3.2.2. The Viscoelastic Friction Torque

When the DSCR works in the GI tract, the deformation of the GI tract and the digestive
fluid will exert a viscoelastic damping effect on the DSCR, as shown in Figure 5. It can be
seen from the literature [34,35] that when the compression deformation ξ of the GI tract is
small, the rolling speed V of the DSCR is much smaller than the speed of sound and the
characteristic time ξ/V is much larger than the dissipation and relaxation time. Then, the
torque of the viscoelastic frictional resistance to the sphere center o of the DSCR under the
quasi-static state can be expressed as

M = −RFNk0ωD (12)

where R is the radius of the DSCR. FN is the positive pressure of the DSCR on the contact
surface. ωD is the angular velocity of the DSCR. k0 is the friction coefficient, which can be
expressed as [30]

k0 =
1
3
(3η2 − η1)

2

3η2 + 2η1

[
(1− ν2)(1− 2ν)

Yν2

]
(13)

where η1 and η2 are the viscosity coefficient of the DSCR and the GI tract, respectively. Y
and ν are the Young’s modulus and Poisson’s ratio of the GI tract. This formula relates the
friction coefficient to the viscous and elastic constants of the contact material.
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From the Equations (12) and (13), the projection of the viscoelastic friction torque in
the résal coordinate system ox2y2z2 can be obtained as

M f x2 = −k
.
β

M f y2 = −k
.
α cos β

M f z2 = −k
.
α sin β

(14)

where k is the viscous damping coefficient, k = k0RFN .
.
α and

.
β are the angular velocity of

the DSCR around the oy axis and ox2 axis, respectively.
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3.2.3. The Gravity Torque

When the DSCR centroid o1 moves on the polar axis nf, its own gravity G will exert a
torque on the sphere center o, as shown in Figure 5. The gravity torque can be expressed in
the résal coordinate systemox2y2z2 as MGx2

MGy2
MGz2

 = oo1 ×G =

 Gl cos α sin β
Gl sin α

0

 (15)

where l is the modulus of the vector oo1. When l takes a positive value, the centroid is
above the sphere center. When l takes a negative value, the centroid is below the sphere
center. When l = 0, the centroid coincides with the sphere center.

According to Equations (11), (14) and (15), the combined external torque acting on the
DSCR can be expressed in the résal coordinate system ox2y2z2 as

Mx2 = Tx2 + M f x2 + MGx2
My2 = Ty2 + M f y2 + MGy2
Mz2 = Tz2 + M f z2 + MGz2

(16)

3.3. Posture Dynamics Equation

Based on the theory of angular momentum change of the system in the arbitrary
rotating coordinate system [36], the résal coordinate system ox2y2z2 is selected as the
rotating coordinate system. The Euler dynamic equation describing the fixed-point posture
adjustment of the DSCR can be expressed as

Je
.
p + (J1 + J2 − Je)qr + J1σq = Mx2

Je
.
q− (J1 + J2 − Je)pr− J1σp = My2

J1(
.
r +

.
σ) + J2

.
r = Mz2

J1(
.
r +

.
σ) = M∆

(17)

where Je is the equatorial moment of inertia of the DSCR. J1 and J2 are the polar inertia
moment of the upper and lower hemisphere, respectively. {p, q, r} are the angular velocity
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of the lower hemisphere in ox2y2z2, and p =
.
β, q =

.
α cos β, r = − .

α sin β. σ is the angular
velocity of the upper hemisphere relative to the lower hemisphere. Mx2, My2, Mz2 are
the projections of the external torque in the ox2y2z2. M4 is the total external torque of
the upper hemisphere along the polar axis nf (we assume M4 = 0) [36]. When the system
reaches the steady state, the upper hemisphere rotates synchronously with the URMF,
so it can be considered that the constant speed constraint condition is satisfied, that is,
σ = ω. Considering that the resistance torque of the DSCR along the polar axis, nf can be
compensated by the driving torque, that is, Mz2 = 0. Therefore, the last two formulas of
Equation (17) can be ignored.

Summing up, the posture dynamic equation describing the electric-magnetic-mecha nical-
liquid coupling behaviour of the DSCR in the GI tract can be expressed as Equation (18).
Moreover, this equation can be classified as an extension of the Lagrangian case for the
coaxial bodies system—the fixed-point motion of the coaxial body under the external
recovery/overturning moment.

