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Abstract: Micro-electro-mechanical system inertial measurement unit (MEMS-IMU), a core compo-
nent in many navigation systems, directly determines the accuracy of inertial navigation system;
however, MEMS-IMU system is often affected by various factors such as environmental noise, elec-
tronic noise, mechanical noise and manufacturing error. These can seriously affect the application of
MEMS-IMU used in different fields. Focus has been on MEMS gyro since it is an essential and, yet,
complex sensor in MEMS-IMU which is very sensitive to noises and errors from the random sources.
In this study, recurrent neural networks are hybridized in four different ways for noise reduction
and accuracy improvement in MEMS gyro. These are two-layer homogenous recurrent networks
built on long short term memory (LSTM-LSTM) and gated recurrent unit (GRU-GRU), respectively;
and another two-layer but heterogeneous deep networks built on long short term memory-gated
recurrent unit (LSTM-GRU) and a gated recurrent unit-long short term memory (GRU-LSTM). Practi-
cal implementation with static and dynamic experiments was carried out for a custom MEMS-IMU
to validate the proposed networks, and the results show that GRU-LSTM seems to be overfitting
large amount data testing for three-dimensional axis gyro in the static test. However, for X-axis
and Y-axis gyro, LSTM-GRU had the best noise reduction effect with over 90% improvement in the
three axes. For Z-axis gyroscope, LSTM-GRU performed better than LSTM-LSTM and GRU-GRU in
quantization noise and angular random walk, while LSTM-LSTM shows better improvement than
both GRU-GRU and LSTM-GRU networks in terms of zero bias stability. In the dynamic experiments,
the Hilbert spectrum carried out revealed that time-frequency energy of the LSTM-LSTM, GRU-GRU,
and GRU-LSTM denoising are higher compared to LSTM-GRU in terms of the whole frequency
domain. Similarly, Allan variance analysis also shows that LSTM-GRU has a better denoising effect
than the other networks in the dynamic experiments. Overall, the experimental results demonstrate
the effectiveness of deep learning algorithms in MEMS gyro noise reduction, among which LSTM-
GRU network shows the best noise reduction effect and great potential for application in the MEMS
gyroscope area.

Keywords: recurrent neural network (RNN); long short term memory (LSTM); gated recurrent unit
(GRU); MEMS gyroscope; noise reduction

1. Introduction

MEMS-IMU has attracted much attention in the recent years owing to their low cost,
small size, and ease of integration [1]. This device is ushering in a huge market demand, as
it has become an important component of different navigation systems, attitude control
devices [2], unmanned aerial vehicles [3], robot navigation [4–6], satellite systems [7], etc.
MEMS-IMU system is often affected by various factors characterized on environmental,
electronic, and manufacturing noises all leading to random navigation errors when us-
ing MEMS-IMU [8,9]. These random errors reduce the accuracy of MEMS-IMUs and as
well limit their applications. Basically, MEMS-IMU consists of three orthogonal MEMS
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gyroscopes and MEMS accelerometers which are sensors used to determine navigation
accuracy in MEMS-IMU. Therefore, the effective mode tuning and noise reduction of
MEMS gyroscope is the key to improve the accuracy of MEMS-IMU system.

Mode tuning (or mode matching) is utilized for minimizing the frequency difference
between the drive and detection modes in order to improve the sensitivity of the gyro
and to achieve a highly accurate measurement [10]. Typically, two rings of automatic
gain control modulates the drive mode of the gyro and phase locked loop to achieve a
constant amplitude of drive mode vibration and locking of resonant frequency, while the
detection mode is balanced by two rings of force to eliminate the Coriolis and quadrature
forces [11]. In order to resist external disturbances, increase the robustness of the system,
the resonant frequency of the drive, and sense mode of the gyro need to be matched equally.
In Ref. [11], the matching of the drive and sense mode is achieved by generating DC voltage
through an additional conditioner, which is applied to the adjustable electrostatic unit
and the quadrature correction unit respectively. In Ref. [12], the frequency difference is
first adjusted manually, with a genetic algorithm utilized to further adjust the frequency
difference to a minimum value. Additionally, the Refs. [13–16] is based on the amplitude of
the quadrature error reaching its maximum value during mode matching. Furthermore, the
bandwidth is controlled by varying the tuning voltage such that the frequency separation
of the drive and detection resonant modes is controllable, and thus gyroscopic accuracy
improvement is achieved. Mode-matching control can also be achieved by exploiting the
phase relationship between the drive signals and the redundant quadrature error [17],
and by the mode-matching method with an applied electrostatic force phase frequency
characteristic to achieve accuracy improvement [18]. Considering the coupling errors
caused by external disturbances in ring and axisymmetric resonators, methods derived
from ring dynamics [19] can be used to tune the resonator mode coupling [20,21], and
similar techniques can be used to tune quadrupole gyros [22] and the parasitic coupling in
MEMS resonators [23]. In addition, some advanced control algorithms have been utilized
to improve the drive control performance. In Ref. [24], dynamic mode manifold and super-
twisting sliding mode are introduced to improve the performance of MEMS gyroscopes.
For some coupling errors caused by asymmetric structures and fabrication error, fuzzy
sliding mode control in [25] and adaptive sliding mode control in [26] are employed to
improve its robustness.

