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Abstract: With the development of optoelectronic information technology, high-performance optical
systems require an increasingly higher surface accuracy of optical mirrors. The fast tool servo (FTS)
based on the piezoelectric actuator is widely used in the compensation machining of high-precision
optical mirrors. However, with the low natural frequency of mechanical structures, hysteresis of
the piezoelectric actuators, and phase delay of the control systems, conventional FTS systems face
problems such as a low working frequency and a large tracking error. This study presents a method
for the design of a high-performance FTS system. First, a flexure hinge servo turret with a high
natural frequency was designed through multi-objective optimization and finite element simulations.
Subsequently, a composite control algorithm was proposed, targeting the problems of hysteresis
and phase delay. The modified Prandtl–Ishlinskii inverse hysteresis model was used to overcome
the hysteresis effect and a zero-phase error tracker was designed to reduce the phase error. The
experimental results reveal that the tracking error of the designed FTS system was <10% in the full
frequency range (0–1000 Hz).

Keywords: fast tool servo; piezoelectric actuator; Prandtl–Ishlinskii hysteresis model; feedforward
compensator; zero phase error control

1. Introduction

Ultra-precision optical elements have been widely used in modern optical systems,
such as imaging systems, early warning and detection systems, and high-power lasers,
and their accuracy typically needs to be >0.1 µm. Ultra-precision lathes can realize the
one-time formation of lightweight ultra-precision aluminum mirrors by multi-axis linkage,
which allows for rapid manufacturing in batches. Because imaging optical systems develop
from infrared to visible light and then to short wavelengths, a higher machining accuracy
is required in optical mirrors. With factors such as clamping and cutting errors in the
machining process of ultra-precision lathes [1], achieving the accuracy requirements for
optical mirrors through one-time machining is difficult [2]. Therefore, scholars in China
and abroad have proposed the concept of error compensation machining with fast servo
tools. The real-time compensation of machining errors was shown to improve the ma-
chining accuracy of optical mirrors [3,4]. Due to the effects of various machining factors,
the machining error surface shape is complex and distributed at various frequencies [5].
Limited by the performance of machining tools and the accuracy of error measurements,
the existing compensation machining methods mainly target low-frequency surface errors
and cannot handle medium- and high-frequency surface errors. To meet the precision
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requirements of ultra-precision optical mirrors suitable for high-performance optical sys-
tems, the transition from low-frequency surface compensation machining to full-frequency
surface compensation machining is critical. The development of fast servo tools with
a small tracking error in the complete frequency band (0–1000 Hz) is the key technical
problem in achieving this transition. Considering the error frequency, complex surface
shape, and machining efficiency, it is essential to develop fast servo tools that can adapt
to complex morphology machining with a tracking error of <10% in the full frequency
range (0–1000 Hz).

The fast servo tool based on the piezoelectric actuator has motion performance with a
high-frequency response and high resolution, and it has been widely used in the field of
ultra-precision turning. However, its application is limited by the low natural frequency
of the mechanical structure, the hysteresis effect of the piezoelectric actuator, and the
phase delay problems and amplitude attenuation that occur during high-frequency motion.
The conventional proportion integration differentiation (PID) control algorithm cannot be
easily used to overcome the nonlinear effect and phase delay of a piezoelectric actuator [6].
Therefore, researchers have tried various advanced control theories to improve the control
performance of fast servo tools [7,8]. Zhu et al. improved the mechanical structure
of the fast servo tool and optimized the PID controller and dynamic inversion-based
feedforward compensation by using the Nyquist diagram. With this design, a maximum
closed-loop bandwidth of 1730 Hz was achieved, and the tracking error at 100 Hz was
less than ±1.5% [9]. Wu et al. proposed a composite control strategy composed of the
online sequential extreme learning machine feedforward model and the PID feedback
controller. Under a closed-loop bandwidth of 200 Hz, the linearity was >0.54% [10]. Zhou
et al. proposed an improved adaptive feedforward cancellation method for the trajectory
tracking of fast tool servo (FTS) by fractional calculus; a tracking error of 1.63% at 200 Hz
was obtained [11].