Je
..
β + J1ω

.
α cos β− (J1 + J2 − Je)

.
α

2 sin β cos β =

mB sin(ωt− δ)(E5 cos ωt + E6 sin ωt)− k
.
β + Gl cos α sin β

Je
..
α cos β− Je

.
α sin β− J1ω

.
β + (J1 + J2 − Je)

.
α

.
β sin β =

−mB cos(ωt− δ)(E5 cos ωt + E6 sin ωt)− k
.
α cos β + Gl sin α

(18)

4. Posture Stability Analysis
4.1. The Floquet–Lyapunov Theory

Since the altitude angle α and the azimuth angle β are typically small, it can be
approximated as sinϑ = ϑ, cosϑ = 1, (ϑ = α, β), and the high-order small amount

.
α

2,
.
α

.
β,

.
αsinβ can be ignored. Introducing the dimensionless time scale τ = ωt, Equation (18) can
be expressed in matrix form as

ω2MX′′ + ωNX′ + K(τ)X = εF(τ) (19)

where X = (α, β)T, X′ = dX/dτ, ε = mB, the matrices M, N, K, F are mass matrix, damping
matrix, nonlinear stiffness matrix, and external excitation matrix respectively, and

M =

(
Je 0
0 Je

)
, N =

(
k −J1ω

J1ω k

)
,

K =

(
K11 K12
K21 K22

)
,F =

(
(sin α1 cos τ − cos α1 sin β1 sin τ) cos(τ − δ)
(− sin α1 cos τ + cos α1 sin β1 sin τ) sin(τ − δ)

)
K11 = ε(cos α1 cos τ + sin α1 sin β1 sin τ) cos(τ − δ)− Gl
K12 = −ε cos β1 sin τ cos(τ − δ)
K21 = −ε(cos α1 cos τ + sin α1 sin β1 sin τ) sin(τ − δ)
K22 = ε cos β1 sin τ sin(τ − δ)− Gl

Since the matrices K(τ) and F(τ) change periodically with τ, Equation (19) is a second-
order periodic variable coefficient dynamic equation. Because the stability of the non-
homogeneous periodic variable coefficient dynamic equation and the corresponding ho-
mogeneous equation have the same necessary and sufficient conditions, the homogeneous
form of Equation (19) in the form of first order state variables can be expressed as

q′ = A(τ)q (20)

where q = (X, X′)T, A =

(
0 I

A21 A22

)
, 0 represents zero matrix, I is the second-order

unit matrix, A21 = −M−1K
ω2 , A22 = −M−1N

ω .
Since the matrices A(τ) change periodically with τ, Equation (20) is still a periodic

variable coefficient dynamic system. According to the Floquet–Lyapunov theory, the stabil-
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ity of the periodic variable coefficient system can be studied according to the eigenvalue
λ of its transition matrix P [37]: If the modulus of all eigenvalues of P are less than 1, the
system is asymptotically stable. If P has an eigenvalue whose modulus is greater than 1,
the system is unstable. If the modulus of the eigenvalues of P are less than or equal to 1,
and at least one of them is equal to 1, the system is limit stable. The eigenvalues of the
transition matrix are also called the characteristic multipliers [38]. Therefore, the stability
of the dynamic system (20) can be determined by the distribution of the characteristic
multipliers of the transition matrix P.

According to the method of C.S.Hu [39], the transition matrix P of the periodic system
can be calculated as  P =

Nk
Π

i=1

(
I +

J
∑

j=1

(∆iCi)
j

j!

)
Ck =

1
∆k

∫ ψk
ψk−1

A(ξ)dξ, ξ ∈ τk

(21)

where I is the unit matrix, Nk is the number of parts that divide the period T of the periodic
system equally, and each average point is represented by k = 0, 1, 2, . . . Nk. The kth interval
(ψk−1, ψk) can be denoted by τk and its size by ∆k = ψk − ψk−1. Within the interval τk, the
periodic coefficient matrix Ci can be replaced by a constant coefficient matrix Ck. And A is
the periodic coefficient matrix of the periodic system.

According to the Equations (20) and (21), the stable domain of the DSCR can be
obtained. Usually, 60 < Nk < 100, and J ≥ 2 [40]. Therefore, the period T of Equation (20) is
divided into 100 parts, and J = 4. The other parameters of the DSCR are listed in Table 2.

Table 2. The control parameters of the DSCR.

