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Abstract: Recently, additive manufacturing (AM) processes applied to the micrometer range are
subjected to intense development motivated by the influence of the consolidated methods for the
macroscale and by the attraction for digital design and freeform fabrication. The integration of AM
with the other steps of conventional micro-electro-mechanical systems (MEMS) fabrication processes
is still in progress and, furthermore, the development of dedicated design methods for this field is
under development. The large variety of AM processes and materials is leading to an abundance
of documentation about process attempts, setup details, and case studies. However, the fast and
multi-technological development of AM methods for microstructures will require organized analysis
of the specific and comparative advantages, constraints, and limitations of the processes. The goal of
this paper is to provide an up-to-date overall view on the AM processes at the microscale and also to
organize and disambiguate the related performances, capabilities, and resolutions.
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1. Introduction

Additive manufacturing (AM) and 3D printing are consolidated processes for the pro-
duction of components at the macroscale at the industrial level, although many optimization
issues still remain open and motivate academic research. Instead, the AM of microstructures
and MEMS (micro-electro-mechanical systems) is based on dedicated processes that are still
under development and validation. In particular, some relevant process performances such as
accuracy, resolution, and repeatability are not fully consolidated, and materials availability is
still limited [1–10]. The AM processes are classified into seven categories according to the inter-
national standard [11]: binder jetting, directed energy deposition, material extrusion, material
jetting, powder bed fusion, sheet lamination, and vat photopolymerization. By starting from
the original processes classification, many variations were introduced and original methods
were developed. As a result, a very high number of fabrication methods are available today,
with different levels of maturity and reliability. Similarly, many associated acronyms can be
found, sometimes with the same meaning.

The development of a MEMS based on 3D printing and AM always needs a specific
design approach. The knowledge of the available process typologies, combinations, per-
formances, and available materials is mandatory to improve the manufacturability and
sustainability of micro 3D-printed devices. The common advantage of all AM methods
is the direct building from the digital geometry file or model (computer-aided design,
CAD) to the real component. This conversion is possible with wider shape freedom than
with conventional micromachining building processes [7,12]. At the present level of de-
velopment, some AM methods demonstrated resolutions up to the nanometer range and
improved the quality of structures in terms of surface finishing and parts geometry. The
integration of AM methods into high-performance technologies (nanoimprint lithography,
roll-to-roll processing, etc.) is possible, as the development of combinations of different
additive methods.
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The AM available materials are increasing in number, increasing those ones with func-
tional properties. The compatible materials are polymers (polyamide, acrylates, polylactic
acid or “PLA”, acrylonitrile butadiene styrene or “ABS”, epoxy resins, polycarbonate) [13],
metals (titanium, aluminum and nickel alloys, stainless steel) [14], ceramics (alumina,
lead zirconate titanate or “PZT”, silicon carbide, titanium dioxide) [15], and soft materials
(hydrogel, liquid crystals, polydimethylsiloxane or “PDMS”) [16]. Many AM methods
show recurring issues related to dimensional accuracy and thermal shrinkage, especially in
polymer-based processes, ceramic green parts sintering, and metal parts fabrication.

The emerging AM technologies applied to the micro- and nanoscales [3,6] demonstrate
preliminary applications in mechanics [17], electronics (sensors, light-emitting diodes-
LEDs) [18,19], optics and photonics (filters, photonic crystals, meta-materials, diffractive
elements) [20–22], medicine [23] and bionics [24–26]. The rise of AM is expected in some
emerging fields of microstructures such as wearable electronics [27,28], flexible batteries
management, internet of things (IOT) [29], printed bionics/biomechanics [19], lab-on-
chip [30], and self-powered sensors.

2. Classification of AM Processes for MEMS

The comprehensive review of the presently available AM processes suitable for the
microscale can be divided into four categories: powder-based processes, other laser-based
processes, extrusion-based processes, and other processes. The next sessions report the
description of these processes, the associated materials, and features size. The differences
among the process variants are reported and the multitude of acronyms available in the
literature are disambiguated.

The nomenclature of AM processes is subjected to frequent revisions and updates,
under the guidelines given by ASTM standards. However, many acronyms used in the
past, although formally outdated, are still commonly used in scientific papers and technical
reports due to their clear technological significance. For example, the selective laser melting
(SLM) process has been re-named as laser-based powder bed fusion of metals (PBF-LB/M) and
laser-based powder bed fusion of polymers (PBF-LB/P) [31]. In this paper, the AM processes
nomenclature cited is not limited to the international standards presently active and also
includes widely used terms and definitions.

The powder-based AM processes refer to the presence of powder bed or powder
injection feedstock. The laser-based processes (excluding those already described in the
first category) refer to laser power sources. The extrusion-based processes identify the
building growth through extruded layers of materials. Finally, the other processes not
included in the previous categories are reported. The block diagram of Figure 1 reports the
AM processes for the microscale organized in their respective categories.
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Figure 1. Classification of the AM processes for MEMS fabrication.

