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Abstract: In robot inertial navigation systems, to deal with the problems of drift and noise in the
gyroscope and accelerometer and the high computational cost when using extended Kalman filter
(EKF) and particle filter (PF), a complementary filtering algorithm is utilized. By combining the
Inertial Measurement Unit (IMU) multi-sensor signals, the attitude data are corrected, and the high-
precision attitude angles are obtained. In this paper, the quaternion algorithm is used to describe
the attitude motion, and the process of attitude estimation is analyzed in detail. Moreover, the
models of the sensor and system are given. Ultimately, the attitude angles are estimated by using the
quaternion extended Kalman filter, linear complementary filter, and Mahony complementary filter,
respectively. The experimental results show that the Mahony complementary filtering algorithm has
less computational cost than the extended Kalman filtering algorithm, while the attitude estimation
accuracy of these two algorithms is similar, which reveals that Mahony complementary filtering is
more suitable for low-cost embedded systems.

Keywords: portable mobile robot; quaternion implementation; complementary filter; extended
Kalman filtering; attitude estimation

1. Introduction

A portable mobile robot is a cable-free remote control, semi-autonomous mobile
platform system that can assist or even replace workers in completing dangerous tasks.
It can be used in anti-terrorism, mines, disaster rescue, field ground pipeline inspections,
and security inspections. Attitude estimation is a basic and significant part in robot
motion control, whose speed and accuracy will directly affect the stability and reliability of
robot’s motion.

The navigation system provides the attitude information of the mobile robot and
determines the remote-control direction. The inertial navigation system (INS) is an au-
tonomous navigation system that does not rely on any external information or radiates
energy to the outside, which has the characteristics of good concealment and can be used
in the air, ground, underwater, and other complex environments. At present, with the help
of gyroscopes and accelerometers in the inertial measurement unit, the attitude data of
robot are calculated by using the real-time data of the sensor [1,2]. The system establishes
the navigation coordinate system by utilizing the output of the gyro, and it calculates the
speed and position of the carrier in the navigation system by utilizing the output of the
accelerometer [3]. In the research of robot systems, the accuracy of the robot’s attitude
estimation will affect the robot’s positioning and navigation.

In flight and robot control systems, inertial navigation systems are usually composed
of Micro-Electro-Mechanical System (MEMS) devices, due to their low cost, small size, easy
integration, and low power consumption [4]. In MEMS-based INS, the three-axis gyro-
scope and accelerometer are used to measure the angular movement and linear movement
information, respectively, and the microcomputer calculates the steer, attitude, speed and
position based on the measurement information. The gyroscope measures the derivative of
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the angle, which is the angular velocity, and the angle can be calculated by integrating the
angular velocity with time. However, the error of the measured angle accumulates contin-
uously with integration due to the noise, which results from low-frequency interference
and drift. At the same time, the accelerometer outputs the current acceleration (including
the gravitational acceleration g). However, the accelerometer is sensitive to high-frequency
signals for its mechanism, which results from high-frequency interference in vibration
environments [5]. Thus, it is worthwhile to study how to combine the data from these
sensors to filter the measurement noise and system noise of the inertial navigation system
and get high-precision attitude data.