Parameter Value

The polar inertia moment of the upper hemisphere J1 = 1.05 × 10−7 kg·m2

The polar inertia moment of the lower hemisphere J2 = 7.34 × 10−8 kg·m2

The equatorial inertia moment of the DSCR Je = 1.97 × 10−7 kg·m2

The viscous damping coefficient k = 1.65 × 10−5

Magnetic dipole moment of the NdFeB m = 0.2 A·m2

The normal vector of the URMF nB = (0◦, −20◦)
The angular velocity of the URMF ω = 18π rad/s
The magnetic induction intensity B = 7 mT

The initial posture angles of the DSCR (10◦, 15◦)
The slip angle δ 10◦

4.2. Three Stable Forms of the DSCR

The modulus of the system characteristic multiplier varies with the control parameters
of the DSCR, and corresponds to three typical motion states of asymptotically stable motion,
periodic motion, and chaotic motion.

Since the polar axis nf should follow nB to change its orientation, then nB can be
thought as the target orientation. When the DSCR is in different motion state, the polar axis
nf and the target orientation nB have different orientation relations, the angle θ between nf
and nB is defined as the orientation error of the system, as shown in Figure 6, and

θ = arccos
(

n f nB/
∣∣∣n f

∣∣∣|nB|
)

(22)

where nf and nB represents the orientation of the polar axis nf and the URMF in the fixed
coordinate system oxyz respectively, and{

n f = (sin α cos β,− sin β, cos α cos β)T

nB = (sin α1 cos β1,− sin β1, cos α1 cos β1)
T (23)
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where α and β are the altitude angle and the azimuth angle of the polar axis nf. α1 and β1
are the altitude angle and the azimuth angle of the target orientation nB.
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4.2.1. Asymptotically Stable Motion

When the modulus of the characteristic multiplier is less than 1, the system phase
diagram with the altitude angle α and the azimuth angle β as state variables is an asymp-
totically stable curve, as shown in Figure 7a. When the system reaches the steady state, the
polar axis nf and the target orientation nB coincide in the fixed coordinate system oxyz, as
shown in Figure 7b.
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When the angular velocity of the URMF ω and the magnetic induction intensity B
vary widely, the variation law of the modulus of the system characteristic multipliers was
obtained, as shown in Figure 8.

Figure 8 shows that the modulus of the system characteristic multiplier decreases with
ω and increases with B. The critical points of Figure 8, which satisfy the modulus of the
system characteristic multipliers λ equal 1 was extracted, and the data was fitted by the
least square method. Then, the stability domain of the system in the parameter space of ω
and B can be obtained, as shown in Figure 9.
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In Figure 9, the stability domain is divided into two parts by the critical point of
|λ| = 1. In the upper region, |λ| > 1, and the system is unstable. On the contrary, the DSCR
can keep the posture stable in the lower region of |λ| < 1. Figure 9 shows that the posture
stability of the DSCR can be improved by increasing the angular velocity of the URMF
and decreasing the magnetic induction intensity. The reason is that when the rotational
speed of the upper hemisphere increases with the URMF, the stability of the system can
be improved under the gyroscopic effect. While the torque balance of the system may be
destroyed by increasing the magnetic induction intensity.

4.2.2. Stability of the Periodic Motion

When the modulus of the system characteristic multiplier is equal 1, the steady state
phase diagram of the system with the altitude angle α and the azimuth angle β as state
variables is a curve of periodic oscillation, as shown in Figure 10a, and the polar axis nf
precesses near nB, as shown in Figure 10b.
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In order to explore the precession law of the polar axis nf, the angle θm between the 
equilibrium position of the polar axis nf and the target orientation nB is defined as the 
mean orientation error of the system, and the swing angle γ of the polar axis nf is defined 
as the precession amplitude of the system, as shown in Figure 10b. Fix ω = 18π rad/s, B = 
7 mT, the variation law of θm and γ with the centroid deviation l were obtained, as shown 
in Figure 11a,b, respectively. 

Figure 10. Periodic motion of the DSCR with ω = 18π rad/s, B = 7 mT, l = −2 mm. (a) The steady phase diagram of the
system; (b) The precession of the polar axis nf.