3. Powder-Based Processes

The AM processes based on powders management are suitable to many compatible
materials, provide fast production speed thanks to the limited supports needed, and offer
high accuracy. For these reasons, they have a high potential for MEMS fabrication. Another
advantage is the reduced waste materials due to the reusability of unprocessed powder [4].
With reference to the seven AM methods mentioned in the standards [11], the powder-based
processes include three of them: powder bed fusion (PBF), powder directed energy deposition
(PDED), and powder bed binder jetting (PBBJ). Other variants of these processes have been
developed: the multi jet fusion (MJF), the selective laser sintering (SLS), the selective laser
melting (SLM), and the electron beam melting (EBM). In all cases, the powder is processed by
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starting from a powder bed feedstock (metals and polymers) or from a powder injection,
or blown powder, feedstock (metals only).

The challenges and limitations of this group of processes in the MEMS field are
associated with the resolution of the energetic source and the powder granulometry. The
average spot size of laser beams or electron beams is able to produce structures with
dimensions largely below 500 µm, generally down to 100 µm. The surface roughness is
critical because for MEMS the post-process mechanical tooling is generally not applicable,
and the “as-built” accuracy is the only one available. For MEMS, the process parameters
are much more sensitive than in the macro-scale, in terms of laser speed, layer thickness,
and laser power (contributing to the definition of the volume energy density, VED). The
combination of these parameters affects the so-called “up-skin” and “down-skin” printing
resolution, referred to as the horizontal planes. Furthermore, in the microscale, the printing
parameters variation between the contour (the perimeter of the structure) and the inner
parts is very critical due to the small structure dimensions. Here, the fast and high gradient
of the VED may produce local melting/sintering issues (distortion and porosity).

3.1. Powder Bed Fusion (PBF)

The powder bed fusion (PBF) method was introduced the first time by Deckard and
Beaman [32]. It is based on a feedstock where the powder is exposed selectively to a
descendent energy source that causes the powder to sinter or melt [33,34]. Depending on
the energy source (laser, electron beam, infrared, thermal) and powder pre-heating, the
process gets different names. The materials compatible with PBF processes are metals,
polymers, and ceramics, although other typologies can be used as composite powders,
calcium carbonate, and sand. With exposure to the energetic source, the powder is locally
sintered or melted and the object is created layer by layer. Vertically movable stages and
powder re-coaters are needed to run the process into confined chambers with a controlled
atmosphere. When the structure is completed, the un-exposed powder is removed and
possibly reused. The standard manufacturing guidelines indicate a minimum feature size
of 500 µm for PBF of polymers and metals [35]. The next sessions (from 3.2 to 3.5) describe
the variants of the PBF process.

3.2. Multi Jet Fusion (MJF)

The multi jet fusion (MJF) process, introduced by Hewlett-Packard (HP), belongs to the
PBF category and operates with polymers [36–38]. Generally, it is used for low volumes
and fast components production with high mechanical strength as an AM alternative
to the traditional injection molding [34,36,39,40]. The powder feedstock is similar to
the other PBF processes but the polymer material is fused by using an infrared heating
source combined with chemical agents. The print surface is pre-heated to a uniform
temperature and then a thin layer of powder is deposited on it (Figure 2a). The HP thermal
inkjet of the printing head is then used to deposit on the powder layer a combination
of fusing and detailing agents on different selected areas. After that, the print surface is
exposed to an infrared source and the powder is fused only where the fusing solution
(i.e., radiation absorbing agent) is present [34,36,41,42]. The available polymers for MJF
are polyamide (PA 11, PA 12) and thermoplastic polyurethane (TPU). MJF is suitable for
printing functional mechanical parts or devices, biomedical lattices structures, medical
orthotics and prosthetics, mechanical tools, and fluid-tight devices [36,39,43–48].
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Figure 2. Powder-based processes for AM of microstructures: (a) multi jet fusion (MJF), (b) selective laser sintering/melting
(SLS/SLM), (c) electron beam melting (EBM), (d) powder bed binder jetting (PBBJ), (e) powder directed energy deposition (PDED).

3.3. Selective Laser Sintering (SLS)

In this process, a laser beam is directed against the upper surface of the powder as
represented in Figure 2b. The SLS is the most common AM process for polymers (nylon,
polycarbonate, polymer composites, etc.), although metals, ceramics, hydroxyapatite,
and glasses are also compatible [34,49–51]. The laser-scanning path is obtained from the
processing and slicing of the digital 3D drawing. The 3-dimensional object is obtained as
the result of layer-by-layer fusion and sintering of the powder, by eventually pre-heating
the material and by using inert atmosphere into the printing chamber. The vertical stage is
moved downward, a powder layer is deposited by the recoater arm and then exposed to
the laser source [52]. The maximum accuracy of the resulting SLS features is in the range
40–100 µm [10,53–55].