Piezoelectric actuators are widely used in various fields, such as atomic force mi-
croscopy [12] and nano-optics [13]. In addition, researchers have attempted to eliminate the
hysteresis effect of a piezoelectric actuator by establishing various hysteresis models [14,15].
Fang et al. proposed the Bouc–Wen model and identified the model parameters with the
modified particle swarm optimization algorithm. Combined with the closed-loop control
algorithm, a tracking error of 2.9% at 10 Hz was obtained [16]. Hu et al. proposed a convo-
lutional neural network model based on the Prandtl–Ishlinskii model. The standard error
of the proposed hysteresis model in predicting the displacement at unmodelled frequencies
was reduced by 18.74–36.75% [17]. Currently, the servo control algorithms for fast servo
tools and piezoelectric actuators can effectively address the hysteresis phenomenon of a
piezoelectric actuator. However, the algorithms are mostly applied in the low-frequency
range, and few studies have focused on the tracking performance of fast servo tools in the
medium- and high-frequency ranges. Overall, it is critical and challenging to develop FTS
systems with a full-frequency range tracking error of <10%.

In this study, considering the mechanical structure, hysteresis effect, and phase delay,
a method for the design of an FTS system with a full-frequency (0–1000 Hz) tracking
error of <10% was proposed. Through multi-objective optimization, a flexure hinge tool
holder with a high natural frequency was designed. Furthermore, for the hysteresis of
the piezoelectric actuator and high-frequency phase delay, a composite control algorithm
was proposed. The simulation experiment showed that the designed FTS system had a
tracking error of <10% in the full frequency band (0–1000 Hz), which laid the foundation
for high-precision error compensation machining and complex surface cutting.

2. Comprehensive FTS System Design Method Based on Structure Design and
Full-Frequency Error Control

Figure 1a shows a typical error profile [18]. According to the actual processing speed
and feed rate, it is converted into the processing track of the fast servo tool, and then the
processing track is analyzed by a frequency spectrum. As shown in Figure 1b, the errors at
high, middle, and low frequencies are distributed across various frequency bands.
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Therefore, in order to improve the accuracy of the compensation processing, the FTS
system needs to maintain a small tracking error in each frequency band in high, middle, and
low frequencies. Considering the adaptability of the compensation processing method to
different complex surface errors, the compensation processing efficiency, and the economy
and complexity of the FTS system, it is relatively easy to extend the frequency band error
control range to 0–1000 Hz and control the tracking error amplitude within 10%. For this
reason, it is necessary to thoroughly study the mechanical structure, hysteresis effect, and
phase delay of the FTS system. A flexure hinge tool holder with a high natural frequency
was first designed to meet the basic conditions of high-frequency-response FTS motion.
Next, a composite control algorithm was proposed to solve the issues of hysteresis and
phase delay in the FTS system, allowing the tracking error to be less than 10% for each
frequency band.

2.1. Design of the Flexure Hinge Tool Holder with a High Natural Frequency

In an FTS system, the flexure hinge tool holder transmits the output displacement
of the piezoelectric actuator. The output displacement of the tool holder driven by the
piezoelectric actuator can be approximated as the displacement of the tool. To ensure the
high-frequency-response motion performance of the fast servo tool, the natural frequency
of the flexure hinge tool holder should be >1000 Hz. The greater the stiffness of the flexure
hinge is, the higher the natural frequency will be. However, the stiffness of the flexure
hinge may lead to the displacement loss of the piezoelectric actuator. A greater stiffness
corresponds to a smaller maximum output displacement, as indicated by Equation (1):

∆L = ∆L0(
kp

kp + k
) (1)

where ∆L0 is the maximum output displacement of the piezoelectric actuator when it is
under no load, ∆L is the actual maximum output displacement of the FTS system, kp is the
stiffness of the piezoelectric actuator, and k is the stiffness of the flexure hinge.

Considering the displacement loss and natural frequency of the FTS system, a multi-
objective optimization method was used to optimize the tool holder structure. First, a
flexure hinge with a low stiffness was designed, reducing the displacement loss to the
maximum possible extent. Subsequently, the mass of the flexure hinge was reduced to the
highest extent using structure optimization methods, such as adopting a hollow design, to
enhance the natural frequency of the system.
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This study adopted the structure of a straight-beam hinge, as shown in Figure 2. R is
the arc radius of the hinge, l is the length of the straight beam, t is the minimum thickness
of the straight beam, F is the driving force of the hinge, and M is the bending moment on
the hinge. The overall rotational stiffness of the straight-beam hinge is calculated using
Equation (2) [19]:

k = Ebt3

12l + EbR2

12 f

f = 12s4(2s+1)
(4s+1)5/2 arctan

√
4s + 1 + 2s3(6s2+4s+1)

(4s+1)2(2s+1)

(2)

where E is the elastic modulus of the material, s = R/t, and the rotational stiffness, k, has a
unit of N·µm/rad.
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Figure 2. Stress diagram of the straight-beam flexure hinge.

