
micromachines

Article

A 3D-2D Multibranch Feature Fusion and Dense Attention
Network for Hyperspectral Image Classification

Hongmin Gao 1,2, Yiyan Zhang 1,2 , Yunfei Zhang 1,2, Zhonghao Chen 1,2, Chenming Li 1,2 and Hui Zhou 1,2,3,*

����������
�������

Citation: Gao, H.; Zhang, Y.; Zhang,

Y.; Chen, Z.; Li, C.; Zhou, H. A 3D-2D

Multibranch Feature Fusion and

Dense Attention Network for

Hyperspectral Image Classification.

Micromachines 2021, 12, 1271.

https://doi.org/10.3390/mi12101271

Academic Editors: Bihan Wen and

Zhangyang (Atlas) Wang

Received: 11 September 2021

Accepted: 15 October 2021

Published: 18 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, No. 8
Focheng Road, Nanjing 211100, China; gaohongmin@hhu.edu.cn (H.G.); zhangyiyan@hhu.edu.cn (Y.Z.);
yunfeizhang@hhu.edu.cn (Y.Z.); chenzhonghao@hhu.edu.cn (Z.C.); lcm@hhu.edu.cn (C.L.)

2 College of Computer and Information, Hohai University, No. 8 Focheng Road, Nanjing 211100, China
3 College of Computer and Software, Nanjing Vocational University of Industry Technology,

Nanjing 211100, China
* Correspondence: zhouh@niit.edu.cn

Abstract: In recent years, hyperspectral image classification (HSI) has attracted considerable attention.
Various methods based on convolution neural networks have achieved outstanding classification
results. However, most of them exited the defects of underutilization of spectral-spatial features,
redundant information, and convergence difficulty. To address these problems, a novel 3D-2D multi-
branch feature fusion and dense attention network are proposed for HSI classification. Specifically,
the 3D multibranch feature fusion module integrates multiple receptive fields in spatial and spectral
dimensions to obtain shallow features. Then, a 2D densely connected attention module consists
of densely connected layers and spatial-channel attention block. The former is used to alleviate
the gradient vanishing and enhance the feature reuse during the training process. The latter em-
phasizes meaningful features and suppresses the interfering information along the two principal
dimensions: channel and spatial axes. The experimental results on four benchmark hyperspectral
images datasets demonstrate that the model can effectively improve the classification performance
with great robustness.

Keywords: convolutional neural network; hyperspectral image classifications; multibranch feature
fusion; dense attention block

1. Introduction

With the development of remote sensing, hyperspectral imaging technology has been
widely applied in meteorological warning [1], agricultural monitoring [2], and marine
safety [3]. Hyperspectral images are composed of hundreds of spectral bands and contain
rich land-cover information. Hyperspectral image classification has received increasing
attention as a crucial issue in the field of remote sensing.

The conventional classification methods include random forest (RF) [4], multiple
logistic regression (MLP) [5], and support vector machine (SVM) [6]. They are all classified
based on one-dimensional spectral information. Additionally, principal component analysis
(PCA) [7] tends to be used to compress spectral dimensions while retaining essential
spectral features, reduce band redundancy, and improve model robustness. Although these
traditional methods obtain great results, they have a limited representation capacity and
can only extract low-level features due to the shallow nonlinear structure.

Recently, hyperspectral images classification methods based on deep learning (DL) [8–10]
have been increasingly favored by researchers to make up for the shortcomings of tra-
ditional methods. CNN has made a great breakthrough in the field of computer vision
due to its excellent image representation ability and has been proved successful in the
field of hyperspectral image classification. Makantasis et al. [11] developed a network
based on 2D CNNs, where each pixel was packed into image patches of fixed size for
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spatial feature extraction and sent to multilayer perceptron for classification. However,
2D convolution can only extract features in height and width dimensions, ignoring the rich
information of spectral bands. To further enhance the utilization of the spectral dimen-
sions, the researchers turned their attention to 3D CNNs [12–14]. He et al. [12] proposed
a multiscale 3D deep convolutional neural network (M3D-DCNN) for HSI classification,
which learns the spatial and spectral features in the raw data of hyperspectral images in
an end-to-end manner. Zhong et al. [13] developed a 3D spectral-spatial residual network
(SSRN) that continuously learns discriminative features and spatial context information
from redundant spectral signatures. Although 3D CNNs can make up for the defects
of 2D CNNs in this regard, while 3D CNNs introduce a large number of computational
parameters, increasing the training time and memory cost. In addition, due to the HSI
having the characteristics of solid correlations between bands, there are phenomena of
the same material that may present spectral dissimilarity. Different materials may have
homologous spectral features, which seriously interfere with the extraction of spectral
information and lead to the degradation of classification performance. How to distinguish
the discriminative features of HSI is the key to improving the classification performance.
Recent studies have shown that discriminative features can be enhanced using attention
mechanisms [15,16]. Studies in cognitive biology reveal that human beings acquire the
information of significance by paying attention to only a few critical features while ignoring
the others. Similarly, attention has been effectively applied to various tasks in computer
vision [17,18]. Numerous approaches based on existing attention mechanisms are also
involved in the hyperspectral image classification tasks, demonstrating their efficiency in
improving performance.