It is imperative to handle the measurement noise and system noise of the inertial
navigation system during robot attitude estimation. There are three commonly used
methods, namely complementary filtering, Kalman filtering, and the gradient descent
method. Different results vary from algorithm to algorithm. Yuan Lao-hu et al. [6] intro-
duced adaptive complementary filtering, gradient-descent, and complementary filtering,
and they compared the results of the attitude estimation in static and dynamic aspects.
D. Choukroun et al. [7] presented a novel Kalman filter (KF) for estimating the attitude
quaternion as well as gyro random drifts from vector measurements by employing a spe-
cial manipulation on the measurement equation. Wang Xiaoxu et al. [5] estimated the
attitude of the two-wheeled robot by using Extended Kalman Filter (EKF). Ya-qi et al. [8]
and Miaomiao et al. [9] proposed a method to measure the missile attitude based on an
extended Kalman filter. He used EKF to linearize the nonlinear model to improve the
accuracy and stability of the system. However, EKF needs a large amount of calculation,
due to the required Jacobian matrix. What is worse, in a strong nonlinear system, EKF
has a large truncation error and is affected by non-Gaussian noise, which may result in
divergence [10]. The matching trajectory adopted by Ya-qi et al. was different from the real
revolution. In the algorithm of Miaomiao et al., only the first order of the Taylor expansion
is carried out, which quickly leads to filter divergence. Liang Song et al. [11] improved the
Sage–Husa adaptive filter algorithm based on existing methods to simplify the structure of
the algorithm. By estimating the noise covariance with the forgetting factor, the presented
algorithm improved the efficiency and accuracy of the attitude estimation. Similarly, Li
Gang et al. [12] introduced the improved Sage–Husa adaptive extended Kalman filter. By
improving the value of the measured noise, the robustness of the algorithm is improved,
and the driving state of the vehicle is accurately estimated. Zhang Xiaojun et al. [13]
adopted Particle Filter (PF) to improve the filtering accuracy, which effectively overcomes
the strong nonlinearity and filtering divergence problems that EKF may encounter. How-
ever, particle filtering is a statistical filtering method based on Monte Carlo simulation. It
approximates the nonlinear system by predicting and updating the function sampling set
from the system probability density function, so a lot of computations are required, which
is not advisable for low-cost robot system attitude calculation [14].

The dynamic response characteristics of the gyroscope are good, but it has drift char-
acteristics, so the long-running drift is severe, and the integrated operation generates
cumulative error. On the contrary, the digital compass and accelerometer have no accumu-
lated error in measuring attitude, but the dynamic response is less impressive. In general,
they have complementary characteristics in the frequency domain, and complementary
filters can be used to fuse the data of these sensors to improve the measurement accuracy
and the dynamic performance of the system. Complementary filtering algorithms are
widely used in aircraft attitude estimation owing to its small computation, high reliability,
and low accuracy requirements for inertial devices [15–17].

This paper studies four-wheel drive skid-steering mobile robots (SSMR), whose in-
dependent driving wheels can provide large horse power with great obstacle climbing
ability, as shown in Figure 1. The NERVA LG Robot in Figure 1 uses four motors to drive
four wheels equipped with various sensors and other equipment as a mobile platform, to
perform reconnaissance tasks in field conditions [18].
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Figure 1. NERVA LG Robot [18].

The existing mobile robots filter the measurement and system noise of the inertial
navigation system based mostly on Kalman filtering and particle filtering algorithm. Faced
with the shortcomings of extended Kalman filter and particle filter applied to robot attitude
calculation, this paper adopts the complementary filtering algorithm to compensate and
correct the measured attitude data by fusing the data of IMU multi-sensor to calculate
the high-precision attitude angles. The novelties and contributions of this paper are listed
as follows.

(1) Attitude estimation is a basic and significant part in robot motion control, whose
speed and accuracy will directly affect the stability and reliability of the robot’s motion.
This paper compares the quaternion extended Kalman filtering, linear complementary
filtering, and Mahony complementary filtering algorithms in the field of attitude
estimation. The attitude precision and computational cost is discussed.

(2) Portable mobile robots can be used in anti-terrorism, mines, disaster rescue, field
ground pipeline inspections, and security inspections. Confronted with the problem
of high computational cost when using extended Kalman filter, this paper intro-
duces the Mahony filtering algorithm (widely used in flight attitude estimation)
into portable mobile robots and validates that this algorithm is suitable for low-cost
embedded systems.

2. System Descriptions
2.1. Definition of Coordinates and Attitude Description

A coordinate system needs to be established before attitude description. The Right-
Front-Up coordinate system is selected as the carrier coordinate system (coordinate b), as
is shown in Figure 2. Oxyz is the carrier coordinate system, where the right direction of
the body is the positive direction of the x-axis, the forward direction of the carrier is the
positive direction of the y-axis, and the upward direction is the positive direction of the
z-axis. The carrier coordinate system is fixedly connected with the body, and the coordinate
origin is the center of the body. The mobile robot’s attitude can be expressed by its pitch
angle θ, roll angle φ, and yaw angle ψ in the Right-Front-Up coordinate system, which
rotates around the x-axis, y-axis, and z-axis, respectively. Figure 3 shows the schematic
diagram of the body attitude angles.