As displayed in Figure 3, the longer the straight beam is, the lower the hinge stiffness
is; meanwhile, the larger the minimum thickness is, the higher the hinge stiffness is.
According to the practical machining conditions, the primary dimensions of the hinge
were designed as follows: l = 7 mm, t = 0.6 mm, R = 2 mm. The material used was 65 Mn.
The stiffness of the designed flexure hinge was 11.6 N/µm. To reduce the mass of the
moving part in the device and increase the natural frequency, a hollow structure was
adopted in the middle part of the tool holder. Considering the device installation and the
tool clamping part, the final model of the designed flexure hinge tool holder is shown in
Figure 4a. Assuming that the stiffness of the piezoelectric actuator was 200 N/µm and the
output displacement was 10 µm, the displacement loss was ∆L − ∆L0 = 0.55 µm, according
to Equation (1). The natural frequency was determined using the ANSYS software, and the
first-order vibration mode of the hinge was obtained (Figure 4b). The first-order natural
frequency of the hinge was 2504.8 Hz, which was considerably higher than the maximum
working frequency of the system (1000 Hz); thus, an FTS motion frequency of >1000 Hz
could be obtained.
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2.2. Composite Control Algorithm

To address the nonlinear effect of the piezoelectric actuator and the high-frequency
phase delay of the FTS system, a composite control algorithm, as shown in Figure 5, was
proposed. First, a PID closed-loop control system based on the Prandtl–Ishlinskii inverse
hysteresis model was designed to eliminate the hysteresis effect of the piezoelectric actuator.
Then, aiming at the system phase delay, a zero-phase error controller, Gz(z−1), was designed
on the basis of the closed-loop system, Gc(z−1), to reduce the tracking error of the FTS
system at high frequencies.
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2.2.1. PID Control Based on the Modified Prandtl–Ishlinskii Inverse Hysteresis Model

The PID control based on the Prandtl–Ishlinskii inverse hysteresis model was devel-
oped in two steps. First, the Prandtl–Ishlinskii inverse hysteresis model was established.
This model was then combined with the PID control algorithm to eliminate the hysteresis
effect of the piezoelectric actuator.

In the FTS system, the stiffness of the flexure hinge demonstrates a certain nonlinear
effect, leading to a nonideal symmetrical distribution in the hysteresis curve of the piezoelec-
tric actuator [20]. The traditional hysteresis curve can only describe the case of symmetrical
distribution [21]. Equation (3) describes the traditional Prandtl–Ishlinskii hysteresis model.
For asymmetric hysteresis curves, an asymmetric term is typically introduced into the
Prandtl–Ishlinskii hysteresis model to improve the identification accuracy [22].

Y(k) =
N−1
∑

i=0
wiyri[u, yi](t) =

N−1
∑

i=0
wimax{u(k)− ri, min{u(k), y(k− 1)}}

ri =
i
N max(|u(k)|), i = 0, 1, ..., N − 1

(3)
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where Y(k) is the output value, u is the input value, ri is the threshold of the Prandtl–
Ishlinskii hysteresis model, and wi is the weight of the model. By comparing the identifi-
cation results of different nonlinear terms, the modified hysteresis model is expressed in
Equation (4):

Y(k) = ku
1
3 +

N−1

∑
i=0

wiyri[u(k), yi](t) = ku
1
3 +

N−1

∑
i=0

wimax{u(k)− ri, min{u(k), y(k− 1)}} (4)

where u(1/3) is the introduced asymmetric term, and k is its coefficient.
Using a group of triangular wave signals with different amplitudes, the identification

effects of the traditional and modified Prandtl–Ishlinskii hysteresis models were compared,
as shown in Figure 6. The adopted identification algorithm was the gradient descent
method. The identification error of the traditional Prandtl–Ishlinskii hysteresis model was
6% and that of the modified Prandtl–Ishlinskii hysteresis model was 1.9%, which indicates
a significant improvement in the identification accuracy.
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Although the inverse hysteresis model can be derived from the hysteresis model
described in Equation (4), the derivation process is highly complex. Because the inverse
hysteresis model is also a hysteresis model, it can be directly identified according to the
input voltage and output displacement of the piezoelectric actuator [23]. In this study, the
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direct approach was adopted to identify the inverse hysteresis model. The identification
results are shown in Figure 7, demonstrating an identification error of 2.3%, and the
identified parameters are listed in Table 1.
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Table 1. Identified parameters of the Prandtl–Ishlinskii inverse hysteresis model.