In order to explore the precession law of the polar axis nf, the angle θm between the
equilibrium position of the polar axis nf and the target orientation nB is defined as the mean
orientation error of the system, and the swing angle γ of the polar axis nf is defined as the
precession amplitude of the system, as shown in Figure 10b. Fix ω = 18π rad/s, B = 7 mT,
the variation law of θm and γ with the centroid deviation l were obtained, as shown in
Figure 11a,b, respectively.
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Figure 11 shows that when the centroid approaches the sphere center along the polar
axis nf from below (l < 0), the mean orientation error and the precession amplitude of the
system are both decreasing. When the centroid coincides with the sphere center (l = 0), the
mean orientation error and the precession amplitude of the system are zeros. When the
centroid deviates the sphere center along the polar axis nf from upwards (l > 0), the mean
orientation error and the precession amplitude of the system both keep increasing. At the
same time, compared with the upward deviation of the centroid along the polar axis nf,
when the centroid is deviated downward, the mean orientation error and the precession
amplitude of the system are smaller. Therefore, in the assembly and manufacturing process,
the centroid of the DSCR should be coincident with the sphere center as far as possible.

When the angular velocity of the UMMF ω and the magnetic induction intensity B
vary over a wide range, the variation law of mean orientation error θm and the precession
amplitude γ with ω and B as the control variables are showed in Figure 12a,b, respectively.
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precession amplitude γ with ω and B.

Figure 12a shows that the mean orientation error of the system can be reduced by in-
creasing ω and B simultaneously. While Figure 12b shows that increasing ω and decreasing
B can significantly reduce the precession amplitude of the system.

To explore the stability of the DSCR for the periodic motion, taking ω and B as the
control parameters, the stability domain of the system under different centroid deviation is
shown in Figure 13. The upper and lower areas of the curve represent the stable domain
and unstable domain, respectively. Similar to Figure 9, Figure 13 shows that increasing
the angular velocity of the URMF and decreasing the magnetic induction intensity can
improve the stability of periodic motion of the system.
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4.2.3. Chaotic Motion

As shown in Figure 14, when the modulus of the system characteristic multiplier is
greater than 1, the system phase diagram with the altitude angle α and the azimuth angle β
as state variables is chaotic, and the posture of the DSCR is unstable, which corresponding
to the control condition of ω = 18π rad/s, B = 12 mT, l = 0 mm.
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5. Experiment and Discussion

To verify the theoretical analysis results, an experiment platform as shown in Figure 15
was built. The platform consists of the host computer, the controller, the TOSHC, and
the DSCR. When the angular velocity of the UMMF ω, the magnetic induction intensity
B, and the orientation of the URMF nB are input to the host computer, the controller can
generate three-phase electric power that meet the control requirements, and the URMF can
be generated after the three-phase alternating current are fed into the TOSHC. Since the
orientation of the URMF can be controlled by the direction cosine of nB, and the axis nf
of the DSCR can follow nB to change its orientation, then the posture of the DSCR can be
controlled by nB. In order to simulate the environment of the GI tract, the isolated porcine
intestinal tissue was spread on the surface of the stomach model.
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5.1. Principle of the Polar Axis Orientation Measurement

The schematic diagram and physical diagram of the orientation measuring device of
the polar axis nf are shown in Figure 16a,b, respectively. As shown in Figure 16a, the unit
sphere with the DSCR spherical center o as the coordinate origin, and the unit sphere is
intersected with the oz axis of the fixed coordinate system oxyz at the point o’. The tangent
plane (x′, y′) of the unit sphere is parallel to the plane (x, y). According to Figure 3, the
coordinates of the point p, which is the intersection point of the polar axis nf and the (x′, y′)
plane can be obtained as

x′ = tan α, y′ = − sec α tan β (24)
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When the polar axis nf moves in a small range near the oz axis, the second order small
quantities of α, β are omitted, and the above equation can be simplified as

x′ = α, y′ = −β (25)

The x′ axis is called α axis, and the −y′ axis is called β axis, so the trajectory of the
polar axis nf on the unit sphere can be approximately replaced by the trajectory on the
(α, β) plane, that is, the plane pole trajectory. Moreover, the mean orientation error and the
precession amplitude of the system are represent by the angles θm and γ, respectively.

As shown in Figure 16b, the wireless image transmission module of the DSCR was
replaced with a laser diode. The coordinate paper is placed at h = 100 mm above the sphere
center of the DSCR. The bright spot of the laser diode on the coordinate paper can reflect
the end motion trajectory of the polar axis nf in real time, and the trajectory can be recorded
by the camera. The horizontal and vertical axes of the coordinate paper correspond to
the altitude angle α and the azimuth angle β, respectively. Moreover, each scale on the
coordinate paper represents 10◦.
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5.2. The Posture Stability Experiment

To verify the posture stability of the DSCR, three groups of cross experiments were
designed as shown in Table 3, and the DSCR with no centroid deviation was used. Set the
target orientation nB = (0◦, −20◦), when ω and B are controlled to change in turn, the end
motion trajectories of the polar axis nf are shown in Figure 17a–c, respectively.