In addition to mode tuning, more and more works on various schemes for noise
reduction and compensation algorithms have been proposed to improve the accuracy of
MEMS gyroscope. In the last decade, many representative methods emerged for denoising
MEMS gyro. These include autoregressive sliding average [27], Allan variance [28], Kalman
filtering [29], wavelet thresholding [30], and machine learning represented by neural
network (NN) and support vector machine (SVM) [31–34]. Since the output signal of MEMS
gyro is generally non-stationary, the original signal needs to be smoothed. The smoothing
process entails the extraction of a stable random drift sequence via period-based analysis,
with linear autoregressive, sliding average, or mixed autoregressive sliding average utilized
in fitting the random drift sequence to obtain a smooth signal. The main operations
in autoregressive averaging model are the determination of suitable model structure,
identification of the model parameters, and validation of the model’s applicability [27]. The
Allan variance method is a standard analytical approach for describing and identifying the
various error sources in a MEMS gyroscope and similarly for statistical characterization
of the noise source [35]. Kalman Filtering is based on the known statistical properties of
the external disturbance signal and dynamics model of the system. However, model and
noise statistics are unknown in most cases of real systems. Thus, the opinion of designing
the Kalman Filter due to the presence of inaccurate model and noise statistics can lead
to optimality loss, great reduction in estimation accuracy, and filter divergence. To solve
the problem of Kalman Filter divergence, various improved adaptive Kalman Filters have
been developed in recent years to deal with measurement uncertainties [36]. Wavelet
thresholding is a common method for denoising MEMS gyro output signals, and it has the
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characteristics of multiresolution analysis. By decomposing the signal in multiple scales and
levels, the details of the signal can be observed in a time-frequency variable window, which
has obvious advantages in the analysis of non-smooth signals. By taking advantage of
wavelet thresholding, transition errors, and high-frequency noise of low-frequency signals
can be effectively eliminated, while fast and accurate initial calibration can be achieved [37].
NN has the ability to learn from the useful signals of the original data, but it cannot learn
from the noisy components, and therefore are usually used for signal denoising or error
compensation [38]. In Ref. [39], a NN-based denoising model is proposed to suppress
high noise components, which is essential for optimizing prefiltering methods. Radial
basis function neural network is also suitable for compensation of random drift of MEMS
gyroscopes due to their nonlinear, adaptive, and self-learning characteristics [40]. The
SVM method was initially used for classification but with the introduction of insensitive
loss functions, SVM has successfully been extended for regression estimation of nonlinear
systems. SVM is applicable for nonlinear processing, thus it is widely used in MEMS
sensors error compensation [32].

For predictive processing of non-stationary signals of time series, recurrent neural
network (RNN) seems to perform well. RNN is a network with memory function. It
manifests itself in the form that the network keeps the previous information and applies
it to the computation of the current output. Specifically, the nodes between the hidden
layers are connected, and the input of the hidden layers includes not only the output
of the input layer but also the output of the hidden layer at the previous moment [41].
Theoretically, RNNs are capable of processing sequence data of any length, thus are best
suited to solving problems with continuous sequences and are good at learning patterns
from sample-to-sample with some sequential meaning [42]. RNNs have been successfully
applied for natural language processing, speech recognition, web content recommendation,
etc. [43,44]. In recent years, RNN technology is also being applied for solving problems
such as signal correction and error compensation in MEMS sensors. A new method for
real-time estimation and compensation of random drift of MEMS gyroscopes is proposed
by combining trace-free Kalman filter and RNN in [45]. Results from the experimental
study show the method to be effective and superior. Although RNN is not cost effective for
time series signal processing, it is prone to gradient disappearance and gradient explosion
due to a small memory value [46]. Hence, long short term memory (LSTM) and gated
recurrent unit (GRU) are two improved algorithms of RNN that have been developed to
solve these problems [47,48]. The application of RNN for MEMS sensor signal processing
is just emerging with relatively little research undertaken so far. In addition, in Ref. [49],
LSTM was used to denoise the output signal of MEMS gyroscope while only two minutes
gyroscope static data were used for model testing. Nevertheless, results show the method
is effective for improving accuracy of MEMS gyroscope. The GRU approach does not
only solve the gradient disappearance and gradient explosion problems of RNN, but also
utilized fewer parameters than its LSTM counterpart. Thus, GRU has a greatly reduced
training time, which could make it suitable for processing time series data [48]. In Ref. [50],
both GRU and LSTM are mixed for MEMS gyro noise suppression. However, the study only
used static data for training and prediction, and the training loss and standard deviation
from the training data cannot be used for intuitive or quantitative analysis. Therefore, the
performance of both LSTM and GRU in MEMS gyroscope denoising still requires further
investigation, and the effectiveness of LSTM and GRU needs to be fully quantified and
analyzed from static and dynamic experimental perspectives. Inspired by these works,
four hybrid modes of RNN models, including LSTM-LSTM, GRU-GRU, LSTM-GRU, and
GRU-LSTM, are proposed for noise reduction in a customized MEMS-IMU developed
in our laboratory. Model validation were achieved by acquiring twelve minutes static
and dynamic data for network training and testing, while the corresponding results were
quantitatively analyzed to systematically evaluate the algorithms.