The definition of SLS is associated with a large variety of materials, including metals.
However, in this case, the alternative names of direct metal laser sintering (DMLS) or direct
selective laser sintering (DSLS) are preferably used in literature and practice [52,56]. The
documented typical feature size of DMLS is around 500 µm, although the minimum docu-
mented values reached 380 µm and 153 µm for standard and high-resolution processes [57].

3.4. Selective Laser Melting (SLM)

The SLM process is addressed to metals, and it is also referenced as direct metal
laser melting (DMLM) or laser powder bed fusion (LPBF). It is very similar to SLS, but the
powder particles are heated until the full melting by using laser beams with higher power
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(Figure 2b) [58–62]. This difference provides higher mechanical strength of the processed
materials than SLS [63–65]. The process sequence is similar to SLS, where the layer thickness
ranges between 20 and 100 µm and the metal powder granulometry is about 20–50 µm [66].
The minimum feature size reported for SLM is 40–200 µm [67,68]. Some examples of
micro-channels fabricating with SLM in steel parts with 120 µm wall thickness and square
cross-section were documented [69]. In glass material, SLM was used to build channels
with 1.1 mm cross-section [70]. The so-called micro-SLM process, recently developed
achieved microscale features of 60 µm and 1.3 µm minimum surface roughness (Ra) [66].

3.5. Electron Beam Melting (EBM)

The EBM process is applied exclusively to pre-heated metal powders in a vacuum
chamber. As reported in Figure 2c, an electron beam heat source is used to fully melt the
powder grains [71]. The pre-heating increases the stability and compactness of powder,
then suspended parts can be obtained with reduced supports density, as a general rule. The
process resolution is in the range 100–200 µm [72,73]. As an example, different versions of
scaffolds with gyroid shape and composed of unit cells with a minimum feature size of
500 µm were built [74].

3.6. Powder Bed Binder Jetting (PBBJ)

The PBBJ is applicable to a large variety of materials, including polymers, metals, sand,
ceramics, and mixtures of them [75–80]. The powder grains are deposited together with a liquid
binding agent working as cohesive media (Figure 2d). The layers are sequentially deposited
upon a platform that moves progressively downwards. The result of the first phase of the
process is a 3D object called the “green part”. The green part is then subjected to extensive
post-processing, including debinding, sintering and, eventually, infiltration and hipping (hot
isostatic pressure) to remove the binder solution and increase the mechanical strength by
reducing porosity [76,77,79,81–85]. In the case of ceramics, the resolution of PBBJ is largely
variable in the range 22–500 µm [86,87], while in the case of metals and polymers the typical
feature size is about 100 µm [13], with variations related to the powder grains dimension [86].
In fact, the performances of surface roughness and mechanical resistance increase with finer
powder below 20 µm. The presence of the binder is responsible for accuracy issues in terms of
shrinkage and deviations from the nominal dimensions.

3.7. Powder Directed Energy Deposition (PDED)

The PDED process is based on injection feedstock of powder supported by robotic
systems with multiple axes. The heat source is generally represented by a laser source but
other sources can be used (electron beam, plasma, electric arc). The PDED process is also
called direct laser metal deposition (DLMD).

The injector and heat source are coupled, then the metal powder injected is immedi-
ately melted and deposited on the target surface, where the temperature rapidly decreases
and causes the solidification (Figure 2e). The physical and chemical bonding between the
target and the deposited materials is obtained [88,89]. The applicable strategies of injection
include the lateral and off-axis orientation, and the continuous or discontinuous powder
injection [59]. The different injection methods associated with the specific heat source and
kinematic system lead to the sub-categories of PDED known as laser engineered net shaping
(LENS), laser metal deposition (LMD), direct laser deposition (DLD), direct light fabrication (DLF),
laser deposition welding (LDW) and powder fusion welding (PFW) [88,89].

The mechanical characteristics of the process do not consent to reach high resolutions,
which are limited to values included between 500 and 3000 µm [57]. The process variant
associated with the lowest values of this range is also defined micro-PDED/DLMD process
(µ-PDED/DLMD) [90–92]. Some features represented by 20 µm single pattern tracks were
fabricated by µ-PDED/DLMD [90].
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4. Other Laser-Based Processes

This category includes all the laser-based processes for MEMS fabrication which are
not mentioned in the previous section. In particular, the group of processes based on
the photopolymerization of liquid resins are reported. The main challenges of these AM
processes are associated with the limitation of resolution due to the optical properties of the
polymers used. The light refraction and diffraction aredirectly responsible for the thickness
of the transition region between exposed and unexposed liquid volumes. In the MEMS
scale, the small liquid volume involved limits the light deviation, then dimensions below
50 µm are easily achievable with high precision. The situation is different for the two-
photon polymerization (TPP) process, where the pulse light generated by a laser transparent
photopolymer is able to expose the resin exactly at the beam focal point, with a precision in
the order of a few nanometers.

4.1. Micro-Stereolithography (µ-SLA)

The so-called “stereolithography apparatus” (SLA) is the name assigned by Charles W.
Hull to the system he patented in 1984 [93], together with the successful STL file format for
the digital slicing of 3D models. They became the tool to support the most diffused, cheap,
and fast 3D printing method for polymers for many years [6]. The basic principle is to excite
with light source a bath of liquid photosensitive material to induce the polymerization and
solidification (photocuring) in selected regions [93–98].