The position of the robot is determined by the navigation coordinate system (coordi-
nate n), which is an Earth-referenced coordinate system. The East–North–Sky coordinate
system is selected as the navigation coordinate system. As is shown in Figure 2, OXYZ is
the carrier coordinate system, and we define the positive directions of the x-axis, y-axis,
and z-axis as East, North, and Sky.



Micromachines 2021, 12, 1373 4 of 13Micromachines 2021, 12, x FOR PEER REVIEW 4 of 13 
 

 

 

Figure 2. Definition of navigation and carrier coordinate system. 

 

Figure 3. Schematic diagram of body attitude angles (Roll–Pitch–Yaw). 

During the movement of the robot, the carrier coordinate system keeps moving with 

the robot, while the navigation system remains fixed. Since the IMU is fixed on the robot, 

the data measured by the IMU are based on the carrier coordinate system. When estimat-

ing the attitude, it is necessary to convert the data of the carrier system to the navigation 

system according to the following equation: 

n

b

X x

Y C y

Z z

   
   

=
   
      

 (1) 

where n

bC  is the attitude transformation matrix, which is expressed as 

cos cos sin sin cos cos sin sin cos cos sin sin

cos sin sin sin sin cos cos sin cos sin sin cos

sin sin cos cos cos

n

bC

           

           

    

− + 
 

+ −
 
 − 

=



. (2) 

Equation (2) can be expressed as 

11 12 13

21 22 23

31 32 33

n

b

T T T

C T T T

T T T

 
 
 
 

=



. (3) 

According to Equation (3), the desired attitude angles can be expressed as 

( )

( )

( )

32

33

31

21

11

arctan ,

arcsin ,
2 2

arctan ,

T

T

T

T

T

  

 


  

  
= −  

 

  

= − −  
 

  
 = − 
  

. (4) 

Figure 2. Definition of navigation and carrier coordinate system.

Micromachines 2021, 12, x FOR PEER REVIEW 4 of 13 
 

 

 

Figure 2. Definition of navigation and carrier coordinate system. 

 

Figure 3. Schematic diagram of body attitude angles (Roll–Pitch–Yaw). 

During the movement of the robot, the carrier coordinate system keeps moving with 

the robot, while the navigation system remains fixed. Since the IMU is fixed on the robot, 

the data measured by the IMU are based on the carrier coordinate system. When estimat-

ing the attitude, it is necessary to convert the data of the carrier system to the navigation 

system according to the following equation: 

n

b

X x

Y C y

Z z

   
   

=
   
      

 (1) 

where n

bC  is the attitude transformation matrix, which is expressed as 

cos cos sin sin cos cos sin sin cos cos sin sin

cos sin sin sin sin cos cos sin cos sin sin cos

sin sin cos cos cos

n

bC

           

           

    

− + 
 

+ −
 
 − 

=



. (2) 

Equation (2) can be expressed as 

11 12 13

21 22 23

31 32 33

n

b

T T T

C T T T

T T T

 
 
 
 

=



. (3) 

According to Equation (3), the desired attitude angles can be expressed as 

( )

( )

( )

32

33

31

21

11

arctan ,

arcsin ,
2 2

arctan ,

T

T

T

T

T

  

 


  

  
= −  

 

  

= − −  
 

  
 = − 
  

. (4) 
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During the movement of the robot, the carrier coordinate system keeps moving with
the robot, while the navigation system remains fixed. Since the IMU is fixed on the robot,
the data measured by the IMU are based on the carrier coordinate system. When estimating
the attitude, it is necessary to convert the data of the carrier system to the navigation system
according to the following equation: X