i 0 1 2 3 4 5 6 7 8 9

ri 0 0.9677 1.9354 2.9031 3.8708 4.8385 5.8062 6.7739 7.7415 8.7092
wi 0.29 −0.063 0.0075 −0.0267 −0.0015 −0.0215 0.021 −0.0253 0.0115 −0.047
k −0.0197

The identified Prandtl–Ishlinskii inverse hysteresis model was then connected in series
in front of the piezoelectric actuator for feedforward correction and combined with the
PID controller for closed-loop control. The hysteresis effect of the piezoelectric actuator
was pre-compensated for by the feedforward controller and the error signal was feedback
controlled with a PID control. The control block diagram is shown in Figure 8.
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output voltage, uff(k), of the feedforward controller. In the meantime, the capacitive
sensor detects the output displacement, y(k), of the FTS system and compares it with
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the reference signal, r(k), thereby obtaining the error signal, e(k). The error signal, e(k),
passes through the PID controller, yielding the feedback control signal ufb(k), which is
then superimposed with the feedforward control signal, uff(k), to obtain the final output
signal, u(k). This process is presented in Equation (5). Through the PID control method
based on the modified Prandtl–Ishlinskii inverse hysteresis model, the hysteresis effect of
the piezoelectric actuator can be theoretically eliminated.

u(k) = u f f (k) + ufb(k) = Y−1(r f (k)) + Kp(k) ∗ e(k) + KI
k
∑

i=1
e(i)− KD[x(k)− x(k− 1)]

Y−1(r f (k)) = ku
1
3 +

N−1
∑

i=0
wiyri[r f (k), yi](t) = ku

1
3 +

N−1
∑

i=0
wimax{r f (k)− ri, min{r f (k), y(k− 1)}}

(5)

2.2.2. Zero Phase Error Controller

To eliminate the phase delay of the FTS system, a zero-phase error controller, Gz(z−1),
was used to correct the phase of the closed-loop control system, Gc(z−1), as displayed in
Figure 9. By establishing the Prandtl–Ishlinskii inverse hysteresis model, the closed-loop
control system, Gc(z−1), could essentially eliminate the nonlinear effect of the piezoelectric
actuator. Therefore, the closed-loop system could be considered a linear model, and the
controlled closed-loop control system, Gc(z−1), could be described using Equation (6):

Gc(z−1) =
z−dBc(z−1)

Ac(z−1)
=

z−dBc
a(z−1)Bc

u(z−1)

Ac(z−1)
(6)

where z−d is the dth-order delay caused by the closed-loop system, Bc(z−1) and Ac(z−1) are
expressed by Equation (7), Ba(z−1) is the zero in the unit circle of the closed-loop system,
and Bc

u(z−1) is the zero outside the unit circle of the closed-loop system.

Bc(z−1) = bc0 + bc1z−1 + . . . + bcmz−m, bc0 6= 0
AC(z−1) = 1 + ac1z−1 + . . . + acnz−n (7)
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Because the zero outside the unit circle of the closed-loop system cannot be elimi-
nated directly, the zero-phase error controller designed for the closed-loop system can be
expressed as [24,25]:

Gz(z−1) =
zd+s Ac(z−1)Bc

u∗(z−1)

Bca(z−1)[Bcu(1)]2
(8)

where s is the number of zeros outside the unit circle of the closed-loop system and Bc
u*(z−1)

is the conjugate of Bc
u(z−1), as presented in Equation (9):

Bc
u(z−1) = bc0 + bc1z−1 + · · ·+ bcsz−s

Bc
u∗(z−1) = bcs + bcs−1z−1 + · · ·+ bc1z−s (9)

When there are no poles outside the unit circle in the closed-loop system, Equation (8)
can be transformed into:

Gz(z−1) =
zd Ac(z−1)

B(z−1)
(10)

The basic steps of designing the zero-phase error controller are as follows. (a) The
closed-loop system, Gc(z−1), was identified, and its zero-pole distribution was obtained.