The two main sub-categories of SLA are defined in relation to the exposure strategy:
scanning and light projection [94]. In the scanning laser stereolithography (SLSLA), as reported
in Figure 3a, the laser beam produces the local polymerization of the liquid resin point-by-
point on its surface. The laser pattern is defined by the digital processing of the original
geometry, which is preliminarily sliced to identify the exposure areas corresponding to
each layer. The thickness of each layer is in the range 10–100 µm. The layers’ superposition
is achievable thanks to a building platform that moves downwards [6]. In the projection
stereolithography (PSLA) process (Figure 3b), the entire surface of the liquid photosensitive
resin is exposed to the light source simultaneously. Digital micro-mirror devices (DMD)
composed of a matrix of reflecting and orientable surfaces, individually controllable,
provide the shaping of light. The DMD chip may contain several million micro-mirrors,
combined together to define the entire image [6].

4.2. Mask-Image-Projection Stereolithography (MIP-SLA)

This process, similar to stereolithography and represented by Figure 3c, is based on
the localized polymerization of liquid resin through laser light exposure. Different from
the projection stereolithography, a green part is preliminarily fabricated and used as a light
mask to define complex profiles. In [99], for instance, the authors used the MIP-SLA process
to build BaTiO3-based piezoelectric composite ceramics with a honeycomb structure design
with a wall thickness of 450 µm.

4.3. Continuous Liquid Interphase Printing (CLIP)

The continuous liquid interphase printing (CLIP), also known as continuous liquid interface
production, is similar to the projection stereolithography (PSLA). Figure 3d shows that the
liquid resin is contained in a pool with the bottom side transparent to ultraviolet light. The
light source is positioned below the transparent window; the printed object rises during
the polymerization allowing other resin to flow below the exposed layer. An optically
transparent membrane, permeable to oxygen, is situated below the resin [100]. The photo-
polymerization is quenched by the oxygen and the membrane creates a persistent liquid
interface that prevents the adhesion of the part with the pool [101].
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Figure 3. Other laser-based processes for AM of microstructures: (a) scanning and (b) projection
micro-stereolithography (µ-SLA), (c) mask-image-projection stereolithography with 3D mask (MIP-
SLA) [99], (d) continuous liquid interphase printing (CLIP), (e) computed axial lithography (CAL),
(f) digital light processing (DLP), (g) two-photon polymerization (TPP) or direct laser writing (DLW).

4.4. Computed Axial Lithography (CAL)

In the computed axial lithography (CAL) there are multiple light sources, oriented along
many different directions. The photoresist is contained in a cylindrical tank with transpar-
ent walls and it is exposed by 2D images along different orientations. The composition
of all the exposures provides the 3D target object, according to previous calculations on
the light patterns. A rotation stage can be used to obtain the same exposure condition,
as represented in Figure 3e. The unexposed or underexposed resin is removed after the
process. The typical features dimension is in the range 100 µm–1000 µm [102,103].

4.5. Digital Light Processing (DLP)

Many 3D printers are able to convert the digital object file into sliced geometry and
sequential building. The digital light processing stereolithography (DLP-SLA) is used for
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building direct polymeric devices [104,105] or to support the fabrication steps of a more
complicated process with different materials (Figure 3f). In [106] the DLP-SLA process is
used with zirconia to build the UV-curable supports and to shape the green part, which is
then sintered. The minimum feature size achieved is about 50 µm [105,106].

4.6. Two-Photon Polymerization (TPP) or Direct Laser Writing (DLW)

This 3D building process is based on the two-photon absorption proposed by Maruo
in 1997 [107] and allows fabricating parts with extremely small dimensions, in the order
of 1/100 the laser wavelength (with reference to ~810 nm wavelength of the femtosecond
lasers generally used) [108,109]. In the TPP process, a laser beam transparent to the
photosensitive polymer is used to generate a pulse light with high peak power (Figure 3g).
When the laser is focused on a specific point, a threshold photon flux density is achieved
in the middle of the focal spot [6]. The non-linear process of two-photon absorption is
induced by the high-intensity light source [3]. The polymerization area (called “voxel”)
is then significantly smaller than the laser wavelength [110–112]. The TPP allows us to
control the polymerization point along the 3-dimensions with resolution below 100 nm and,
for this reason, the process is also known as direct laser writing (DLW) [107]. The effective
resolution of the process is related to many factors: laser power and wavelength, photoresist
properties, oxygen diffusion, etc. [113]. The optical resolution of 5.6 nm with visible light
was documented [114] and suspended lines with 9 nm feature size and interlinear resolution
of 52 nm were achieved [115]. An axial resolution of 40 nm was also obtained [109].