This study aims to develop hybrid modes of deep learning models for noise reduction
of MEMS gyroscope in different motion conditions and accelerating the intelligence of
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MEMS gyroscope. The hybrid models will be embedded into MEMS-IMU to create a
promising way of improving accuracy of the MEMS-IMU system. The remainder of this
paper proceeds as follows. Section 2 describes the mathematic principle of the LSTM and
GRU, and their hybrid modes. Section 3 introduces the experimental platform construction,
data acquisition, parameter determination, static and dynamic data prediction results, and
quantitative analysis results of the four algorithms. Section 4 summarizes the results of this
paper and provides an outlook for future work.

2. Methods

In comparison with convolutional neural networks, RNN has the capability of han-
dling sequential data. Although, RNNs are hard to train as they have difficulty in handling
long term dependencies in practical applications. The improved versions, i.e., LSTM and
GRU, have been developed and successfully applied to mitigate the limitations of the prim-
itive RNN, especially the problems of long-term memory and computation time [47,48,51].
In this section, dual layered recurrent networks built on LSTM and GRU are developed
for noise identification and elimination in a MEMS-IMU device were proposed. We fol-
lowed an in-depth design analysis of the networks to simplify the networks’ modeling
complexities. For this, working principles of LSTM and GRU were given into some de-
tails using mathematical and schematic illustrations. Then, details of the homogenous
and heterogeneous hybrid networks formed on the conventional LSTM and GRU models
were discussed.

2.1. The Principle of LSTM

LSTM is a special kind of RNN designed to solve the gradient disappearance and
explosion problems when training of long sequences of data. Compared with conventional
RNN, LSTM models do produce better generalization and prediction performances in longer
sequences. Thus, this type of recurrent network holds great prospects for noise suppression
in time series signals of the MEMS gyroscope. Following the principle of [52,53], which is
presented in Figure 1, LSTM model, mainly has an algorithmic processor (called “cell”)
that can be used to determine whether information contained in a sequence data is useful
or otherwise. In addition to the cell states, the LSTM introduces three gating structures,
namely the input gate, the forget gate and the output gate. These gates allow information
to pass selectively in an attempt that the LSTM structure do protect and control information.
As opposed to what is found in many related literature, we introduce more details about
the three gates. Unlike RNN that has only one transfer state, LSTM has two states, which
are the cell state Ct and hidden state Ht. In general, the output Ct is the Ct−1 transferred
from the previous state plus some values, while the Ht often has great variations under
different nodes.

The forget gate is a certain probability control node that is used to decide whether
to forget the hidden cell state from a previous layer or not. For the current input, there
is the hidden state Ht−1 of the previous sequence and the input data Xt of the current
sequence, and then the output of Z f the forgetting gate is obtained by a sigmoid activation
function. Since the output Z f of sigmoid is between [0, 1], it indicates the weight to let
the corresponding information pass. A value of “0” means “don’t let any message pass”,
and oppositely “1” means “let all messages pass”. The mathematical expression is as
Equation (1). Where σ(·) is the sigmoid function, W f is the weight matrix of forget gate,
[Ht−1, Xt] means connecting two vectors into a longer vector, and B f is the bias of the
forget gate.

Z f = σ(W f · [Ht−1, Xt] + B f ) (1)
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This stage of the input gate focuses on the selective memorization of the input Xt.
The structure of Figure 1 shows that the input gate consists of two parts with the first part
using the sigmoid activation function to decide which information needs to be updated.
In addition, information selection is controlled by the input gating signal Zi. Similarly,
the second part of the structure uses the tanh activation function, on the current input
information, which also is the previously calculated cell state Z. The updated cell state Ct

consists of two parts given in Equations (2)–(4): the first part is the product of Ct−1 and the
output Z f of the forgetting gate, and the second part is the product of input gate Zi and
Z. Where σ(·) is a sigmoid function,Wi and Bi are the weight matrix and bias of the input
gate, respectively. [Ht−1, Xt] means connecting two vectors into a longer vector. Wc and Bc

are the weight matrix and bias of cell state, respectively. � is the Hadamard product.

