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Abstract: A novel piezoelectric actuator using a two-stage flexure hinge structure is proposed in this
paper, which is used in a compact and high-precision electromechanical field. The two-stage flexure
hinge structure is used to provide horizontal thrust and vertical clamping force to the driving feet,
which solves the problems of unstable clamping force and insufficient load capacity in traditional
stick-slip piezoelectric actuators. Firstly, the main structure of the driver and the working process
under the triangular wave excitation voltage are briefly introduced. Secondly, after many simulation
tests, the structure of the actuator is optimized and the stability of the structure in providing clamping
force is verified. Finally, through the research of the operating performance, when the amplitude is
150 V and the frequency is 3.25 kHz as the excitation source, the maximum speed can reach 338 mm/s
and can bear about 3 kg load. It can be seen from the analysis that the two-stage flexure hinge
structure can improve the displacement trajectory.

Keywords: piezoelectric actuator; stick-slip type; displacement amplification structure; clamping force

1. Introduction

Piezoelectric actuators (PEAs) have the merits of strong electromagnetic compat-
ibility, small size, high control precision, large output force, flexible design, and self-
locking, etc. [1–4]. They are often widely used in precision manufacturing [5–7], aerospace,
biomedical engineering, and other fields [8–10]. Since the output displacement of a piezo-
electric device is small relative to the size of the device itself, most piezoelectric actuators
are designed with the concept of gradually accumulating small displacements to achieve
large displacements. PEAs can be separated into direct drive type, inchworm type, resonant
type, etc. [11–15]. According to its working principle, each type of PEA has its relative
merits and disadvantages. The direct-drive type has a high positioning resolution. Never-
theless, its output performance is limited [16]. The high-speed motion performance of the
resonant type is superior, but the problems of wear and heat are still to be solved [17,18].
Compared with the inchworm type, the structure of the stick-slip type is relatively simple
and easy to control, but its output performance is weak [19,20].

In order to deal with the shortcomings of instable clamping force and insufficient
load capacity, a novel PEA using a two-stage flexure hinge structure is proposed in this
paper. The PEA increases the telescopic moving distance through its leverage magnification
structure. Then, the triangular flexure hinge structure is used to generate bidirectional
coupling displacement to drive the slider to move. By testing the angle of flexure hinge
structure, the optimal solution is obtained. By referring to the experimental part of the
relevant literatures [21–26], the experimental platform for measuring the performance data
of the PEA is constructed. The PEA will greatly increase the speed and displacement of the
driven object.

The following is a brief description of the article. Firstly, the composition and operating
principle of the PEA are briefly introduced. Secondly, the derivation and calculation of the
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theoretical formula are carried out first, and then the simulation verification shows that the
PEA has the merit of improving the clamping force. The structure of the lever in the PEA
is parameterized to improve the output performance of the PEA. Thirdly, the operation
performance of the PEA is studied to find and analyze its optimal operation state. Finally,
the article is summarized.

2. Composition and Operating Principle
2.1. Composition

The piezoelectric driving platform is composed of a piezoelectric ceramic stack, a
cross-roller linear guide, a adjustment platform, a flexure hinge structure, and a pedestal.
Figure 1 illustrates the structure of each part. The cross-roller linear guide is fixed on the
adjustment platform with screws. The piezoelectric stack is closely connected with the
flexure hinge structure, and the preload is adjusted by fastening screws. Use the micrometer
knob to modify the position of the cross-roller linear guide to change the pre-tightening
force between them.
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Figure 1. Structural model of the piezoelectric drive platform.