The TPP process has recently attracted increasing attention for MEMS and NEMS
(nano electro-mechanical systems) applications [116,117]; in addition, the same interaction
principle between the femtolaser and the photosensitive material is applicable to other
microfabrication processes as laser ablation [118,119], laser melting [120,121], and photoreduc-
tion [122,123].

5. Extrusion-Based Processes
5.1. Fused Deposition Modelling (FDM)

The fused deposition modeling (FDM), also referenced as fused filament fabrication (FFF),
is a 3D printing method based on the material extrusion through a nozzle, as introduced by
S. Scott Crump in 1988 [124]. An electric resistance heats and fuses the solid filament that
is immediately extruded along the desired pattern to compose each layer (Figure 4a). Com-
patible materials are thermoplastic and thermosetting polymers, including acrylonitrile
butadiene styrene (ABS), polylactic acid (PLA), and polyethylene terephthalate (PET).

In the MEMS fabrication, the limitations associated with the FDM process are the
nozzle dimension and the viscosity of the materials used. The minimum size of structures
is in order of 200 µm with PDMS and 400 µm with PLA and ABS.

5.2. Ink Jet 3D Printing (IJP)

The AM methods based on extruded materials without thermal heating are identified
with the definition of direct ink writing (DIW) [125]. The main advantages of these methods
are low cost, a large variety of materials, large printing area, and high throughput [126,127].

The ink jet 3D printing (IJP) is based on the deposition of small ink droplets on the
substrate. Different to traditional 2D printing, the print head (or, alternatively, the substrate)
is controlled also in the vertical direction. This allows building objects by superimposing
successive layers [128]. The material is extruded through a nozzle and deposited along
a linear pattern (continuous ink jet printing) or point-to-point (drop-on-demand ink jet
printing) [129]. The most frequent method for AM is the second one [130].
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Figure 4. Extrusion-based processes for AM of microstructures: (a) fused deposition modelling (FDM), (b) electro-
hydrodynamic ink jet printing (EHD-IJP), (c) multi jet modelling (MJM).

The materials suitable for IJP have low viscosity and they are generally polymers,
waxes, bio-inks, and hydrogels [131]. The building of 3D ink jet printed microstructures
was demonstrated [132]. More specifically for microscale printing, other available materials
are colloid solutions of nanoparticles, metals, composites, glasses, and biological tissues.
The material is usually named “ink” in relation to this particular process [6]. The ink jet
printing method allows fabricating metal electronic elements on plastic substrates thanks
to the low temperatures involved and by using solder materials. Metals with low melting
temperatures have been used in the jetting process to build 3D microstructures [133,134].

The low viscosity allows achieving features size of about 10 µm [135] or lower [136].
The features size also depends on the droplet’s size and nozzle diameter. The size of
droplets is determined by the ejection system (or activator), normally based on piezoelectric
or thermal principles. The ejection control signal (pulse shape and length) determines
the formation of droplets and their size, velocity, and repeatability [137]. Other factors
influencing droplets properties and objects resolution are ink surface tension, viscosity
and inertia, and ink-substrate affinity. After the deposition, ink drying or annealing are
provided. Extensive simulations and experiments on droplets formation with various
materials are available [138].

The evolution of IJP, called electro-hydrodynamic ink jet printing (EHD-IJP), reported in
Figure 4b, provides the reduction of droplets size by means of an additional electric field
between the printhead nozzle and the substrate [139,140]. The electric field produces a
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sequence of small ink volumes leaving the droplet and migrating towards the substrate. The
dimension of these new droplets is much smaller than the nozzle diameter, around 100 nm.
Then, the EHD-IJP is suitable for printing high-resolution micro and nano-structures (e.g.,
50 nm gold nanocolumns [141] and 10 µm wax-polymer capillaries [142]) and supports the
combination of multiple materials [141,143].

5.3. Multi Jet Modelling (MJM)

The multi jet modeling (MJM) is based on the parallel and simultaneous ink jet deposi-
tion of multiple materials including sacrificial support material (gray) and photocurable
materials (colored). This method was introduced by Yamane et al. [144] in the 1990s and
it is also referenced as “Polyjet” 3D printing. The deposition of photopolymer droplets
and sacrificial material is accompanied by continuous ultraviolet (UV) photocuring, as
represented in Figure 4c. The sacrificial material is generally a water-soluble gel or meltable
wax, which is removed with post-processing steps [145]. Recent developments report
polymer jetting processes (where aerosol jet printers are used) assisted by UV LEDs (light-
emitting diodes) through focal lenses. The LEDs light is used to provide instant curing
of the polymer and the lenses to focus the light beam more effectively. Polymer pillars
with 20 µm diameter were built with this technique by achieving 16◦ light beam angle and
100 ms/pillar velocity including the curing [146].

6. Other Processes
6.1. Electron/Ion Beam Induced Deposition (E/IBID)

The (focused) electron beam induced deposition (EBID) starts from a low-pressure envi-
ronment with gaseous material, which is deposited on a substrate by the power source
(Figure 5a). A similar alternative version uses an ion-beam source (ion beam induced
deposition-IBID). The ideal resolution of the process is very high and related to the molecular
size of the deposited material. However, many geometrical and directional constraints are
present. A large variety of materials are compatible including polymers and metals [147].
The E/IBID are characterized by very low printing speed (below 1 voxel/s) [148].