Zi = σ(Wi · [Ht−1, Xt] + Bi) (2)

Z = tanh(Wc · [Ht−1, Xt] + Bc) (3)

Ct = Z f � Ct−1 + Zi � Z (4)

The output gate is used to control how much information from the cell state Ct is
output to the current output value Ht. This stage is also controlled by a sigmoid function
that determines which parts of the cell state are to be output, which is called Zo. Then, the
part of the cell state to be output is processed by tanh to a value of [−1, 1] and multiplied
with the output of the sigmoid gate to achieve a definite output of the current Ht. Similar
to ordinary RNN, the output Yt is often obtained by changing Ht. Where σ(·) is a sigmoid
function, Wo and Bo are the weight matrix and bias of output gate, respectively. [Ht−1, Xt]
means connecting two vectors into a longer vector. � is the Hadamard product, and W ′ is
the corresponding weight matrix.

Zo = σ(Wo · [Ht−1, Xt] + Bo) (5)

Ht = Zo � tanh(Ct) (6)

Yt = σ(W ′Ht) (7)

2.2. The Principle of GRU

As a variant of LSTM, GRU has been developed and shown to produce correspond-
ingly competent results that were similar to LSTM models. GRUs, proposed by Chung in
2014, only differed from LSTMs in how their gates monitor information flow from erstwhile
time steps while the gating mechanisms in LSTMs rather control the flow of information
within internal cell unit [48]. GRUs are often preferred for solving problems related to
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long-term memory and gradient in backpropagation as they can achieve comparable results
as LSTM. Further, GRUs are comparably easier to train and provides improved training
efficiency. GRU, similar to LSTM, also controls the information flow by “gate”, but with
one less gate than LSTM and without cell states. A detailed GRU structure introduced
in [52,54] is analyzed as shown in Figure 2, and this is considered for implementation in
this study. The input and output structure of GRU is the same as that of a normal RNN.
There is a current input Xt, and a hidden state Ht−1 passed down from the previous node,
which contains the relevant information of the previous node. Combining Xt and Ht−1,
GRU gets the output Yt of the current hidden node and the hidden state Ht passed to the
next node. GRU, similar to LSTM, also controls the information flow by “gate”, but with
one less gate than LSTM and also without cell states.
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According to the principle of GRU, there are two gates in the GRU structure, namely
the reset gate and the update gate, and both gates are determined by the state Ht−1 of the
previous transmission down and the input Xt of the current node. They can be used the
Equations (8) and (9) to show the relationship.

R = σ(Wr · [Ht−1, Xt]) (8)

Z = σ(Wz · [Ht−1, Xt]) (9)

where R stands for the reset gate, Z represents the update gate, and σ(·) is a sigmoid
function that transforms the data into a value in the range of 0–1, thus acting as a gating
signal. Wr and Wz is the weight matrix of reset gate and update gate, respectively, while
[Ht−1, Xt] is an operation that joins two vectors. After obtaining the gating signal, the reset
gate is used to get the “reset” data Ht−1′, then Ht−1′ is spliced with the input Xt, and finally
the data is deflated to [−1,1] by the tanh activation process in Equations (10) and (11).

Ht−1′ = Ht−1 � R (10)

H′ = tanh(W · [Ht−1′, Xt]) (11)

where � is the Hadamard product of contents in the reset gate and content of the hidden
node; similarly, W is the corresponding weight matrix. H′ mainly contains the Xt data of
the current input. In addition, adding H′ to the current hidden state in a targeted way is
equivalent to remembering the current state at the moment.

Lastly, the memory state is updated by employing content of the update gate Z to
achieve forgetting and selective memory functions. Gating signal Z ranges from 0 to 1
while signal values closer to the gating signal value tend to be remembered, and the ones
closer to zero, tend to be “forgotten”. Where (1− Z)� Ht−1 means selective “forgetting”
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of the original hidden state, Z� H′ indicates selective “memory” of H′ containing current
node information; σ(·) is the sigmoid function, W ′ is the corresponding weight matrix, and
the output Yt is often obtained by changing Ht.

Ht = (1− Z)� Ht−1 + Z� H′ (12)

Yt = σ(W ′Ht) (13)