Additionally, with the continuous deepening of feature extraction, the neural network
will inevitably become deeper. The phenomenon of gradient vanishing and network degra-
dation becomes more and more serious, which deteriorates the classification performance.
Furthermore, screening the crucial features from the complex features of hyperspectral
images has become critical for network performance improvement. The paper proposed a
3D-2D multiscale feature fusion and dense attention network (MFFDAN) for hyperspectral
image classification considering the above problems. In summary, the main contributions
of this paper are as follows:

(1) The whole network structure is composed of 3D and 2D convolutional layers, which
not only avoids the problems of insufficient feature extraction when only 2D CNNs
are used but also reduces the large number of training parameters caused by 3D
CNNs alone, thereby improving the model efficiency.

(2) The proposed 3D multiscale feature fusion module obtains the scaled features by
combining multiple convolutional filters. In general, filters with large sizes are un-
able to capture the fine-grained structure of the images, whereas filters with small
sizes are frequently eliminate the coarse-grained features of the images. Combin-
ing multiple convolutional filters of varying sizes allows for the extraction of more
detailed features.

(3) A 2D densely connected attention module is developed to overcome the gradient
vanishing problem and select discriminative channel-spatial features from redundant
hyperspectral images. A factorized spatial-channel attention block is proposed that
can adaptively prioritize critical features and suppress less useful ones. Additionally, a
simple 2D dense block is introduced to facilitate the information propagation and fea-
ture reuse and comprehensively utilizes features of different scales in 3D HSI cubes.

The rest of this paper is arranged as follows: Section 2 introduces the related CNNs
methods and the frameworks of MFFDAN. Section 3 shows specific experiments on four
benchmark datasets. Finally, the conclusions are presented in Section 4.
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2. Material and Methods
2.1. D Multibranch Fusion Module

Three-dimensional CNNs work on hyperspectral images’ spectrum and spatial di-
mensions simultaneously through 3D convolution kernels and can directly extract spatial
and spectral information from the raw hyperspectral images. The formula is as follows:

Vx,y,z
l,i = f (∑

m

Hl−1

∑
h=0

Wl−1

∑
w=0

Dl−1

∑
r=0

kh,w,d
l,i,m vx+h,y+w,z+d

l−1,m + bl,i) (1)

where Hl , Wl , and Dl represents the height, width, and spectral dimension of convolution
kernels. The kh,w,d

l,i,m denotes the output value of the i−th convolution kernel in the l−th
layer at the position of (h, w, d).

The normal 3D CNN methods for hyperspectral image classification involve stacking
convolutional blocks of convolutional layers (Conv), batch normalization (BN), and acti-
vation functions to extract detailed and discriminative features from raw hyperspectral
images. While these methods improve the classification results to a certain degree, they also
introduce numerous calculating parameters and increase the training time. Additionally,
building deep convolutional neural networks tends to cause gradients vanishing and to
suffer from classification performance degradation.

To solve the above problems, a 3D multibranch fusion module is proposed in this
work. The architecture of the module is shown in Figure 1. First, 3 × 3 × 3 and 1 × 1 × 1
convolutional blocks are employed to form the shallow network, which can expand the
information flow and allow the network to learn texture features. Then, it adds three
branches that are composed of multiple convolution kernels in sequence. Different sizes
of convolutional filers can be used to extract multiscale features from hyperspectral data.
Merging with the shallow network frequently results in superior classification performance
compared to stacked convolutional layers.
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Figure 1. The architecture of 3D multibranch fusion module.