Figure 2 shows the prototype of the proposed actuator. It consists of a bracket,
a two-stage flexible hinge structure, a piezoelectric ceramic, a gasket, and a pre-tightening
screw. The gasket is added between the pre-tightening screw and the piezoelectric ceramic.
Prevent the pre-tightening screw directly acting on the piezoelectric ceramic stack. Two
fixing holes on the bracket fix the piezoelectric driving component to the platform.
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The two-stage flexible hinge structure is composed of the lever displacement ampli-
fication structure and triangle displacement amplification structure. The amplification
structure uses the characteristics of flexible hinge and the physical principle of the structure
to increase the output displacement. Flexible hinge is an integrated structure with an arc or
rectangular notch, as shown in the dotted circle in Figure 3. Flexible hinge has the charac-
teristics of rapid recovery of elastic deformation, small volume, no mechanical friction, and
high sensitivity, so it is often used in the movement of small angular displacement around
the axis. The amplification structure makes use of this characteristic of flexible hinge [27].
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Figure 3. Schematic diagram of micro displacement amplification structure: (a) Lever displacement amplification structure;
(b) Changed lever displacement amplification structure; (c) Triangle displacement amplification structure; (d) Four-bar
displacement amplification structure; (e) Changed triangle displacement amplification structure.

The common amplification structures are the lever displacement amplification struc-
ture, triangle displacement amplification structure(bridge displacement amplification struc-
ture), and four-bar displacement amplification structure. Figure 3a shows the common
lever displacement amplification structure, which has the characteristics of simple structure,
few flexure hinges, and high amplification efficiency. The magnification can be changed by
changing the position of the piezoelectric stack laterally. In order to adapt to the structure
of the actuator and reduce the volume of the actuator, the structure in Figure 3a is adjusted
appropriately, and the changed structure is shown in Figure 3b.

Figure 3c shows the triangle amplification structure, which can enlarge the displace-
ment in the vertical direction. Changing the angle of the triangle can change the magni-
fication. The smaller the angle, the larger the magnification. However, the smaller the
inclination angle, the greater the stress of the hinge, and the service life will be affected.

Figure 3d is a four-bar amplification structure. Its structure is different from that of
the triangle structure, which is driven by two piezoelectric stacks. Only one piezoelectric
stack is retained and the direction of its displacement output is changed. The hinge on the
side of the cancelled piezoelectric stack is fixed, and the number of hinges has increased.
Compared with the structure in Figure 3c, this structure changes the output direction.
Combined with the characteristics of the structures in Figure 3c,d, the structure shown in
Figure 3e is improved to realize the stable output of bidirectional displacement.

2.2. Operating Principle

The diagrammatic sketch in Figure 4 shows the deformation of piezoelectric ceramic
stack acts on point A in the process of stretching. Point C moves to point C′ by lever
amplification. The generated pressure deforms the triangular flexible hinge structure, so
that the driving point D moves to D′. The displacement L1 of the driving point D provides
the preload for the slider, and the displacement L2 causes the slider to move laterally.
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The PEA adopts the two-stage flexible hinge structure, in which the characteristics of
piezoelectric ceramics are fully utilized. The amplified displacement produces the lateral
and longitudinal coupling displacement through the triangular flexible hinge structure,
which drives the slider to move laterally. The deformation of the piezoelectric ceramic
stack, flexible hinge, and slider is at the micron level. The operating principle of the PEA
can be better described by amplifying the displacement produced at each place.

A positive driving voltage with oblique waveform is exerted on the piezoelectric stack,
and the symmetry of the waveform is 90%, as shown in Figure 5. In a cycle, the initial
and final values of voltage are 0 V, U0 is the peak to peak value of voltage. Make sure
the positive voltage is exerted on the piezoelectric stack to produce tensile deformation.
According to the characteristics of piezoelectric stack, the larger the U0 value, the larger
the displacement due to tension.
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Figure 5a shows the initial moment is t0. The adjusting platform provides the required
preload on the contact surface of the linear guide. From t0 to t1, the piezoelectric stack is in
a state of gradual tension. The flexible hinge structure is deformed due to the push of the
piezoelectric ceramic stack. The slider moves to the right driven by friction, resulting in
displacement d2, as shown in Figure 5b.

