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Abstract: We investigated the electrical performance and positive bias stress (PBS) stability of the
amorphous InGaZnO thin-film transistors (a-IGZO TFTs) with SiOx passivation layers after the
post-annealing treatments in different atmospheres (air, N2, O2 and vacuum). Both the chamber
atmospheres and the device passivation layers proved important for the post-annealing effects
on a-IGZO TFTs. For the heat treatments in O2 or air, the larger threshold voltage (VTH) and off
current (IOFF), smaller field-effect mobility (µFE), and slightly better PBS stability of a-IGZO TFTs
were obtained. The X-ray photoemission spectroscopy (XPS) and secondary ion mass spectroscopy
(SIMS) measurement results indicated that the oxygen atoms from the ambience led to less oxygen
vacancies (VO) and more oxygen-related defects in a-IGZO after the heat treatments in O2 or air. For
the annealing processes in vacuum or N2, the electrical performance of the a-IGZO TFTs showed
nearly no change, but their PBS stability evidently improved. After 4500 seconds’ stressing at 40 V,
the VTH shift decreased to nearly 1 V. In this situation, the SiOx passivation layers were assumed
to effectively prevent the oxygen diffusion, keep the VO concentration unchanged and refuse the
oxygen-related defects into the a-IGZO films.

Keywords: amorphous InGaZnO (a-IGZO); thin-film transistor (TFT); positive bias stress (PBS);
annealing atmosphere; oxygen vacancy

1. Introduction

Amorphous InGaZnO thin-film transistors (a-IGZO TFTs) have been regarded as
among the most promising active-matrix devices for next-generation flat panel displays
(FPDs) due to their high mobility, good uniformity and low fabrication temperature [1–5].
For mass productions of a-IGZO TFTs, either etching-stopper (ES) or back-channel-etching
(BCE) structures are used. Although the better electrical performance and stability are
obtained for ES-structured devices, BCE is still preferred for its simpler processing and
compatibility with amorphous silicon (a-Si) TFT productions [6–9]. Hence, researchers
have been taking many measures to improve the electrical performance and stability of
BCE-structured a-IGZO TFTs, among which post-annealing treatments seem extremely
useful [10,11]. Some studies pointed out that the annealing effect was closely associated
with the oxygen vacancy (VO), one of the most important defects in a-IGZO films [12,13].
Assuming VO was sensitive to annealing atmospheres, as some researchers obtained
higher performances and stabler properties of a-IGZO TFTs by choosing appropriate
annealing atmospheres (e.g., oxygen, nitrogen, vacuum, and so on) [14–17]. However, all
of these studies were limited to the unpassivated devices whereas the TFT devices are
always passivated in mass production. Since passivation layers might exhibit different
effects under different annealing atmospheres, it might be meaningful to investigate the
atmosphere effect in post-annealing treatments for the a-IGZO TFTs with passivation ayers.

In this study, the electrical performance and positive bias stress (PBS) stability of the
a-IGZO TFTs with SiOx passivation layers under various post-annealing atmospheres (air,
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O2, N2 and vacuum) were comparatively investigated, whose physical essence was deeply
analyzed with the help of X-ray photoemission spectroscopy (XPS) and secondary ion
mass spectroscopy (SIMS). We found that both the chamber atmospheres and the device
passivation layers played important roles in the post-annealing treatments for a-IGZO
TFTs. A qualitative model was also built to explain the experimental results.