2.2. D-2D CNN

On the one hand, the features extracted by 2D CNNs alone are limited. On the other
hand, 3D CNN consumes a substantial amount of computational resources. The combina-
tion of 2D CNNs and 3D CNNs can effectively make up for these defects. Roy et al. [14]
proposed a hybrid spectral-spatial neural network HybridSN. First, 3D CNNs facilitate
the joint spatial-spectral feature representation from a stack of spectral bands. Then, the
2D CNNs on top of the 3D CNNs further learn more abstract-level spatial representation.
Compared with 3D CNNs alone, the hybrid CNNs can not only avoid the problem of



Micromachines 2021, 12, 1271 4 of 16

insufficient feature extraction but also reduce model training parameters and improve
model efficiency.

2.3. Attention Mechanism
2.3.1. Channel Attention

A new global context channel attention block is designed to enable the network
to pay attention to the relationship between adjacent pixels in the channel dimensions.
Simultaneously, the channel attention block also gains a long-distance dependence between
pixels and improves the network’s global perception. The structure of the spectral attention
is shown in Figure 2. The fully connected layer increases computational parameters. For
this reason, a 1 × 1 convolutional neural network is intended to replace the fully connected
layers, in which the scaling factor is set to 4 to reduce the calculation cost and prevent the
network from overfitting. Additionally, layer normalization [19] is introduced to sparse
the weights of the network:

ẑ(l) =
z(l) − µ(l)√

σ(l)2
+ ε

� γ + β , LNγ,β(z(l)) (2)

where γ and β represent the parameter vectors of zooming and translation, respectively.
The layer normalization is used to normalize the weights’ matrix, which can accelerate the
convergence and regularization of the network. The formula of the channel attention is:

Zi = Xi + Wv2ReLU(LN(Wv1

NP

∑
j=1

eWkxj

Np

∑
m=1

eWkxm

xj)) (3)

where ∂j = eWk xj

∑
m

eWk xm represents the global pooling and Wv2ReLU(LN(Wv1(·))) denotes

the bottleneck transform. The channel attention module uses global attention pooling to
model the long-distance dependences and capture discriminative channel features from
the redundant hyperspectral images.
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2.3.2. Spatial Attention

A spatial attention block based on the interspatial relationships of features is devel-
oped, as inspired by CBAM [20]. Figure 3 illustrates the structure of the spatial attention
block. To generate an efficient feature descriptor, average-pooling and max-pooling opera-
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tions are applied along the channel axis, and they concatenate them. Pooling operations
along the channel axis are shown to be effective at highlighting informative regions. Then,
a convolution layer is applied to the concatenated feature descriptor to create a spatial
attention map that specifies which features to emphasize or suppress. These are then
convolved using a standard convolution layer to create a two-dimensional spatial attention
map. In short, spatial attention is calculated as follows:

M(F) = σ( f 3×3[AvgPool(F); MaxPool(F)])
= σ( f 3×3([Favg; Fmax]))

(4)

where σ denoted the sigmoid function and f 3×3 represents a convolution operation with
the filter size of 3 × 3.
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2.4. HSI Classification Based on MFFDAN

The architecture of MFFDAN is depicted in Figure 4. The University of Pavia dataset is
used to demonstrate the algorithm’s detailed process. The raw data are normalized to zero
mean value with unit variance for preprocessing. Then, the PCA is employed to compress
the spectral dimensions and eliminate band noise in the raw HSIs. Finally, hyperspectral
image data were segmented into the fixed spatial size of 3D image patches centered on
labeled pixels. After completing the above steps, they are sent to the 3D multibranch fusion
module for feature extraction. The module is intended to extract multiscale features with
multiple sizes of convolutional filters. Following that, the 3D feature maps reshape to 2D
after dimension transformation and are sent to the 2D dense attention module. Then, a
dense block [21] is arranged with spatial and channel attention in the middle of the module,
which is used to enhance the information flow and adaptively select out the discriminative
spatial-channel features. Finally, a fully connected layer with a softmax function is used
for classification.
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Figure 4. The Flowchart of MFFDAN network.

3. Results
3.1. Datasets

The University of Pavia (PU) dataset was acquired by the reflective optics system
imaging spectrometer (ROSIS) sensor. The dataset consists of 103 spectral bands. There are
610 × 340 pixels and nine ground-truth classes in total. The number of training, validation,
and testing samples in experiments is given in Table 1.