In the interval from t1 to t2, the piezoelectric ceramic stack is in a state of rapid
contraction. The structure of the flexible hinge recovered quickly. The extrusion force on
the contact surface of the linear guide is weakened. The driving foot had left friction on the
slider. Due to the inertial action, the slider has a small displacement d3 or no displacement
to the left, as shown in Figure 5c. In a period, the displacement of the slider moving to the
right is d1 (d1 = d2 − d3), and the slider moves in step linear motion.

2.3. Force Analysis

For proving the merits of the PEA in theory, to create the flexible hinge structure model
of the PEA, the force during the driving process was analyzed, as shown in Figure 6. The
rectangle at the top of the graph represents the mover, the x-axis represents the direction of
the mover’s movement, and the y-axis is the direction perpendicular to the motion direction.
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According to the conservation of moment in the lever principle, the lateral displace-
ment is amplified under the action of the lever. The amplification factor k can be expressed
by the following equation [28]:

k =
l2
l1

(1)

In Formula (1), l1 indicates the distance from point A to the fulcrum, and l2 indicates
the distance from point B to the fulcrum, as shown in Figure 6. With other parameters
unchanged, reducing l1, or increasing l2 will increase the magnification, but at the same
time, it will also have greater requirements on the stiffness of lever material.

The flexible hinge structure transforms the horizontal displacement at point A into
the horizontal displacement and longitudinal displacement at point O by hinge rotation.
Assuming that the translational and rotational joints in the flexible hinge structure are in
an ideal state, according to the force analysis, it can be concluded that:

FAx = Fpiezo, (2)

FBx =
FAx

k
, (3)

FCx = −FBx, (4)

FOy = FBx tan α− FCx tan α =
2
k

Fpiezo tan α. (5)

According to Formula (4), the clamping force of the contact surface is related to the
inclination α. By changing α, the clamping force can be changed, thus, enhancing the
driving performance. According to the main parameters of the flexible hinge structure,
the magnification is 2.1, as shown in Figure 7. The definition of the coordinate axis in the
figure is consistent with that in Figure 6. When the extrusion force is equal to the output
force produced by piezoelectric ceramic, the α can be calculated as 48.39◦ according to
Formula (5). Therefore, when α ≥ 48.39◦, FOy ≥ Fpizeo.
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3. Simulation Analysis

Finite element analysis (FEA) is the use of mathematical approximation principles
to simulate physical systems, to achieve the purpose of solving problems by simplifying
complex physical models. In this article, the FEA of the proposed flexible hinge structure is
carried out by using ANSYS software. The established model is transformed into a finite
element model and simulated. It is further verified that the hinge structure proposed in
the theory can magnify the clamping force and horizontal displacement. The model is
comprised of a cross-roller linear guide, a bracket, and a flexible hinge structure. Select
fabricated steel for load-bearing as the material of the cross-roller linear guide; spring
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steel has the characteristics of high strength, high toughness, and high plasticity. The
lever structure and the bracket are made of 65Mn; the aluminum alloy Al7075 with better
strength and wear resistance is selected as the material of the triangular flexible hinge part.
Table 1 shows the specific parameters of materials.

Table 1. Material parameters of flexible hinge structure.

Materials Elasticity Modulus
N/m2 Poisson’s Ratio Density

kg/m3

Constructional steel 2 × 1011 0.3 7850
Spring steel 65Mn 2.26 × 1011 0.3 7810

Alloy Al7075 7.17 × 1010 0.33 2810

After the model is built, due to the same material, the bracket and the lever structure
are integrated. The material of the triangle hinge structure is different from the connected
structure, so it needs to be bonded. In order to approach the slight friction caused by
relative motion in a real situation, the friction coefficient of the cross roller linear guide is
set to 0.01. So, as to eliminate the normal relative displacement between contact surfaces,
the behavior of the contact surface is selected as “no separation”; the friction coefficient
between the flexible hinge structure and the slider is set to 0.2. The behavior of the contact
surface is selected as “standard”.