2. Materials and Methods

Figure 1 shows the schematic cross-section of the BCE-structured a-IGZO TFTs used in
this study. Firstly, the gate electrodes (150 nm-thick aluminum and 23 nm-thick molybde-
num films) were deposited on the glass substrates by sputtering. Then, 350 nm-thick SiNx
and 50 nm-thick SiOx films were prepared as gate insulators (GIs) by plasma-enhanced
chemical vapor deposition (PECVD). The 60 nm-thick channel layers were deposited
by RF sputtering at room temperature (RT) using an IGZO target, where the atoms ra-
tio of In:Ga:Zn was 1:1:1. After patterning the channel layers, a pre-annealing treat-
ment (300 ◦C/1 h/air) was employed in a furnace, which could increase the film den-
sity/uniformity and reduce the defects in the a-IGZO films. The 30 nm-thick molybdenum
and 150 nm-thick aluminum films were then prepared and patterned as source/drain
(S/D) electrodes before the 200 nm-thick SiOx films were deposited as passivation layers
by PECVD. Finally, the samples were annealed at 300 ◦C for 1 h in different atmospheres
(air, O2, N2 and vacuum) using a rapid thermal processing (RTP) oven, where the gas flows
of O2 (or N2) were set to 1 L/min and the vacuum pressure was kept at 6.5 × 10−3 Pa.
It is worth noting that all the films were patterned by standard lithography and etching
processes. The typical channel width/length of the a-IGZO TFTs was 12/6 µm.
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−20 V to 40 V at a step of 0.5 V and VDS was set to 10 V. During the PBS tests, the transfer 
curves were instantly measured following each 1500 s’ stressing (VGS = +40 V). All the 
above tests were performed in a dark chamber at RT. An XPS analyzer (AXIS Ultra DLD) 
was used to characterize the chemical bonding states of the a-IGZO films (without or with 
passivation layers) annealed under different atmospheres. Here, an X-ray source with the 
aluminum anode was used to bombard the film surface and obtain the energy spectrum 
of different elements. The binding energy of all elements were calibrated using the C1s 

Figure 1. Schematic cross-section of the back-channel-etching (BCE) -structured amorphous InGaZnO
thin-film transistors (a-IGZO TFTs) in this study.

The electrical performance and PBS stability of the a-IGZO TFTs were measured by a
Keithley 2636 analyzer. The transfer curves were obtained when VGS was scanned from
−20 V to 40 V at a step of 0.5 V and VDS was set to 10 V. During the PBS tests, the transfer
curves were instantly measured following each 1500 s’ stressing (VGS = +40 V). All the
above tests were performed in a dark chamber at RT. An XPS analyzer (AXIS Ultra DLD)
was used to characterize the chemical bonding states of the a-IGZO films (without or with
passivation layers) annealed under different atmospheres. Here, an X-ray source with the
aluminum anode was used to bombard the film surface and obtain the energy spectrum of
different elements. The binding energy of all elements were calibrated using the C1s peak
at 284.8 eV. A SIMS measurement system (TOF SIMS 5 produced by ION-TOF GmbH) with
a Cs+ primary ion source was applied to measure the depth profiles of different elements.
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3. Results and Discussion

Figure 2a shows the transfer curves of the a-IGZO TFTs annealed under different
atmospheres, where the unannealed device was considered the reference sample. The
corresponding performance parameters including threshold voltage (VTH), field-effect
mobility (µFE), sub-threshold swing (SS) and on–off current ratio (ION/IOFF) were extracted
from the transfer curves according to Ref. [18]. Here, 6–12 devices were measured and
statistically analyzed. As shown in Figure 2b, the average mobilities of the devices annealed
under different atmospheres (unannealed, air, O2, N2 and vacuum) were 3.07, 2.08, 1.37,
3.78 and 4.03 cm2/(V·s), respectively. One may notice that the annealing in O2 or air
obviously degraded the device mobility, whereas the annealing in N2 or vacuum slightly
improved µFE. In addition, the corresponding VTH values were 3.6, 5.1, 8.0, 4.7 and 5.4 V, the
SS values were 2.8, 2.4, 2.7, 2.6 and 2.4 V/dec, and the on–off current ratios were 3.8 × 106,
2.4 × 106, 3.9 × 105, 8.2 × 106 and 1.3 × 107, respectively (see Figure 2b,c). Compared with
the unannealed sample, one may observe from Figure 2b that the post-annealing in O2
evidently increased the threshold voltages of a-IGZO TFTs, while the annealing treatments
in N2 or vacuum showed nearly no influence on the VTH values. As shown in Figure 2c,
the SS values of a-IGZO TFTs remained almost the same under various post-annealing
atmospheres. The post-annealing treatments resulted in sufficiently large on/off current
ratios (>106) except that in O2, as shown in Figure 2c.
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Figure 2. (a) Transfer curves; (b) mobility/threshold voltage; and (c) sub-threshold slope/on–off current ratio of the a-IGZO
TFTs with SiOx passivation layers annealed in different atmospheres.