Table 1. The number of training, validation and testing samples for University of Pavia dataset.

No. Name Train Val Test

1 Asphalt 66 657 5908
2 Meadows 186 1846 16,617
3 Gravel 21 208 1870
4 Trees 31 303 2730
5 Painted-m-s 13 133 1199
6 Bare Soil 50 498 4481
7 Bitumen 13 132 1185
8 Self-B-Bricks 37 365 3280
9 Shadows 9 94 844

Total 426 4236 38,114

The Kennedy Space Center (KSC) dataset was gathered in 1996 by AVIRIS with
wavelengths ranging from 400 to 2500 nm. The images have a spatial dimension of
512 × 614 pixels and 176 spectral bands. The KSC dataset consists of in total 5202 samples
of 13 upland and wetland classes. The number of training, validation, and test samples in
experiments is given in Table 2.
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Table 2. The number of training, validation, and testing samples for Kennedy Space Center dataset.

No. Name Train Val Test

1 Scrub 76 69 616
2 Willow swamp 24 22 197
3 CP hammock 26 23 207
4 Slash pine 25 23 204
5 Oak/Broadleaf 16 15 130
6 Hardwood 23 21 185
7 Swamp 11 9 85
8 Graminoid marsh 43 39 349
9 Spartina marsh 52 47 421
10 Cattail marsh 40 36 328
11 Salt marsh 42 38 339
12 Mud flats 50 45 408
13 Water 93 83 751

Total 521 470 4220

The Salinas Valley (SA) dataset contains 512 × 217 pixels with a spatial resolution
of 3.7 m and 224 bands with wavelengths ranging from 0.36 to 2.5 µm. Additionally,
20 spectral bands of the dataset were eliminated due to water absorption. The SA dataset
contains 16 labeled material classes in total. The number of training, validation, and testing
samples in experiments is given in Table 3.

Table 3. The number of training, validation, and testing samples for Salinas Valley dataset.

No. Name Train Val Test

1 Brocoli_green _1 20 199 1790
2 Brocoli_green _1 37 369 3320
3 Fallow 20 196 1760
4 Fallow _plow 14 138 1242
5 Fallow_smooth 27 265 2386
6 Stubble 40 392 3527
7 Celery 36 354 3189
8 Grapes_untrained 113 1116 10,042
9 Soil _develop 62 614 5527
10 Corn _weeds 33 325 2920
11 Lettuce _4wk 11 106 951
12 Lettuc _5wk 19 191 1717
13 Lettuce _6wk 9 91 816
14 Lettuce _7wk 11 106 953
15 Vinyard_untrain 73 720 6475
16 Vinyard _trellis 18 179 1610

Total 543 5361 48,225

The Grass_dfc_2013 dataset was acquired by the compact airborne spectrographic
imager (CASI) over the campus of the University of Houston and the neighboring urban
area [22]. The dataset contains 349 × 1905 pixels, with a spatial resolution of 2.5 m and
144 spectral bands ranging from 0.38 to 1.05 µm. It includes 15 classes in total. The number
of training, validation, and testing samples in experiments is given in Table 4.
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Table 4. The number of training, validation, and testing samples for Grass_Dfc_2013 dataset.

No. Name Train Val Test

1 Healthy grass 125 113 1013
2 Stressed grass 125 113 1016
3 Synthetic grass 70 63 564
4 Tree 124 112 1008
5 Soil 124 112 1006
6 Water 33 29 263
7 Residential 127 114 1027
8 Commercial 124 112 1008
9 Road 125 113 1014
10 Highway 123 110 994
11 Railway 124 111 1000
12 Parking lot 1 123 111 999
13 Parking lot 2 47 42 380
14 Tennis court 43 39 346
15 Running track 66 59 535

Total 1503 1353 12,173

3.2. Experimental Setup

The model proposed in this paper is implemented base on Python language and
Pytorch deep learning framework. All experiments are carried out on a computer with
Windows 10 operating system, NVIDIA RTX 2060 Super GPU, and 64 GB RAM. The overall
accuracy (OA), average accuracy (AA), and kappa coefficient (Kappa) are adopted as the
evaluation criteria. Different proportions of training, validation, and testing samples for
each dataset are used to verify the effectiveness of the proposed model considering the
unbalanced categories in four benchmarks.