Apply a force on the surface where the lever structure is connected to the piezoelectric
stack. This pressure is used as the output of the piezoelectric ceramic stack. In order to
approach the real output, the force value is set to 1000 N.

Optimize the lever magnification structure. The parameters in the structure are shown
in the Figure 6. The initial setting hinge radius is 1.2 mm, the distance between the hinge
and the lever connection is 2 mm. The static analysis of the flexure hinge structure with
different lever width is carried out. With the increase of the lever width, the clamping force
of the contact surface reaches the maximum at the lever width of 4.5 mm. The horizontal
displacement of the slider changes with the clamping force, as shown in Table 2. When
the lever width is insufficient, it is easy to bend and deform. If the width is too large, the
loss of force will be increased. Therefore, if the lever width is too large or too small, it will
hinder the transmission of force. The optimum lever width is 4.5 mm.

Table 2. Parametric analysis of lever width.

Lever Width
L4/mm

Contact Area
Clamping Force

Foy/N

Horizontal Displacement of
Lever Side Surface

L1/µm

Horizontal Displacement
of Lever Top

L2/µm

Horizontal Displacement
of Slider

L3/µm

3.5 1000 100 153 103
4.0 1008 120 162 104
4.5 1015 121 174 106
5.0 1003 105 163 103
5.5 999 92 160 101

The initial setting lever width is 4.5 mm, hinge radius is 1.2 mm. The static analysis of
flexure hinge structure with different hinge and lever connection distance is carried out.
With the decrease of the distance between the hinge and the lever, the clamping force of the
contact surface reaches the maximum at the horizontal displacement at 0 mm of the lever
side, and increases with the horizontal displacement of the slider, as shown in Table 3. The
closer the hinge position is to the lever, the higher the driving capacity of the piezoelectric
actuator. The optimum distance between the hinge and the lever is 0 mm.
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Table 3. Parametric analysis of the distance between the hinge and the base.

Distance Between
Hinge and Lever

L5/mm

Contact Area
Clamping Force

Foy/N

Horizontal Displacement
of Lever Side Surface

L1/µm

Horizontal Displacement
of Lever Top

L2/µm

Horizontal Displacement
of Slider

L3/µm

2.0 1015 121 174 106
1.5 1045 137 190 109
1.0 1078 146 212 114
0.5 1110 160 232 117
0.0 1152 178 263 125

The initial setting lever width is 4.5 mm, the distance between the hinge and the lever
connection is 0 mm. The static analysis of the flexure hinge structure with different hinge
radius is carried out. As the radius of the hinge increases, the clamping force reaches the
maximum when the radius is 1.4 mm. At the same time, the horizontal displacement of the
slider increases, as shown in Table 4. The larger the hinge radius is in the allowable range,
the smaller the loss of the lever structure on the hinge, which increases the horizontal
displacement of the slider and improves the driving ability of the PEA. The optimum hinge
radius is 1.4 mm.

Table 4. Parametric analysis of hinge radius.

Hinge Radius
R1/mm

Contact Area
Vlamping Force

Foy/N

Horizontal Displacement of
Lever Side Surface

L1/µm

Horizontal Displacement
of Lever Top

L2/µm

Horizontal Displacement
of Slider

L3/µm

1.20 1152 178 263 125
1.25 1170 180 273 129
1.30 1181 194 280 132
1.35 1194 201 287 139
1.40 1201 209 291 142

In view of the above analysis, the optimal structure of the leverage amplification
structure is finally obtained as the lever width is 4.5 mm, the hinge radius is 1.4 mm, the
distance between the hinge and the lever connection is 0 mm. The contact surface clamping
force can reach 1201 N, and the slider horizontal displacement is 142 µm.