The bias stress effect plays an important role in the actual applications of TFT de-
vices [2,19]. Accordingly, we measured the PBS stability of the a-IGZO TFTs with SiOx
passivation under various annealing atmospheres (unannealed, air, O2, N2 and vacuum).
Figure 3a shows the transfer curve evolution of the unannealed a-IGZO TFTs during PBS
tests. With the stressing time elapsed, the transfer curves of the devices shifted positively.



Micromachines 2021, 12, 1551 4 of 10

In order to quantitatively describe this unstable property, we defined a useful term ∆VTH
(the VTH difference between the after-stressing state and the initial state) in this study. It is
worth noting that each ∆VTH value was averaged over 3–6 devices. After 4500 s’ stressing,
∆VTH of the unannealed device became 3.67 V. All the post-annealed devices exhibited
better bias stress stability than the unannealed sample. It is interesting that the ∆VTH value
distinctively depended on the post-annealing atmosphere. As shown in Figure 3b, ∆VTH
decreased to 1.88 V, 2.50 V, 1.13 V and 1.38 V for the devices annealed in air, O2, N2 and
vacuum, respectively. It is worth noting that the post-annealing treatments in N2 and
vacuum showed much larger improvements than those in O2 and air.
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In order to determine the related physical mechanisms, we used the XPS technique
to analyze the a-IGZO films (without or with passivation layers) annealed under various
atmospheres. Firstly, we deposited 60 nm-thick a-IGZO films on glass substrates, annealed
them under different atmospheres, and applied them to XPS measurements. Although
these unpassivated films were different from the real situation in the TFT devices (see
Figure 1), they could more evidently exhibit the influences of the annealing atmospheres
on the back surfaces of the a-IGZO films. Figure 4a shows the deconvolution diagram of
the O1s spectrum of the unannealed sample. The O1s peak can be deconvoluted into three
sub-peaks using Gaussian fitting method which are approximately centered at 529.5 eV
(OI), 530.9 eV (OII) and 532.0 eV (OIII), respectively. The OI peak represents the oxygen
bonds with metal, the OII peak is bound up with VO, and the OIII peak is related to the
hydrated oxides defects [20,21]. Figure 4b,c show the peak area ratios of the OII and OIII
over the total area of O1s peak (OTotal = OI + OII + OIII). The area ratio OII/OTotal of the
a-IGZO films annealed under various atmospheres (unannealed, air, O2, N2 and vacuum)
were 28.56%, 28.19%, 21.78%, 30.20% and 30.02%, respectively. One may observe that
the post-annealing in O2 largely decreased the area ratio OII/OTotal, whereas the heat
treatments in air/N2/vacuum showed little effect in this regard. On the other side, the
area ratio OIII/OTotal of the a-IGZO films under different atmospheres (unannealed, air,
O2, N2 and vacuum) were 13.08%, 16.91%, 17.19%, 17.53% and 17.37%, respectively. It is
obvious that all the post-annealing treatments increased the area ratio OIII/OTotal.
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As shown in Figure 4b, only O2_annealing among five treatments evidently changed
VO in a-IGZO films, which are in need of much further study. Most importantly, could
passivation layers prevent this effect? Attempting to address this question, we used XPS
depth profiling technique to analyze the chemical bonding states in the a-IGZO films
passivated by 50 nm-thick SiOx [22]. As shown in Figure 5a, point A was exactly under the
interface between the a-IGZO and SiOx, whereas point B was in the middle of a-IGZO films.
The characterization results of the unannealed samples and the O2_annealed samples are
shown in Figure 5b. At point A, the area ratio OII/OTotal decreased from 31.0% to 25.8%
by the O2_annealing treatment, which was quite similar to the case of the unpassivated
a-IGZO films (see Figure 4b). At point B, however, there was nearly no difference in the
area ratio OII/OTotal between the unannealed (34.5%) and O2_annealed (34.8%) samples.
These results indicated that the oxygen atoms might also diffuse into the a-IGZO back
surfaces and hence combine with VO even if the SiOx passivation layer was applied during
the O2_annealing treatments. Although the thickness of SiOx used here (50 nm) was
thinner than that of the passivation layer (200 nm) in the a-IGZO TFTs, we assume that this
conclusion was also applied to the real devices.