2.3. Hybrid Modes of LSTM and GRU

To solve the gradient disappearance and explosion problems of RNN, the internal
structure of some RNN units are modified in LSTM and GRU to make the networks
suitable for processing sequential data. The internal structures of LSTM and GRU given in
Figures 1 and 2 were applied. In practical applications, instead of using single-layer LSTM
or GRU, multilayer LSTM or GRU is generally used however with no more than three
layers. Considering the computational performance and cost, two layer hybrid modes were
designed in this paper. Figures 3 and 4 show two homogenous networks one with two
layers of LSTM; thus tagged as LSTM-LSTM, and the other had two GRU units thus tagged
as GRU-GRU, respectively. The input and output of LSTM-LSTM were determined by the
LSTM sequence, while the input and output of GRU-GRU were all derived from the GRU
sequence. In Figure 5, the input layer was LSTM while the output layer was GRU and thus,
a heterogeneous network abbreviated as LSTM-GRU was developed, while in Figure 6, the
input layer was GRU and the output layer was LSTM to produce the other heterogeneous
network referred to as GRU-LSTM. The four hybrid models of deep RNN designed above
all composed of four parts. The first part was an initial state where in random initialization
were made, while the second part was used for feeding the sequence data as networks’
inputs. The third stage includes a collection of hidden states in each of the LSTM or GRU
layer, while the last part is where the network prediction output is done. The latter can take
the state output of the last step by weighing the state from all previous steps or directly
averaging them to produce the output.
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3. Experiments and Results
3.1. Experiment Setup

In order to verify the feasibility and effectiveness of the proposed denoising models
designed above, real experimental data were collected from a custom MEMS gyroscope
employed in this study. An experimental setup, shown in Figure 7, was arranged to consist
of MEMS-IMU test platform. This is composed of three-orthogonal MEMS gyroscope
and three-orthogonal MEMS accelerometers, tri-axial rate turntable, power supply, and a
computer system installed with the data acquisition software of Microsoft visual studio
2010 and turntable controller software. In this study, raw experimental signals were
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acquired at the room temperature setting. The MEMS-IMU was fixed on the triaxial rate
turntable, the power supply delivers 8 V and 0.12 A while the MEMS-IMU was connected.
The computer system was connected to the MEMS-IMU through a MOXA USB to RS-232
data conversion cable. The computer retrieved the raw signals and stored the data via the
data acquisition software.
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The triaxial turntable controller was utilized to acquire a series of dynamic signals
from several experiments to validate the models. The sampling frequency was set to 20 Hz
for collecting the MEMS-IMU data, while the data acquisition time was approximately 700 s.
In addition, our lab developed the MEMS-IMU employed in our experiment. Two types of
experiments were conducted on the MEMS-IMU to evaluate the denoising performance
of the proposed hybrid deep RNN models. The experiments include static and dynamic
experiments of MEMS-IMU.

3.2. Parameters Determination

In order to compare and intuitively discuss the denoising performance of the four
methods under the same conditions, a maximum training epoch of 100 was set based on
consideration of both the training time and computer memory, while the length of the input
data varied. To find the best training epoch, size of the training dataset was varied between
500 and 1500 samples, and an optimal training epoch was selected with respect to the
training loss comparison performed for the four methods as shown in Figure 8. The training
process shows that all the four models did not converge within 700 samples at an input
data step of 100 samples. However, as the training data increased further, the GRU-LSTM
model with a training data of 800 samples converged first while the other three models
were yet to converge. With continual increase in the training data above 1000 samples, the
remaining three methods were able to converge. These training procedures were done
with the batch size set as seven, while the learning rate was set as 0.006, hidden unit was
1 and the time-step was 6. From Figure 8, the GRU-LSTM’s convergence rate was faster
than those of LSTM-GRU, GRU-GRU and LSTM-LSTM; however, they all had a relatively
optimal convergence epoch at 50. Taking the performance of the computer and the training
time into account, a trade-off might be needed between the circulation times and the
length training data. Therefore, epoch of 50 was selected as the number of iterations in
the following static and dynamic data training process, to compare the noise reduction
performance of the proposed four algorithms.



Micromachines 2021, 12, 214 10 of 23
Micromachines 2021, 12, x FOR PEER REVIEW 10 of 22 
 

 

 

Figure 8. The train loss of four methods. 

3.3. Static Experiments 

In order to verify the denoising effect of the proposed algorithm under static test, 

the MEMS-IMU data obtained from the static experiments were first analyzed. This in-

cludes the X/Y/Z-axis MEMS gyros collected at room temperature for about 700 s, as 

shown in Figures 9–11, respectively. The four algorithms proposed in this paper, 

LSTM-LSTM, GRU-GRU, LSTM-GRU, and GRU-LSTM, were used to denoise the gyro 

signals. For fair comparison between the different algorithms, all the parameters were 

set as determined and explained in Section 3.2. To visualize the noise reduction effect of 

the four algorithms, the detail part of Figures 9–11 were enlarged as shown in Figures 

12–14. These plots show that LSTM-LSTM, GRU-GRU, and LSTM-GRU models were 

able to achieve significant noise reduction results for the static signals, while the de-

noising signal of GRU-LSTM model seemed to be applicable for large sample testing. 

However, to distinguish the differences between them, Allan variance was used to 

quantitatively analyze the noise reduction effects of each model. Allan variance is a clas-

sical time-domain analysis technique that is widely used to evaluate the performance of 

gyroscopes. With this, the different error coefficients of the models can be identified 

based on the slope of different fitted straight lines, and thus the change in performance 

before and after noise reduction can be determined. The Allan variance curves and the 

corresponding quantitative values for the denoised signals (processed form of the static 

signal obtained from the X/Y/Z axis gyro) are presented in Tables 1–3. 