Micromachines 2021, 12, 1354 9 of 15

(b) An appropriate zero-phase error controller, Gz(z−1), was designed according to the
zero-pole distribution of the closed-loop system. After the completion of the design based
on the Prandtl–Ishlinskii inverse hysteresis model in Section 3, the 0–1000 Hz transfer
function of the closed-loop system was identified using the system identification toolbox
of MATLAB. Then, the zero-pole distribution of the closed-loop system was obtained.
Figure 10a presents the result of a sinusoidal frequency sweep at 0–1000 Hz and Figure 10b
shows the Bode diagram of the closed-loop system. The phase delay and amplitude
attenuation of the system increased gradually with the increase in the frequency. Figure 10c
shows the identification results of the closed-loop system, Gc(z−1), with an identification
degree of 96.5%. Equation (11) presents the identified Gc(z−1).

Gc(z−1) =
4.154− 9.631z−1 + 10.23z−2 − 5.511z−3 + 1.154z−4

1− 0.7852z−1 + 0.7299z−2 − 0.614z−3 + 0.05156z−4 + 0.03447z−5 z−5 (11)
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(d) zero-pole distribution.

Figure 10d displays the zero-pole distribution of the closed-loop system, showing no
zeros outside the unit circle. According to Equations (8) and (10), the zero-phase controller
can be described using Equation (12). With the design of the zero-phase error controller,
the high-frequency phase delay of the FTS system could be theoretically eliminated.

Gz(z−1) =
0.2299− 0.1805z−1 + 0.1666z−2 − 0.1411z−3 + 0.01185z−4 + 0.007925z−5

1− 2.293z−1 + 2.495z−2 − 1.367z−3 + 0.3167z−4 (12)
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3. Experimental Results and Discussions
3.1. Experimental Results

The experimental setup is shown in Figure 11; it consisted of a piezoelectric actuator
(PI225.40), a power amplifier (E482.00), a Power PMAC motion controller, a capacitive
sensor (D-510.051), and a flexure hinge tool holder. The piezoelectric actuator transmitted
the displacement through the flexure hinge tool holder. The input voltage of the E482 power
amplifier was 0–10 V and the magnification was 10. The maximum servo frequency of the
motion controller was 100 kHz. The output bandwidth of the capacitive sensor and power
amplifier was >1 kHz.
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Figure 11. Experimental setup.

For clarity, PID + HC is used to represent PID plus the hysteresis compensation
control and PID + HC + ZPEC is used to represent PID with the hysteresis compensator
and zero-phase error control.

As shown in Figure 12, for the 5 µm and 10 Hz sinusoidal signal, the tracking errors
of the PID control, PID + HC control, and PID + HC + ZPEC control are 0.1975, 0.0641,
and 0.0849 µm, respectively. The experimental results show that the tracking error of
PID + HC control decreases by 70% compared with that of the PID control, indicating that
the nonlinear effect of the piezoelectric actuator is effectively addressed by introducing
the inverse hysteresis model. At 10 Hz, the system phase delay error does not contribute
majorly; thus, the tracking error of PID + HC + ZPEC control is close to that of the
PID + HC control.
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The tracking results in the case of the 5 µm and 100 Hz sinusoidal signal are shown
in Figure 13a,b. The tracking errors are 1.714, 0.6934, and 0.2968 µm for PID control,
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PID + HC control, and PID + HC + ZPEC control, respectively. Figure 13c,d show the
tracking results of the 5 µm and 500 Hz sinusoidal signal; the tracking errors are 6.922,
6.784, and 0.3926 µm for PID control, PID + HC control, and PID + HC + ZPEC control,
respectively. The experimental results indicate that the tracking errors of PID and PID + HC
increase gradually with the increase in the frequency. After the introduction of the zero-
phase controller, the system tracking error decreases considerably. Compared with that of
the PID + HC control, the tracking error of PID + HC + ZPEC decreases by 57% at 100 Hz
and by 94% at 500 Hz, indicating that PID + HC + ZPEC can effectively overcome the
tracking error caused by the system phase delay during high-frequency motion.

Micromachines 2021, 12, 1354 12 of 16 
 

 

94% at 500 Hz, indicating that PID + HC + ZPEC can effectively overcome the tracking 
error caused by the system phase delay during high-frequency motion. 