In order to further ascertain the role of the ambient oxygen atoms during the thermal
annealing treatments, we comparatively measured the SIMS profiles of the unannealed
sample and O2_annealed sample, both of which consisted of 60 nm-thick a-IGZO and
160 nm-thick SiOx films. Here, the SIMS depth profiling technique was used to analyze
the distribution of different elements in the unannealed and O2-annealed samples [23].
Figure 6a shows the depth dependence of the second ion intensity for the unannealed
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sample. One can observe that there were abrupt changes in Si, InO, GaO and ZnO at
the depth of approximately 160 nm, which was close to the interfacial surface between
SiOx and a-IGZO. The O2_annealing brought nearly the same SIMS picture as that of
the unannealed sample except the data about oxygen ions. As shown in Figure 6b, the
secondary ion intensity of oxygen remained almost unchanged within the SiOx films by
the O2_annealing, implying that the entering oxygen atoms from the ambience during the
annealing treatment in O2 were too few to be detected by SIMS. Therefore, we reasonably
assume that the oxygen atoms entering the a-IGZO also could not be detected by SIMS.
However, as shown in Figure 6b, the secondary ion intensity of the oxygen apparently
increased for the O2_annealed sample. We assume that the microstructure of the a-IGZO
evidently changed during the annealing treatment in O2, which might be due to the
entering oxygen atoms from the ambience although their concentration was quite small.
This change also implied that the O2_annealing might bring some oxygen-related-defects
such as interstitial oxygen in the a-IGZO films [24,25].
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It is well known that a-IGZO films are very sensitive to ambient atmospheres, es-
pecially oxygen and water [26,27]. For mass production, passivation layers are always
used to isolate a-IGZO TFTs from the ambience. However, post-annealing treatments
at high temperatures accelerate the interaction between the a-IGZO and outside world.
This interaction is a dynamic process during annealing treatments. Here, we limit our
discussion to the interactions between oxygen atoms because they are dominant in the
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electrical performance and stable properties of a-IGZO TFTs. Figure 7a shows the schematic
diagram of the dynamic process during the annealing treatments at 300 ◦C in O2 (or air)
atmospheres. In this situation, the oxygen atoms were full of the RTP chamber, so the oxy-
gen diffusion from the chamber into the a-IGZO films should prevail that from the device
channel layers into the ambience. It was reported that oxygen atoms could pass through
dielectric films due to thermal diffusion at high temperatures [28,29]. Importantly, these
newcomers (oxygen atoms) combined with oxygen vacancies and effectively decreased
the VO concentration in a-IGZO films, which was confirmed by the XPS measurement
results (see Figures 4b and 5b). This drop in the VO concentration accordingly resulted in
the larger VTH values for the corresponding TFT devices, as shown in Figure 2b. It is worth
noting that this effect was evidently weakened for the annealing treatments in air due to
the existence of much more nitrogen atoms in the RTP chamber. Furthermore, the entering
oxygen atoms also brought some oxygen-related-defects (see the discussion about the
SIMS measurement results), and led to smaller µFE and larger IOFF (as shown in Figure 2).
Generally, heat treatments could improve the bias stress stability of a-IGZO TFTs due to the
drops in the bulk defects and interface traps [30–32]; however, these oxygen-related-defects
degraded this improvement effect. Specifically, the oxygen-related defects might make the
VO formation easier during positive bias stressing [33], which resulted in more unstable
properties of a-IGZO TFTs. Thus, the PBS stability improvements for the a-IGZO TFTs
annealed in O2 and air were not so evident, as shown in Figure 3b.
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Figure 7b shows the dynamic process during the post-annealing at 300 ◦C in vacuum
(or N2). In this situation, there were few oxygen atoms in the RTP chamber, so the oxygen
diffusion from the a-IGZO film to the ambience was assumed to be dominant. If so, the VO
concentration would have become larger. However, this rise in the VO concentration was
not apparent due to the XPS measurement data. As shown in Figure 4b, the annealing in N2
(or vacuum) hardly changed the area ratio OII/OTotal. We ascribe this phenomenon to the
barrier effect of the SiOx passivation layers. In contrast to Figure 7a, the SiOx passivation
layers effectively prevented the oxygen diffusion from the a-IGZO into the ambience
during heat treatments in vacuum (or N2). Since the VO concentration changed little in
this case, the electron concentration in the channel layers of the a-IGZO TFTs remained
nearly unchanged, leading to VTH and µFE values similar to those of the unannealed device
(see Figure 2b). As for the bias stress stability of the a-IGZO TFTs annealed in vacuum
(or N2), we reasonably assume that there were no oxygen-related-defects included here,
so the improvement effect over the stable properties of a-IGZO TFTs by heat treatments
could be well kept [34]. As shown in Figure 3b, the annealing in vacuum (or N2) effectively
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improved the PBS stability of the a-IGZO TFTs with SiOx passivation layers, which should
be preferred in mass productions.