For the X-axis gyro, it can be seen from Figure 15 and Table 1 that GRU-LSTM has 

the best performance in noise reduction, but the denoising signal appeared to be some-

what distorted (compared to others) as seen in Figure 12, such a phenomenon is most 

likely due to overfitting during the large amount of data testing. Therefore, the quanti-

zation noise, angular random walk, and zero bias stability parameters are not meaning-

lessly given in percentage. The second is the LSTM-GRU model, which also has a good 

noise reduction effect, with greater than 90% improvement in all three parameters. The 

next is the GRU-GRU model with 58%, 94%, and 64% improvement in quantization 

noise, angular random walk, and zero bias stability, respectively. Finally, LSTM-LSTM, 

although somewhat inferior to the LSTM-GRU and GRU-GRU algorithms, also shows 

good noise reduction, with improvements of about 48%, 92%, and 40% in quantization 

noise, angular random walk, and zero bias stability, respectively. 

Again, although it can be seen from Figure 16 and Table 2 that GRU-LSTM has the 

best performance in noise reduction for the Y-axis gyro, the denoising signal also seems 
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3.3. Static Experiments

In order to verify the denoising effect of the proposed algorithm under static test, the
MEMS-IMU data obtained from the static experiments were first analyzed. This includes
the X/Y/Z-axis MEMS gyros collected at room temperature for about 700 s, as shown
in Figures 9–11, respectively. The four algorithms proposed in this paper, LSTM-LSTM,
GRU-GRU, LSTM-GRU, and GRU-LSTM, were used to denoise the gyro signals. For fair
comparison between the different algorithms, all the parameters were set as determined and
explained in Section 3.2. To visualize the noise reduction effect of the four algorithms, the
detail part of Figures 9–11 were enlarged as shown in Figures 12–14. These plots show that
LSTM-LSTM, GRU-GRU, and LSTM-GRU models were able to achieve significant noise
reduction results for the static signals, while the denoising signal of GRU-LSTM model
seemed to be applicable for large sample testing. However, to distinguish the differences
between them, Allan variance was used to quantitatively analyze the noise reduction effects
of each model. Allan variance is a classical time-domain analysis technique that is widely
used to evaluate the performance of gyroscopes. With this, the different error coefficients
of the models can be identified based on the slope of different fitted straight lines, and
thus the change in performance before and after noise reduction can be determined. The
Allan variance curves and the corresponding quantitative values for the denoised signals
(processed form of the static signal obtained from the X/Y/Z axis gyro) are presented in
Tables 1–3.
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Angle Random Walk (deg/√h ) 1.748556 0.065753 0.308072 0.021857 0.000123

Bias Instability (deg/h) 68.970485 24.105904 36.667479 3.487848 0.017607
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Table 3. Allan variance results of the Z axis gyro.