The simulation results of ANSYS show the clamping force of 1201 N is higher than
the set output of 1000 N. The results verify the superiority of the proposed flexure hinge
structure. However, the clamping force calculated by Formula (4) is 1540 N. For the
clamping force, the simulation result is less than the theoretical calculation result. There
are two main reasons for the force loss. One is the deformation caused by the linear or
rotary motion of the flexure hinge; the other is the slight deformation of the lever under
the action of thrust.

The deformation of the flexure hinge structure and horizontal displacement of the
slider are shown in Figure 8. In the lever structure, when the horizontal displacement
of dynamic application point is 209 µm, the horizontal displacement of the resistance
application point is 291 µm. Through calculation, the amplification factor of the lever
structure in the simulation is 1.4 times. The theoretical magnification is 2.1. The reduction
of magnification is due to the absorption of part of the force due to the whole deformation
of the lever. The bending deformation of the flexible hinge in the lever structure requires a
certain amount of energy. The symmetrical deformation of both sides of the flexure hinge
structure reflects its stable driving performance. The coupling displacement of the driving
foot makes the slider move 142 µm horizontally.
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Figure 8. Lateral deformation of the piezoelectric actuator.

In the process of motion, the flexible hinge structure in the model will produce the
stress to recover to the initial state due to the deformation. Figure 9 shows the distribution
of the equivalent stress when the flexible hinge structure has the maximum deformation.
The mechanical strain in the figure is concentrated on the hinge, driving foot, and outside
of the triangular structure. The maximum mechanical strain occurs on the driving foot
which is close, in touch, with the slider. According to Equation (5), the output of clamping
force can be increased by changing the angle α between the structure of the triangular
flexible hinge and the horizontal direction. However, for the sake of ensuring the normal
operation of the driving foot. While increasing the angle to improve performance, it is also
essential to take into account that the mechanical strain of the driving foot cannot exceed
its bearing range.
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Figure 9. Equivalent stress distribution of the flexible hinge structure.

4. Performance Analysis

According to the above analysis results, a 5 mm × 5 mm × 16 mm piezoelectric
ceramic stack (NAC2013-H16, COREMORROW, Harbin, China) is added to the optimized
flexure hinge structure. The hinge structure is welded by Al7075 and 65Mn. The maximum
stroke of the cross-roller linear guide (VR4-80H×7Z, THK, Japan) is 58 mm. The assembled
actuator and cross-roller linear guide are fixed on the corresponding platform by screws,
and the pre-pressure between them is adjusted to 80 N. A string is fixed on the right
side of the slider, and it is connected with a suspended weight through a fixed pulley.
The pulley-string-weight is used as the load of the slider. The laser sensor (LK-H008,
KEYENCE, Osaka, Japan) with a measuring range of ±0.5 mm detects it on the left side of
the slider, which is used to detect and record the output performance of the slider, such as
displacement or velocity. Figure 10 shows the mechanical load measurement system. In
the experimental platform, the ramp voltage applied to the actuator is generated by the
signal generator (UTG930, UNI-T, Dongguan, China), and the amplitude of the voltage
is amplified by the high voltage amplifier (HA-820, PINTECH, Guangzhou, China). The
oscilloscope is used to observe the stability of voltage waveform and adjust the voltage
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peak to peak with the high voltage amplifier. The magnetic base is used to adjust and fix
the position of the laser sensor, and the data detected by the laser sensor will eventually be
stored in the PC, as shown in Figure 11.
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Figure 11. Experimental platform of the proposed stick-slip piezoelectric actuator (1. High Voltage
Amplifier, 2. Oscilloscope, 3. Signal Generator, 4. Magnetic Base, 5. PC 6. Laser Sensor, 7. Prototype,
8. Pulley, 9. Weight).