Finally, we briefly discussed two interesting questions relating this study. The first
one is about the function of VO and the other one is relating the choice of passivation
materials. Some researchers reported the VO drop led to better device performance [35,36],
which is different from the results here. We ascribe this difference to the special effects
of O2_annealing treatments, i.e., they not only decreased the VO concentration but also
brought some oxygen-related-defects [24,25]. In this study, the SiOx was selected as passi-
vation layers, which was found to play important roles in the post-annealing treatments
under different atmospheres. We assumed that other passivation materials should bring
similar tendencies but to different extents. This assumption might be supported by the
other research results from our group, which indicated that the a-IGZO TFTs with SiOx and
AlOx passivation layers exhibited almost the same PBS stability if the different passivation
layer thicknesses were used [33]. In fact, not only the passivation material but also some
treatments on passivation layers might also influence their performance during heat treat-
ments. It is reported that the thermal stability of TFTs can be improved by using fluorinated
organic passivation, where the diffusion of F during the annealing process reduced the VO,
leading to better thermal stability [35]. Although the different passivation layers showed
somewhat different performances, all the above reports suggested that passivation layers
have similar barrier effects during post-annealing treatments.

4. Conclusions

The post-annealing atmosphere effectively influenced the electrical performance and
bias stress stability of the a-IGZO TFTs with SiOx passivation layers. For the heat treatments
in O2 (or air), the oxygen atoms in the ambience diffused into the a-IGZO and combined
with oxygen vacancies, leading to less VO and more oxygen-related defects; this resulted in
larger VTH/IOFF, smaller µFE and the slightly better PBS stability of the a-IGZO TFTs. For
the post-annealing process in vacuum (or N2), the oxygen diffusion was effectively pre-
vented by the SiOx passivation layers, and hence the VO concentration hardly changed; the
electrical performance of the a-IGZO TFTs showed nearly no change, but very importantly,
their PBS stability evidently improved. This qualitative model was confirmed by the XPS
and SIMS measurement results.
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