Error Sources
Z-axis Gyroscope

Raw Signal LSTM-LSTM GRU-GRU LSTM-GRU GRU-LSTM

Quantization Noise (deg/√h ) 0.223371 0.021935 0.127073 0.009640 0.000463

Angle Random Walk (deg/√h ) 1.445421 0.005576 0.037413 0.003515 0.000446

Bias Instability (deg/h) 33.720574 0.172867 9.586479 0.518550 0.053445

For the X-axis gyro, it can be seen from Figure 15 and Table 1 that GRU-LSTM has the
best performance in noise reduction, but the denoising signal appeared to be somewhat
distorted (compared to others) as seen in Figure 12, such a phenomenon is most likely
due to overfitting during the large amount of data testing. Therefore, the quantization
noise, angular random walk, and zero bias stability parameters are not meaninglessly
given in percentage. The second is the LSTM-GRU model, which also has a good noise
reduction effect, with greater than 90% improvement in all three parameters. The next
is the GRU-GRU model with 58%, 94%, and 64% improvement in quantization noise,
angular random walk, and zero bias stability, respectively. Finally, LSTM-LSTM, although
somewhat inferior to the LSTM-GRU and GRU-GRU algorithms, also shows good noise
reduction, with improvements of about 48%, 92%, and 40% in quantization noise, angular
random walk, and zero bias stability, respectively.
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Again, although it can be seen from Figure 16 and Table 2 that GRU-LSTM has the
best performance in noise reduction for the Y-axis gyro, the denoising signal also seems to
be a bit distorted as seen in Figure 13. Therefore, the parameter improvement of the GRU-
LSTM after denoising the signal was not given in a percentage relative to the quantization
noise, angular random drift, and zero bias stabilization parameters of the original signal.
Similarly, this is followed by the LSTM-GRU model with at least 90% improvement in the
three parameters, while the LSTM-LSTM had relatively high performance that what was
obtained for the X-axis gyro data. These include 77%, 96%, and 65% improvements in
quantization noise, angular random walk, and zero bias stability, respectively. Lastly, the
GRU-GRU again had the least performance at 82% and 47% improvement in the angular
random walk and zero bias stability parameters, respectively. Surprisingly, the quantization
noise had increased by 77% unlike what was observed for the X-axis gyro data.
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Lastly for the Z-axis gyro, the best noise reduction method seemed to be GRU-LSTM
according to Figure 17 and Table 3, but the noise reduction signal still was also distorted as
seen in Figure 14. Therefore, the improvement of three parameters was still not meaningful.
However, for quantization noise and angular random walk, LSTM-GRU had better boost
than LSTM-LSTM and GRU-GRU, while LSTM-LSTM shows better enhancement in zero
bias stability than GRU-GRU and LSTM-GRU. Although the X/Y/Z axis MEMS gyroscopes
were manufactured by the same MEMS batch process, there were inevitably fabrication
errors and electronic signal readout errors, so the hybrid deep learning models had different
enhancement accuracies.
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According to the preliminary static experiments in Figures 12–14, the denoised signal
of GRU-LSTM seemed to be overfitting, and the reason for this phenomenon is most likely
that the sample data is too large. To further verify whether the GRU-LSTM is effective
for gyroscope signal noise reduction, a small sample data of 150 s was used to test the
GRU-LSTM. The various parameters of the training and prediction data were consistent
with those of the static tests above, and the only difference was the predicted data length.
This experiment was respectively conducted for samples of 50, 100, and 150 s, and it was
found that all four methods had good denoising results. The denoising results of the four
algorithms for 150 s are shown in Figure 18, and in order to see clearly the denoising effect
of different algorithms obtained in Figure 19. It can be clearly seen that all algorithms,
especially GRU-LSTM, did not distort the denoised signals as in the previous experiments,
but instead show the best denoising effect. The standard deviations of the signals before and
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after denoising in Figure 18 are shown in Table 4. As compared to the original signal, the
standard deviation of the LSTM-LSTM, GRU-GRU, LSTM-GRU, and GRU-LSTM denoised
signals were improved by approximately 96%, 97.5%, 97.8%, and 98.4%, respectively.
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Table 4. Standard deviation of raw signal and denoised signals for a small sample (Figure 18).

Raw Signal LSTM-LSTM GRU-GRU LSTM-GRU GRU-LSTM

0.038767 0.001571 0.000959 0.000858 0.000623

The comprehensive analysis of the above experiments concludes that LSTM-LSTM,
GRU-GRU, and LSTM-GRU had good results in the field of gyro noise reduction. In
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particular, LSTM-GRU was relatively superior under different sample lengths, while GRU-
LSTM will show overfitting phenomenon under large samples, and small sample noise
reduction effect was acceptable. However, considering the actual application scenario,
MEMS gyro static output data volume were very large, so LSTM-LSTM, GRU-GRU, and
LSTM-GRU were more suitable for the application in the MEMS gyro field.

3.4. Dynamic Experiments

From static experimental results, it is clear that the proposed hybrid networks had
good noise reduction effects, except GRU-LSTM. In order to further verify the effectiveness
and applicability of the four RNN models, the actual dynamic signal from the gyro was
acquired to experimentally verify the four models. The various parameters used therein
were the same as explained in the static tests in Section 3.3. The dynamic tests are in the
form of regular start and pause motions. The denoising results obtained with the different
methods are presented in Figure 20. In addition, to further validate the effectiveness and
variability of the proposed methods from both quantitative and qualitative perspectives,
Hilbert spectral analysis and Allan variance were used to process the corresponding
regular dynamic data in order to provide an intuitive and obvious comparison [55–57].
Hilbert spectra are used to statistically distinguish and resolve a mixture of moving signals.
They are suited for nonlinear and non-smooth signal analyses. The process includes
decomposing complex signals into a finite number of intrinsic mode functions, while the
Hilbert-Huang spectrum is obtained by performing the Hilbert-Huang transformation on
the intrinsic mode function generated before and after denoising the signals. The resulting
instantaneous frequency variation with time shows the split-signal time-frequency energy
distribution after the complex signal has been resolved.
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From Figure 21, it can be seen that many energy lines are concentrated in the middle
and high frequency parts of the time–frequency domain, and these energy lines were
relatively uniformly distributed throughout the time–frequency domain. Furthermore,
it can be concluded that the high energy was mainly concentrated in the static dynamic
rate transition and low frequency domain intervals, and the signal at the instant of static
dynamic rate transition had significantly higher energy than the signal at static and dynamic
rates. As shown in Figures 22–25, the middle and high frequency noise components
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were almost completely removed after the denoising process by the different methods.
Nevertheless, there was still some noise in the static and dynamic rate transition instant
and the low frequency domain.
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Since the useful information and noise are mixed together in the frequency domain
bands between the static and dynamic rate transitions and the dynamic constant rate
intervals, it is difficult or impossible to separate them very clearly. In addition, excessive
noise cancellation may cause the useful information in this band to be removed along with
the noise components thereby causing signal distortion. Aside from these reasons, the noise
removal within the static and dynamic rate conversion and dynamic constant rate intervals
is acceptable. As shown in Figures 22–25, it can be seen that results of the time frequency
energy distribution after denoising show that the applied models conformed to dynamics
of the test motion form in the experimental data. This indicates that the denoised signals
were not distorted. In addition, a comparative analysis of the denoising effects among the
four algorithms shows that the time-frequency energies of the homogenous networks, i.e.,
the LSTM-LSTM and GRU-GRU along with that of the heterogeneous network GRU-LSTM
were higher than those of LSTM-GRU in the whole frequency domain. It indicates that the
denoising effect of LSTM-GRU was best.