An improved variant of this process, with a high impact on the MEMS scale, also
called focused ion beam (FIB), includes the gas supply through a nozzle close to the focused
ion beam source [149]. The same ion beam is used for etching (subtractive operation) and
depositing (additive operation) the material. Both insulators and metals can be processed,
and high-resolution patterning is possible (below 10 µm).

6.2. Casting with Sacrificial Mold

The combination of different AM processes can potentially provide improved perfor-
mances. The most relevant case is the preliminary fabrication of molds through various
methods (SLA, SLA, SLM, etc.) followed by a casting process. In the microscale, the separa-
tion of the part from the mold is challenging and it is preferable to use sacrificial molds that
are etched or dissolved after the casting. This method provides good results in particular
with soft material components with complex shapes (micropillars, membranes, lattices,
channels, etc.) In [12], the authors used a metal sacrificial mold with thin walls fabricated
by AM to cast and cure the soft polymer (PDMS in this case). The mold is then dissolved
by acids without affecting the polymer object. The challenges for MEMS fabrication are
associated with the final dimensional tolerances and with parts accuracy. The tolerance is
affected by the material shrinkage during the casting process, although the small volumes
involved cause in general proportionally low deviations. Instead, the final accuracy of the
microstructure derives from the contributions of the mold dimensional tolerances and the
mold release. The sum of accuracy errors may lead to the MEMS scale of large deviations
from the nominal dimensions without precise control of all the intermediate steps.
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Figure 5. Other processes for AM of microstructures: (a) electron/ion beam induced deposition (E/IBID), (b) laminated
resin printing (LRP), (c) ink jet selective laser sintering (IJ-SLS), (d) transfer printing.

6.3. Laminated Resin Printing (LRP)

The LRP process is suitable for MEMS fabrication and consists in stacking many layers
of dry resin previously patterned by stereolithography. As reported in Figure 5b, each layer
is made by a negative photoresist that is exposed to a light source and shaped. A rapid
automated process provides the sequential stacking of the resin blocks giving the growth
of the 3D microstructure. The stacked layers may also work as supports for successive
suspended layers forming membranes or overhangs. With reference to Figure 5b, the
projector exposes the active layer while the shutter protects the building part below. The
shutter is then moved and the vertical stage translates upwards so that the part and the
new layer are put in contact. The heated roller provides the pressure needed for lamination,
then the stage returns in a down position and the shutter returns to protection mode.
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Complex shapes with low cost and fast cycle time are feasible with LRP, and post-
processes as metallization, etching, or microfabrication steps are applicable. Small machines
composed of a DLP projector and lamination system (shutter and movable stage) support
the process. Typical resolutions achievable are in the order of 10 µm with 1920 × 1080
resolution projectors [150].

6.4. Ink Jet Selective Laser Sintering (IJ-SLS)

This process is the evolution of selective laser sintering (SLS) and ink jet printing
(IJP). The special setup of this process allows achieving probably the highest resolutions in
metal 3D printed microstructures (in the order of 5 µm) and the fastest velocities (about
60 mm3/h). The process, described in [54] and represented in Figure 5c, provides the
preliminary substrate coating with ink including metal nanoparticles inside. The layer
of ink is then dried and exposed to a light source by means of nano-positioners for high
precision alignment. The laser light beam used for the exposition is preliminary patterned
by DMDs. The exposure causes metal particles to sinter and form a layer formation. The
process is repeated to build multiple stacked layers.

6.5. Transfer Printing

The transfer printing process provides the translation of solid material blocks from
a donor substrate (where the material is preliminary grown or deposited) to a receiving
substrate (Figure 5d) [151–153]. The solid materials transferred are also called “solid inks”.
The transfer is performed through an elastomeric stamp with sharp tips provided with
shape memory. The flexible stamp is contacted and preloaded upon the solid material
to induce local adhesion with the sharp tips. The stamp-ink assembly is then moved to
the target position and heated. The thermal heating restores the original shape of stamp
tips and the solid ink is released. The process was initially applied to single-crystal silicon
inks (namely “micro-masonry”), then extended to silicon dioxide, gold, and epoxy polymer
(SU8). The process is also known as micro-LEGO and supports many geometrical variants
and configurations for the creation of MEMS assemblies (rotors [154], comb-drives [155],
micromirrors [156], resonators [157], and cantilevers [158]).