Y
Z

 = Cn
b

 x
y
z

 (1)

where Cn
b is the attitude transformation matrix, which is expressed as

Cn
b =

 cos θ cos ψ sin θ sin φ cos ψ− cos φ sin ψ sin θ cos φ cos ψ + sin φ sin ψ
cos θ sin ψ sin θ sin φ sin ψ + cos φ cos ψ sin θ cos φ sin ψ− sin φ cos ψ
− sin θ sin φ cos θ cos φ cos θ

. (2)

Equation (2) can be expressed as

Cn
b =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

. (3)

According to Equation (3), the desired attitude angles can be expressed as
φ = arctan

(
T32
T33

)
(−π, π)

θ = arcsin(−T31)
(
−π

2 , π
2
)

ψ = arctan
(

T21
T11

)
(−π, π)

. (4)

However, once the Euler angle method is used, if the pitch angle is near ±90◦, it
will appear to have singular points [19], and the Euler angle method is stuck in Gimbal
Lock problem. Therefore, the quaternion method that converts the data from IMU into a
quaternion is introduced to solve this problem.
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Quaternion is a hyper complex number. For any quaternion,

Q = q0 + q1
→
i + q2

→
j + q3

→
k (5)

q0, q1, q2, q3 are all real numbers, and i, j, k are mutually orthogonal unit vectors. With
the quaternion, the attitude transformation matrix from the carrier coordinate system to
the navigation coordinate system can be obtained as

Cn
b =

 q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q2

0 − q2
1 + q2

2 − q2
3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

. (6)

The desired attitude angles can be expressed as
φ = arctan 2(q2q3−q0q1)

q0
2−q1

2−q2
2+q3

2 (−π, π)

θ = −arcsin2(q1q3 − q0q2)
(
−π

2 , π
2
)

ψ = arctan 2(q1q2+q0q3)
q0

2−q1
2−q2

2+q3
2 (−π, π)

. (7)

2.2. Mathematical Model of Sensors

The measurement error of gyroscopes is composed of random drift and random noise.
The mathematical model of gyroscopes can be expressed as

Ωy = Ω + b + n (8)

where Ωy is the measured value of the angular velocity, Ω is the true value of angular
velocity, b is the time-varying drift, and n is the random noise, which can be treated as
Gaussian white noise.

The mathematical model of accelerometers can be expressed as

a = Cn
b
( .
v− gn

)
+ ba + na (9)

where a is the measured value of accelerometers, Cn
b is the attitude transformation matrix

from the carrier system to the navigation system, gn is the gravitational acceleration in
navigation system, ba is the time-varying drift, and na is the random noise.

The mathematical model of magnetometers can be given by

m = Cn
b mI + Bm + nb (10)

where mI is the geomagnetic field vector in the navigation coordinate system, Bm is the
current magnetic interference, and nb is the random noise.

3. Complementary Filtering Algorithms

In inertial measuring units (IMU), there are two basic methods for calculating the
attitude angles. One is to get the attitude angles by integrating the angular velocity from
gyroscopes:

angleΩy
= angle0 +

∫ t

0
Ωydt (11)

where angel0 is the initial angle of the body, Ωy is the measured value of the gyroscopes’
angular velocity.

The other way is to get the attitude angles by orthogonally decomposing the accel-
eration. The accelerometer outputs the three-axis acceleration in the carrier coordinate
system, and the magnetometer outputs the three-axis geomagnetic intensity in the carrier
coordinate system. The accelerometer can calculate the pitch and roll angles, and the
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magnetometer calculates the yaw angle [20]. These two sensors cooperate with each other
to solve three attitude angles:

φ = arctan ay
az

(−π, π)

θ = arcsin− ax
g

(
−π

2 , π
2
)

ψ = arctan
mn

y
mn

x
(−π, π)