To further demonstrate the denoising performance of the four recurrent networks in
a quantitative sense, the Allan variance analysis of the original signal and the different
denoised signals were plotted in Figure 26. Although Allan variance is the best analytical
tool in the static evaluation of gyroscope, it can also be used to evaluate the time series
dynamic signal, as can be confirmed in Refs. [56–58]. Comparing the Allan variance curves
before and after denoising, it can be seen that there is a certain degree of decrease in the
curves after the denoising with the four models. This means that a reduced signal-to-noise
ratio was observed for the proposed methods, and in particular, the LSTM-GRU model
shows the best performance. Table 5 records the execution times of the four denoising
methods upon which the training results presented in Figure 20 was obtained. It can be seen
from the table that GRU-GRU was the most time-efficient. This can mainly be attributed
to the fact that GRU had fewer network structure parameters than an LSTM structure.
Although all the four models had good noise reduction effects, especially LSTM-GRU, but
their execution times were too long, and this could make them not to be very suitable for
some practical applications. Therefore, further research is needed to shorten their running
times for practical applications in this field.
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Table 5. The execution time among different denoising methods (Figure 20).

Methods Time (s)

LSTM-LSTM 490.83452
GRU-GRU 420.30138
LSTM-GRU 453.63127
GRU-LSTM 442.57631

4. Conclusions and Future Works

MEMS-IMU system is often affected by random noises which cause errors that seri-
ously affect the navigation accuracy of MEMS-IMUs. Meanwhile, to improve the precision
of MEMS-IMU and expand its application field, hybrid modes of DRNNs are developed
for noise reduction of MEMS-IMU in this paper. Results and performances obtained for
four methods namely, LSTM-LSTM, GRU-GRU, LSTM-GRU and GRU-LSTM are discussed.
For this, we performed a test validation study using some sample dataset to determine
the appropriate parameters for training the RNNs. The major parameters considered in
this study were the training epoch, batch size, learning rate, amount of hidden units, and
the time step. A consequence to this, quantitative evaluation of the denoising effects from
the MEMS-IMU under the same conditions was done. The MEMS-IMU is a customized
device developed in our lab, and it was used to perform the experimental studies with
suitable data acquisition time of approximately 12 min. The results show that LSTM-LSTM,
GRU-GRU, and LSTM-GRU all exhibited good denoising effects in large sample data of
static experiments, especially LSTM-GRU works best, while GRU-LSTM is only suitable for
a small sample test. In the dynamic experiments, both Hilbert spectrum and Allan variance
show that all four algorithms have some degree of noise reduction effect. In summary, the
different experimental results fully demonstrate the effectiveness and applicability of the
proposed deep recurrent networks in MEMS gyro noise reduction, especially LSTM-GRU
is more suitable for application in the MEMS gyro field compared with the other three algo-
rithms, but the execution time of the four algorithms is too long for practical applications
at present.

Additionally, we suggest that there are still further areas that could be studied to
accelerate the improvement of DRNNs for MEMS-IMU accuracy and practical engineering
applications. For instance, data length in this study was restricted by available computing
power. Thus, the lengths of experimental data were not long enough and this should be
considered in the presence of GPU acceleration. It is envisaged that longer experimental
data will have a better improvement on the training and prediction accuracy of the hybrid
deep learning models. Application of the models for real navigation trajectories is also
vital. This could be used to further improve the models’ test performances for cases
where MEMS-IMU devices are used for autonomous navigation such as in self-driving
cars. In these areas, more multilayer hybrid structures of RNNs can be implemented and
compared with existing models to enhance its application for time series data. For practical
navigation, the convergence speed and tracking speed are very important since most of
the motion forms are multirate motion while the direction and amplitude characteristics
of the signals changes constantly. Therefore, rapid convergence and tracking in dynamic
trajectory should also be studied.
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