7. Discussions

The AM of microstructures, similarly to the macroscale field, allows the fabrication of
complicated shapes that are impossible to obtain with other processes. The AM methods
also permit to use a large variety of materials and materials combinations [159–163]. Some
of the processes described have been developed by starting from the macroscale to increase
their performances and resolutions, making them suitable for building microstructures
and MEMS. The comparison between AM at micro and macro scales shows significant
differences among the two fields. The fabrication of structures at the micrometer range
requires many steps including traditional micromachining methods and AM. Then, the
integration and compatibility of these production phases is very significant (e.g., the
deposition of conductive electrodes on structural parts) and causes strong constraints to the
spread of AM that are not present in the macroscale. The standardization and stabilization
of many processes are almost mature at the macroscale, while large variability of results
still exists in the microscale, as the literature demonstrates. The constant advantage of AM
is the possibility to build structures with complex shapes not allowed by conventional
methods. The design digitalization provides high potential in managing complex MEMS
projects with high flexibility. This characteristic of AM also leads to the advantage related to
small volume production and parts parallelization, where small variations among samples
are possible.

Reasonably, the most promising AM processes for future evolution are those ones able
to extend their resolution up to the nanometer range and suitable for the simultaneous
or parallel building of 3D structures. Among these methods there is TPP (two-photon
polymerization). The ink jet process is also promising, in combination with other methods
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as IJ-SLS (ink jet selective laser sintering) or combined with subtractive processes to provide
hybrid fabrication.

The next perspectives of AM in the micrometer field are related to the following
expected advancements of the technologies [6]. Firstly, future processes will require higher
resolutions and will be targeted to the molecular scale. The quality of parts, referring to
dimensional accuracy, roughness, and process repeatability, need to be improved. New
materials, specifically designed and developed for AM, are needed to improve the func-
tional properties of structures. The AM processes themselves require enhanced efficiency,
higher throughputs (more parts per unit time), and parallelization. The AM process will be
integrated into larger high-performance processes to cover the entire MEMS fabrication.
Finally, dedicated tests and in-line controls are required for process management and qual-
ity monitoring. On the contrary, the traditional micromachining processes will experience
advancements on the typologies of compatible materials, on the processes throughput and
cost reduction of high volumes productions.

With reference to the mentioned process efficiency and throughput, associated with
parts details resolution, Figure 6, adapted from the original version published in [148],
reports the comparison of performances among the AM processes. Two figures of merit
are reported: “faster” and “finer”. The left vertical axis reports the printing speed in
terms of the number of voxels per second (“faster”), and the lower horizontal axis reports
the inverse voxel size (“finer”). Additionally, the upper horizontal axis is the voxel size
(10 nm–1 mm) scale, and the right vertical axis is the bit rate (in bits/s) at which the digital
information is converted into hardware.

More in detail, the definition of each process in terms of minimum feature size doc-
umented and available materials are listed in Table 1. The next Table 2 reports the most
relevant ceramic materials used in MEMS processed with AM.

Figure 6. Performances comparison among AM processes in terms of printing velocity (left vertical
axis) and printing resolution (lower horizontal axis) [148].
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Table 1. Performances and suitable materials of AM processes for microstructures fabrication.

Process Min. Feature (µm) Materials References

Powder-based processes

Multijet fusion (MJF) 250–500 Polymers
(PA11, PA12, TPU) [35,46–48,164]

Selective laser sintering (SLS) 40–100 Polymers, metals, ceramics,
hydroxyapatite, glasses [13,49,50,53,95,165–168]

Selective laser melting (SLM) 40–200 Metals [73,167–171]
Electron beam melting (EBM) 100–200 Metals [73,168,170]

Powder bed binder jetting (PBBJ) 100 (metals, polymers)
22–500 (ceramics)

Polymers, metals, ceramics,
composites, sand

Polymers, metals
[13,79,95,165–167]
Ceramics, composites
[13,15,79,95,166,167,172,173]

Powder directed energy deposition
(PDED) 500–3000 Metals [73,168,170]

Other laser-based processes

Micro-stereolithography (µ-SLA) 30–70 Photosensitive polymers,
Formlabs clear resin [174,175]

Mask-image-projection
stereolithography (MIP-SLA) 450 Photosensitive polymers [99]

Continuous liquid interphase
printing (CLIP) 100 Photosensitive polymers [100,101]

Computed axial lithography (CAL) 100–1000 Photosensitive polymers [102,103]
Digital light processing (DLP) 50 Polymers, ceramics [104–106]
Two-photon polymerization (TPP)
or Direct laser writing (DLW)

0.085–1.5 (photoresist)
25 (Poly-diacrylate) Photoresist, Poly-diacrylate [108,109,176–178]

Extrusion-based processes

Fused deposition modeling (FDM) 200 (PDMS)
400–500 (PLA, ABS) Polymers [179–183]

Ink jet 3D printing (IJP) 10–200 Polymers, metals

Polymers
[131,184]
Metals
[135,136]

Multi jet modelling (MJM) 20–50 Photosensitive polymers [144–146]

Other processes

Electron/ion beam induced
deposition (E/IBID) 10 Polymers, metals [147–149]

Casting with sacrificial mold 150–500 Polymers [12,104]
Laminated resin printing (LRP) 10 Polymers, metals [150]
Ink jet selective laser sintering
(IJ-SLS) 5 Metals [54]

Transfer printing 100 Single crystal silicon, silicon
dioxide, gold, SU8 [151–153]

Table 2. Fundamental ceramic materials suitable for AM processes.