(12)

where ab =
[

ax ay az
]T is the output of accelerometers in the carrier coordinate

system; an =
[

0 0 g
]T is the output of accelerometers in the navigation system when

the body is stationary; g is the gravitational acceleration; and mn =
[

mn
x mn

y mn
z

]T
is

the magnetic induction intensity of the body in the navigation system.
The accelerometer has better static stability, while it is susceptible to high-frequency

signals, which imbues the data with unreliability in vibration environments. On the con-
trary, the gyroscope has better dynamic stability, while its data are relatively unreliable in a
stable environment. Therefore, complementary filtering algorithms have been proposed to
combine the date of these sensors to filter external interference and get high reliability and
high-precision attitude data [21–25]. By using the complementary relationship between
accelerometers and gyroscopes in the frequency domain, this algorithm fuses the body’s
attitude data and corrects the drift error of the gyroscope. In other words, the comple-
mentary filtering algorithm corrects the integration error of the gyroscope relying on the
output stability of the accelerometer. When the body is kept horizontal, accelerometers
fail to measure the rotation quantity around the z-axis (yaw angle ψ), which is the same
as magnetometers. Therefore, the accelerometer and magnetometer are required to make
joint efforts to correct the gyroscope.

3.1. Linear Complementary Filtering

The principle of classic linear complementary filtering (CCF) [21] is shown in Figure 4.
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In Figure 4, a is the measured value of accelerometers; m is the measured value of
magnetometers; Ωy is the measured value of the gyroscopes’ angular velocity; angela is
the attitude angles according to Equation (12); angleΩy is the attitude angles according

to Equation (11); att =
[

φ θ ψ
]T is the body’s attitude; 1/s stands for integrator;

C(s)/(C(s) + s) is the low-pass filter, and s/(C(s) + s) is the high-pass filter. When C(s) is
a constant, it corresponds to a first-order filter, and when C(s) = a + b/s, it corresponds to a
second-order filter.

According to Figure 4, the attitude of the body can be obtained as below

att =
C(s)

C(s) + s
anglea(s) +

Ωy

C(s) + s
. (13)

If implementing the classic linear complementary filtering (CCF) algorithm in terms
of a first-order filter, i.e., C(s) = 1/τ, then Equation (13) can be written as
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att =
1/τ

1/τ + s
anglea(s) +

Ωy

1/τ + s
=

1
τs + 1

anglea(s) +
Ωyτ

τs + 1
. (14)

Implementing the first-order backward difference to Equation (14) according to:

s =
1− z−1

Ts
, (15)

we can get the discrete time difference form of CCF:

att(k) =
τ

τ + Ts

(
att(k− 1) + TΩy(k)

)
+

Ts

τ + Ts
anglea(k). (16)

where τ is the time constant, which can be calculated with Equation (17):

fc =
1

2πτ
(17)

where fc is the cut-off frequency, which can be obtained by analyzing the signal from the
sensors in the frequency domain.

3.2. Mahony Complementary Filtering

Even though linear complementary filtering (CCF) can eliminate the high-frequency
interference of accelerometers as well as the low-frequency interference of gyroscopes by
fusing the attitude data, when in high noise, the filtering result is less impressive due
to the slow attenuation of the low-pass stopband of CCF. Hence, the Mahony comple-
mentary filtering algorithm is proposed, which is a nonlinear complementary filtering
algorithm [18].

Define the gravitational acceleration in the navigation coordinate system as gn, where
gn =

[
0 0 1

]T . Subsequently, convert gn in the navigation system into gb into a carrier
coordinate system according to Equation (18).

gb = Cb
ngn = (Cn

b )
Tgn (18)

where Cn
b is the attitude transformation matrix from the carrier system to the navigation

system, as shown in Equation (6). Cb
n is the transformation matrix from the navigation

system to the carrier system. Substitute Equation (6) into Equation (18), and we can get

gb =

 2(q1q3 − q0q2)
2(q2q3 + q0q1)

q2
0 − q2

1 − q2
2 + q2

3

. (19)

It can be seen from Equation (19) that the theoretical gravitational acceleration in
a carrier coordinate system is equal to the last column of Cn

b in Equation (6). Therefore,
the gravitational acceleration can be obtained with the quaternion attitude. In addition,
we can also measure the actual gravitational acceleration by utilizing accelerometers.
There is a deviation between the theoretical gravitational acceleration and the actual
gravitational acceleration, which is largely caused by the angular velocity error generated
by the gyroscope signal. Therefore, the error of the gyroscope signal can be compensated
in the light of these two gravitational accelerations, and then, a more accurate attitude can
be calculated.