Firstly, the relationship between driving performance and excitation frequency is
analyzed. Using ANSYS 15.0 (Ansys, Canonsburg, PA, USA) obtains the optimal resonance
frequencies of 3.25 kHz in Modal analysis. Then, for the sake of facilitating comparison, the
best excitation amplitude of 150 V is used. Finally, the parameter analysis of the frequency
range is carried out to verify whether the frequency is the optimal excitation frequency, as
shown in Figure 12. The slider speed increases with the rise of excitation frequency reaches
the peak value at 3.25 kHz and then decreases rapidly. The result shows that 3.25 kHz is
the best excitation frequency in this range.
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Through the above analysis, choose 3.25 kHz as the excitation frequency. The rela-
tionship between driving performance and excitation amplitude is studied, as shown in
Figure 13. When the excitation amplitude is lower than 5 V, the slider cannot be driven
effectively. When the excitation amplitude is greater than 5 V, the slider speed increases
linearly as the excitation amplitude grows approximately. The optimum velocity is reached
at the maximum excitation amplitude of 150 V.
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Figure 13. Relationship between drive voltage and the speed of the slider.

When the excitation amplitude is 150 V and the excitation frequency is 3.25 kHz.
Figure 14 shows the relationship between load capacity and velocity. With the increase of
load, the sliding velocity decreases linearly. The velocity of the slider tends to zero when
the load is 3 kg. Therefore, the maximum load that the piezoelectric actuator can bear is
3 kg.
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Figure 14. Load performance of the piezoelectric actuator.

When the excitation frequency is 3.25 kHz and the excitation amplitude is 150 V, the
sampling period of laser sensor is 20 µs and the average number of times is 1. As the
voltage increases, the deformation of the flexure hinge structure leads to the increase of
clamping force, which drives the slider to move laterally. Then, the driving voltage drops
rapidly, the flexure hinge structure quickly recovers the deformation, the reverse friction
force reacts on the slider. The rapid decrease of adhesion leads to less friction and short
action time. At the same time, due to the inertia, the slider keeps a positive movement
trend. To sum up, the slider can only produce a small reverse displacement. Therefore,
the movement trajectory of the slider is the curve of the ascending step. After loading
a 1.5 kg load, the slider has large reverse displacement in the process of motion, caused
by the low velocity and reaction of loads, as shown in Figure 15. For a more clear and
direct description, the performance results of proposed PEA are shown in Table 5. The
displacement resolution varies with the applied voltage. In theory, the smaller the applied
voltage within the driving voltage range, the higher the resolution of the PEA. However,
the sensor itself has a resolution, and if the displacement is too small, it cannot be detected.
After testing, the minimum resolution is 0.01 µm.
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Figure 15. The relationship between displacement and time of the slider.

Table 5. Performance results of the proposed PEA.

Type of the PEA Voltage
(Vp-p)

Frequency
(kHz)

Free-Load Velocity
(mm/s)

Maximum Load
(kg)

The PEA using a
two-stage flexure
hinge structure

150 3.25 338 3

5. Conclusions

In order to adapt to different working requirements, flexible hinges are often added to
the linear PEA to diversify the design of the whole structure. Among them, the combination
with displacement amplification structure can improve the performance of the PEA. In the
previous research of the PEA, a single displacement amplification structure was used for
combination. On this basis, this paper combines two kinds of displacement amplification
structures, constructed a two-stage amplification flexible hinge structure, and use it in the
PEA to greatly improve the drive performance.

The structure adopted in the PEA has the characteristics of amplifying the output
displacement and clamping force. In this paper, the amplification characteristics of the
structure are analyzed theoretically. The structure was optimized by parametric analysis.
Then, the theoretical calculation results were confirmed by FEA. The operation manifesta-
tion stated that under the excitation frequency of 3.25 kHz and the excitation amplitude of
150 V, the peak no-load output speed was 338 mm/s. The maximum load capacity was
3 kg. The structure improved the utilization ratio of piezoelectric ceramics. It solved the
problems of unstable clamping force and insufficient load capacity. On the premise of
ensuring the output performance, reducing the working frequency can improve the control
accuracy. Further improvement of control accuracy is a problem to be studied.
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