Material Process Resolution Reference

Alumina Micro-stereolithography (µ-SLA) 150 nm [185–188]
Digital light processing (DLP) 100 µm [189,190]
Selective laser sintering (SLS) 50 µm [191–193]
Ink jet 3D printing (IJP) 100 µm [194]

SiC Casting with sacrificial mold 76 µm [195]
Selective laser sintering (SLS) 50 µm [191–193,196]
Sheet lamination - [197]

Hydroxyapatite Fused deposition modeling (FDM) 200 µm [198]

Zirconia Micro-stereolithography (µ-SLA) 150 nm [185–188]
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Table 2. Cont.

Material Process Resolution Reference

Ink jet 3D printing (IJP) 100 µm [194]

Polymer derived ceramics Micro-stereolithography (µ-SLA) 150 nm [185–188,199]
Digital light processing (DLP) 100 µm [189]
Continuous liquid interphase printing (CLIP) 64 µm [200]

8. Conclusions

The most important AM processes suitable for building microstructures and MEMS
are identified and described with the goal being to organize the updated information
associated with the state of the art of this field.

The AM at the micrometer scale is producing some preliminary relevant examples
demonstrating the processes performances and their potential. These experiences are
diffused in academia and industry but globally they are still considered as pioneering
exploration related to an embryonal field waiting for long-term evolution. Today, the
fabrication speed and production parallelization issues are limiting the AM technologies to
stand-alone microsystems or case studies. Furthermore, the limitations related to the simul-
taneous fabrication of electrically conductive parts and insulating parts are reducing the
applicability of the AM processes not supported by other traditional steps. The next-future
progress of additive technologies must necessarily overcome these issues to expand their
applicability. Additionally, it is not reasonable to push the AM to replace extensively the
conventional micromachining processes, which have undoubtedly superior performances.
Instead, the future MEMS designers will probably exploit the specific performances of
novel methods when they are unique and without alternatives. For this purpose, the
combination of consolidated and innovative skills and competencies will be required for
the next generation of MEMS designers. The knowledge of AM processes details and of
electro-mechanical design opportunities provided by the freeform design will be crucial.
This will lead to the development of design skills dedicated to the AM of microstructures,
not limited to alternative ways to provide the same output of conventional processes but
able to sustain the real technological evolution of MEMS.

The processes described in this paper are always associated with the digitalization of
the production, which is probably the next improvement expected in manufacturing at the
micrometer range. In fact, 3D printing is associated with geometries preliminary optimized
through digital operations and then converted to physical objects. This also preludes
to the transition from centralized computation to individual distributed manufacturing
supported by personal computers and local efforts. Furthermore, another typology of
digitalization, called the Internet of Things (IoT) will interest most of the manufacturing
areas in the future and it will be powered by MEMS, preliminarily based on the AM
process. MEMS-based devices will support the monitoring and management of tools,
systems, physical parameters, wearable devices, machines, and buildings.

Funding: This research funded by a grant from the Italian Ministry of Foreign Affairs and Interna-
tional Cooperation.

Conflicts of Interest: The author declare no conflict of interest.

Nomenclature

ABS acrylonitrile butadiene styrene
AM additive manufacturing
CAD computer aided design
CAL computed axial lithography
CLIP continuous liquid interphase printing
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DIW direct ink writing
DLD direct laser deposition
DLF direct light fabrication
DLMD direct laser metal deposition
DLP digital light processing
DLW direct laser writing
DMD digital micro-mirror device
DMLM direct metal laser melting
DMLS direct metal laser sintering
DSLS direct selective laser sintering
EBID electron beam induced deposition
EBM electron beam melting
EHD-IJP electrohydrodynamic ink jet printing
FDM fused deposition modelling
FIB focused ion beam
FFF fused filament fabrication
IBID ion beam induced deposition
IJP ink jet 3D printing
IJ-SLS ink jet selective laser sintering
LDW laser deposition welding
LED light-emitting diode
LENS laser engineered net shaping
LPBF laser powder bed fusion
LMD laser metal deposition
LRP laminated resin printing
MEMS micro electro-mechanical systems
MIP-SLA mask-image-projection stereolithography
MJF multi jet fusion
MJM multi jet modelling
NEMS nano electro-mechanical systems
PA polyamide
PBBJ powder bed binder jetting
PBF powder bed fusion
PBF-LB/M laser-based powder bed fusion of metals
PBF-LB/P laser-based powder bed fusion of polymers
PDED powder directed energy deposition
PDMS polydimethylsiloxane
PET polyethylene terephthalate
PFW powder fusion welding
PLA polylactic acid
PSLA projection stereolithography
PZT lead zirconate titanate
SLA (micro) stereolithography
SLM selective laser melting
SLS selective laser sintering
SLSLA scanning laser stereolithography
TPP two-photon polymerization
UV ultraviolet
VED volume energy density
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