Define the output of accelerometers in the carrier coordinate system as a. The accelera-
tion after normalization can be obtained as

ab =
[

ax
|a|

ay
|a|

az
|a|

]
. (20)
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Owing to the deviation between the theoretical gravitational acceleration and the
actual gravitational acceleration, the compensation value e can be obtained by calculating
the cross product of gb in Equation (19) and ab in Equation (20). In order to compensate for
the gyroscope, each of the correction vectors (yaw and roll-pitch) are fed to a proportional
plus integral (PI) feedback controller to be added to the gyro vector to produce a corrected
gyro vector [22]. The equation is shown as follows:

δ = Kpe + Ki

∫
edt (21)

where δ is the compensation vector of gyroscopes, Kp is the proportional gain, and Ki is the
integral gain, respectively.

After the compensation value is added to the output of gyroscopes, the quaternion
value can be obtained by using the data of the gyroscope. Ultimately, by converting the
quaternion into the Euler angle, the attitude can be estimated.

The Mahony complementary filtering algorithm is shown in Figure 5.
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4. Experimental Simulations

In order to compare the attitude estimation results of Mahony complementary filtering
and extended Kalman filter algorithms, and validate the feasibility of Mahony on the
hardware platform, this paper builds a hardware platform based on STM32F107 and puts
the flight control hardware (Holybro Pixhawk 4, Shenzhen Heli Brothers Technology Co.,
Ltd., Shenzhen, China) on a portable mobile robot as a controller. After transferring the
signals to the controller, the data are transferred to the host computer through computer
COM ports.

Figure 6 shows the signals from the gyroscopes and accelerometers, which are collected
by the inertial measurement unit from Holybro Pixhawk 4 when the robot is in manual
control motion conditions, and we upload the data into PC to do further analysis. The
sampling frequency is 50 Hz.

It can be seen from the three-axis attitude data in Figure 6 that both the gyroscope
and the accelerometer have greater interference whenever in the motion or static state. If
sensors’ data are not filtered, integrating the gyroscope directly to get the attitude of the
robot according to Equation (11) will result in big errors caused by low-frequency noise. As
is shown in Figure 7, especially the roll angle φ diverges. If we obtain the attitude angles by
orthogonally decomposing the acceleration according to Equation (12), there will appear
to be high-frequency noise, which will result in the angles’ inaccuracy, as is shown in
Figure 8.
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To better analyze the filtering results, take the robot attitude data estimated by the
PixHawk flight control hardware into consideration. As is shown in Figure 9, the attitude
data are estimated by the open-source PX4 flight stack based on the sensor measurements
using the PX4 complementary filtering algorithm (PX4-CF) [26].
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Based on the above simulation and analysis, the quaternion extended Kalman filtering
(EKF) in Reference [5], linear complementary filtering (CCF) in Reference [21], and Mahony
complementary filtering algorithms are utilized to fuse the data. In a linear complementary
filtering algorithm, the cut-off frequency is 2 Hz after analyzing the frequency domain
characteristics of the sensors’ signal. The proportional gain is 1 and the integral gain is 2 in
the Mahony complementary filtering algorithm. To better analyze the filtering results, treat
the average value of the estimated attitude angles based on PX4-CF, quaternion EKF, CCF,
and Mahony as the ground truth.

The robot attitude estimation results are shown in Figure 10.
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(c) Mahony complementary filtering (Mahony).

It can be seen from Figure 10 that the attitude angle can be effectively estimated
by using quaternion EKF, CCF, and Mahony complementary filtering algorithms. When
quaternion EKF is implemented, due to the randomness of the initial value in the algorithm,
the estimated value of the attitude angles is quite different from the true value at the
beginning. However, as iterations increase, the estimated value of the attitude angle
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gradually converges to the true value, which has a fast convergence rate. The results
of CCF are less impressive, but it has a simple calculation with fast response. Mahony
complementary filtering inherits the advantages of EKF, the convergence rate is fast, and
the estimated attitude angles quickly converge to the true value at the initial state.