  

(a)  (b)  

  
(c) (d)  

Figure 13. (a) Sinusoidal signal at 100 Hz; (b) tracking errors of the 100 Hz sinusoidal signal; (c) 500 Hz sinusoidal signal; 
(d) tracking errors of the 500 Hz sinusoidal signal. 

To further verify the control performance of the PID + HC + ZPEC controller, a five-
leaved error signal was used in a 0–1000 Hz frequency sweep test. Figure 14 illustrates a 
typical five-leaved error surface shape. The revolving speed was set to N = 1200 r/min; the 
feed speed was v = 2 mm/min; the machining radius was 50 mm. The motion trajectory of 
the FTS is expressed using Equation (13), and the tracking result is shown in Figure 15. A 
maximum tracking error of <0.3 μm was obtained. 

π= −z( ) (50 10 )sin(200 )t t t  (13) 

Figure 13. (a) Sinusoidal signal at 100 Hz; (b) tracking errors of the 100 Hz sinusoidal signal; (c) 500 Hz sinusoidal signal;
(d) tracking errors of the 500 Hz sinusoidal signal.

To further verify the control performance of the PID + HC + ZPEC controller, a five-
leaved error signal was used in a 0–1000 Hz frequency sweep test. Figure 14 illustrates a
typical five-leaved error surface shape. The revolving speed was set to N = 1200 r/min; the
feed speed was v = 2 mm/min; the machining radius was 50 mm. The motion trajectory of
the FTS is expressed using Equation (13), and the tracking result is shown in Figure 15. A
maximum tracking error of <0.3 µm was obtained.

z(t) = (50− 10t) sin(200πt) (13)
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The test results of a group of 0–1000 Hz sweep signals are presented in Figure 16.
Figure 16a displays the tracking result from 0 to 1000 Hz, showing a full-band tracking
error of <10%. Figure 16b–d present the local enlarged views of the corresponding re-
gions. Without considering other factors, the fast servo tool can be used to realize error
compensation machining at 0–1000 Hz with a tracking error of <10%.
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3.2. Discussion

Compared with conventional PID algorithms and advanced algorithms, such as the
automatic anti-disturbance algorithm, the proposed composite algorithm can effectively
overcome the hysteresis effect of a piezoelectric actuator and the high-frequency phase
delay in the FTS system. However, it requires the identification of an accurate system model.
In practice, the model may vary with the changing machining environment, resulting in
the poor correction of the zero-phase controller. Under this circumstance, the model must
be re-identified. To improve the robustness of the algorithm, the repetitive controller
could be introduced to eliminate the effect of external interferences on the zero-phase
controller. In addition, we have previously used the zero-phase controller directly on the
PID controller without the Prandtl–Ishlinskii hysteresis compensator. However, because
only the PID control could not overcome the nonlinear effect of the piezoelectric actuator,
the system identification error was large, which made it difficult to design an accurate
zero-phase controller.
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4. Conclusions

In response to the hysteresis effect of a piezoelectric actuator and the phase delay of
the FTS system, a flexure hinge tool holder with a high natural frequency and a composite
control algorithm were combined to develop an FTS system with a full-frequency-band
(0–1000 Hz) tracking error of <10%. First, through multi-objective optimization and finite
element simulations, the flexure hinge tool holder with a natural frequency of >1000 Hz
was designed to meet the basic requirements of high-frequency FTS motion. Then, the
composite control algorithm was proposed, integrating a PID closed-loop control algorithm
based on the modified Prandtl–Ishlinskii inverse hysteresis model and a zero-phase error
controller; these addressed the hysteresis effect of the piezoelectric actuator and the phase
delay of the FTS system, respectively. The experimental comparison of different control
algorithms confirmed that the tracking accuracy of the proposed composite control algo-
rithm substantially improved compared with that of the conventional PID servo control
algorithm. The frequency sweep experiment demonstrated that the system had a tracking
error of <10% at a working frequency of 0–1000 Hz. Thus, the proposed system can be well
adapted to full-frequency high-precision compensation machining and complex surface
processing and thus improve the compensation processing accuracy of optical mirrors. The
comprehensive method for the design of a high-frequency response fast tool servo system
proposed in this paper is comprehensive and universal and can effectively improve the
working performance of a fast tool servo system.
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