Table 3. The cross experiments of the posture stability of the DSCR.

Experiment Number The Angular Velocity of the
URMF ω/(rad/s)

The Magnetic Induction
Intensity B/(mT) The Motion Law of the DSCR

(a) 18π 7 Asymptotically stable
(b) 14π 7 Period motion
(c) 18π 12 Chaotic motion

Figure 17a shows that the end motion trajectory of the polar axis nf is a fixed point
when ω = 18π rad/s, B = 7 mT, which indicates that the system is asymptotically stable
and the polar axis nf coincides with the target orientation nB. While Figure 17b shows
that the end motion trajectory of the polar axis nf is a curve of the periodic motion when
ω = 14π rad/s, B = 7 mT, which indicates that the polar axis nf makes the precession motion
around the target orientation nB. Moreover, the end motion trajectory of the polar axis nf in
Figure 17c is an irregular curve, indicating the chaotic motion of the system for the control
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parameters of ω = 18π rad/s, B = 12 mT. The above three groups of experiment results are
consistent with the results in Figure 9.
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5.3. The Precession Experiment

To verify the precession characteristics of the polar axis nf when the DSCR makes the
period motion, four DSCR models as shown in Figure 18 were 3D printed and assembled.
The four DSCR models have the same weight and size except the centroid deviation, and
the centroid deviation along the polar axis nf is 4 mm, 2 mm, −2 mm, −4 mm, respectively.
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Figure 18. Four DSCR models with different centroid deviation. (a) l = 4 mm, (b) l = 2 mm, (c) l = −2 mm, (d) l = −4 mm.

Set ω = 18π rad/s, B = 7 mT, and the target orientation nB = (0◦, −20◦), the end
motion trajectories of the polar axis nf of the centroid deviation l = −4 mm is shown in
Figure 19. From the equilibrium position and the end motion trajectory of the polar axis
nf, the mean orientation error θm and the precession amplitude γ as shown in Figure 16a
can be obtained. Table 4 shows the precession results of the polar axis nf for the four DSCR
models of Figure 18.
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Table 4. The precession results of the DSCR for different centroid deviation.

Centroid
Deviation

/(mm)

The Mean Orientation Error θm/(◦) The Precession Amplitude γ/(◦)

Theoretical
Value

Experiment
Value

Theoretical
Value

Experiment
Value

4 14.5 19.5 6.7 15.9
2 5.6 11.1 5.6 13.4
−2 3.8 9.2 3.8 10.1
−4 6.6 13.3 4.5 12.6

Table 4 shows that when the centroid approaches the sphere center from above
or below, the mean orientation error and the precession amplitude of the system both
gradually decreases. When the centroid is deviated up or down the same distance along
the polar axis nf, the mean orientation error and the precession amplitude are smaller when
the centroid moves down. The experiment results are consistent with the simulation results
of Figure 11. The error of theoretical calculation and experimental data may be caused by
the manufacturing and assembly errors of the DSCR and the system error of the orientation
measuring device of the polar axis nf.

6. Conclusions

The DSCR with a dual-spin structure driven by the URMF was proposed, which can
realize the fixed-point posture adjustment in the passive mode and the rolling locomotion in
the active mode. The posture dynamics equation of the DSCR and the stability domain for
the asymptotically stable motion and the periodic motion based on the Floquet–Lyapunov
theory were obtained.

In general, we conclude that the DSCR makes the asymptotically stable motion, the
periodic motion, the chaotic motion respectively, when the system characteristic multipliers
less than 1, equal to 1, and greater than 1 are satisfied. In detail, increasing the angular
velocity of the URMF and reducing the magnetic induction intensity can improve the
posture stability of the DSCR. Decreasing the centroid deviation, increasing the angular
velocity of the URMF can reduce the mean orientation error and the precession amplitude
of the system. At the same time, compared with the upward deviation of the centroid
along the polar axis, when the centroid is deviated downward, the orientation error and
the precession amplitude of the system are smaller.

This research has laid a solid foundation for the structural improvement and the
posture control of the DSCR.
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