To compare the filtering algorithms in detail, we calculate the mean absolute error
(MAE) of the attitude angle that the four algorithms estimated according to Formula
(22). We treat the average values of the estimated attitude angles based on these four
algorithms (PX4-CF, quaternion EKF, CCF, and Mahony) as ground truth. At the same
time, the three algorithms (quaternion EKF, CCF, and Mahony) are implemented on the PC
Intel(R) Core(TM) i5-10500 CPU (3.10 GHz) to calculate the average time consumption of
the attitude estimation at each step. The results are shown in Table 1.

MAE =
1
m

m

∑
i=1
|ŷi − yi| (22)

Table 1. Mean absolute error of attitude angles and computational cost under different algorithms.

Algorithm PX4-CF [26] Quaternion EKF [5] CCF [21] Mahony

roll angle ϕ(rad) 0.0125 0.0136 0.0252 0.0129
pitch angle θ(rad) 0.0218 0.0213 0.0612 0.0215
yaw angle ψ(rad) 0.0269 0.0320 0.0737 0.0387
average time (s) — 3.56 × 10−5 4.46 × 10−6 3.49 × 10−6

According to the data shown in Table 1, when it comes to the absolute mean error of
PX4 complementary filtering, quaternion extended Kalman filtering, and Mahony com-
plementary filtering algorithm, there is little difference between these three algorithms. In
terms of the time consumption during attitude estimation, the quaternion EKF is nearly 10
times as long as the Mahony complementary filter algorithm. The results show that the
Mahony complementary filtering algorithm has less computational cost than the quater-
nion extended Kalman filtering algorithm when the attitude estimation accuracy of these
two algorithms is similar, which indicates that Mahony can be better applied to low-cost
embedded systems. At the same time, when comparing classic linear complementary
filtering and Mahony complementary filter algorithm, the computational cost of these two
is similar, but the mean absolute error of Mahony’s complementary filtering algorithm is
smaller than that of the linear complementary filtering algorithm.

5. Conclusions

To deal with the problem of high computational cost when using an extended Kalman
filter (EKF) and particle filter (PF), this paper applies the complementary filtering algo-
rithms in a low-cost portable mobile robot, which enables the low-cost embedded system
to reduce the time consumption without reducing the accuracy of attitude estimation. Sim-
ulation experiments are carried out on the quaternion extended Kalman filtering algorithm,
linear complementary filtering algorithm, and Mahony complementary filtering algorithm.
Some concluding remarks are drawn as below:

(1) Based on the STM32F107 hardware platform, integrating the data from the gyroscope
directly to get the attitude of the robot will result in big errors and even the estimated
angles will diverge owing to the low-frequency noise. If the attitude angles are
obtained by orthogonally decomposing the acceleration, high-frequency noise will
appear, which will result in angles inaccuracy.

(2) Based on the simulation experiments when using the quaternion extended Kalman
filtering algorithm, due to the randomness of the initial value in the algorithm, the
estimated value of the attitude angles is quite different from the true value at the
beginning. However, as the iterations increase, the estimated value of the attitude
angles gradually converge to the true value, with a fast convergence rate.
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(3) Based on the simulation experiments when using the complementary filtering al-
gorithm, CCF is less impressive, but it has a simple calculation with fast response.
Mahony complementary filtering inherits the advantages of EKF, the convergence
rate is fast, and the estimated attitude angles quickly converge to the true value
at initial.

(4) For the absolute mean error, there is little difference between quaternion extended
Kalman filtering and the Mahony complementary filtering algorithm, but the abso-
lute mean error of the linear complementary algorithm is bigger than that of these
two algorithms.

(5) In terms of the time consumption during attitude estimation, there is little difference
between the linear and Mahony complementary filtering algorithms. However, the
Mahony complementary filter algorithm is nearly 10 times as fast as the quaternion
Kalman filter.

According to the above discussions and analysis, we can see that the Mahony comple-
mentary filtering algorithm has less computation cost than the extended Kalman filtering
algorithm when the attitude estimation accuracy of this two algorithms is similar, and it is
suitable for low-cost embedded systems.
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