The batch size and epochs are set to 16 and 200, respectively. Stochastic gradient
descent (SGD) is adopted to optimize the training parameters. The initial learning rate is
0.05 and decreases by 1% every 50 epochs. All the experiments are repeated five times to
avoid errors.

3.3. Analysis of Parameters

(1) Impact of Principal Component: In this section, the influence of the number of
principal components C is tested on classification results. PCA is first used to reduce
the dimensionality of the bands to 20, 30, 40, 50, and 60, respectively. The experimental
results on four datasets are shown in Figure 5. For the University of Pavia and Kennedy
Space Center datasets, the values of OA, AA, and Kappa rise from 20 (PU_OA = 98.81%,
KSC_OA = 96.92%) and reach a peak at 30(PU_OA = 98.96%, KSC_OA = 99.07%). The
increase in OA values on the KSC dataset is much higher than that on the PU dataset. It
can be observed that the number of principal components has a significant impact on the
KSC dataset. When the principal component bands exceed 30, these indicators decline to
vary degrees. While for the Salinas Valley and GRSS_DFC_2013, the values of OA, AA,
and Kappa seem to have no such relationships with the principal components. The OA
values fluctuate in various number of principal components. The phenomenon is most
likely caused by the fact that the latter two datasets have a higher land-cover resolution
but a lower spectral band sensitivity.
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Figure 5. OA, AA, and Kappa accuracies with different principal components on four datasets. (a) Effect of principal
components on University of Pavia dataset, (b) Effect of principal components on Kennedy Space Center, (c) Effect of
principal components on Salinas Valley dataset, (d) Effect of principal components on GRSS_DFC_2013 dataset.

(2) Impact of Spatial Size: The choice of the spatial size of the input image block has a
crucial influence on classification accuracy. To find the best spatial size, it is necessary to
test the model by adopting different spatial sizes: C × 9 × 9, C × 11 × 11, C × 13 × 13,
C × 15 × 15, C × 17 × 17, and C × 19 × 19, where C is the fixed number of the principal
component. The number of the principal component is set to 30 in all experiments to
guarantee fairness.

Figure 6 shows the values of OA, AA, and Kappa of different spatial sizes on four
datasets. The values of OA, AA, and Kappa rise steadily from spatial sizes of C × 9 × 9
to C × 15 × 15 on PU, KSC, and SA dataset and then decrease in the larger spatial sizes.
That is to say, a target pixel and its adjacent neighbors usually belong to the same class to
certain spatial sizes, while oversized regions may present additional noise and deteriorate
the classification performance. While for the dataset of GRSS_DFC_2013, the values of
three indicators fluctuate between the spatial size of C × 11 × 11 and C × 15 × 15 and
decrease with larger spatial sizes. To sum up, the size of the patch for all datasets is set to
C × 15 × 15.
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Figure 6. OA, AA, and Kappa accuracies with different spatial size on four datasets. (a) Effect of spatial size on University
of Pavia dataset, (b) Effect of spatial size on Kennedy Space Center dataset, (c) Effect of spatial size on Salinas Valley dataset,
(d) Effect of spatial size on GRSS_DFC_2013 dataset.

3.4. Ablation Study

In order to test the effectiveness of the proposed densely connected attention module,
several specific ablation experiments are designed. The models used for comparison are
consistent with the network of the proposed method except for the removal of the densely
connected attention module. The principal components and the spatial size are set to
30 and 15 × 15. The results on four datasets are displayed in Figure 7. The densely
connected attention module improves the values of OA by approximately 0.93–1.75% on
four datasets. Specifically, on most occasions (such as PU, SA, and GRSS dataset), a single-
channel attention block outperforms a single spatial attention block by approximately
0.06–0.34% OA values. However, that does not mean that the spatial attention mechanism
does not work, which plays a significant role in improving classification performance.
Spatial attention alone has improved (0.52–1.27% OA) compared with nonattention block.
The reason is likely that the densely connected attention module introduces the combination
of attention mechanisms and densely connected layers. On the one hand, the attention
mechanism can adaptively assign different weights to spatial-channel regions and suppress
the effects of interfering pixels. On the other hand, densely connected layers relieve the
gradient vanishing when the model bursts into deep layers and enhances the feature reuse
during the convergence of the network.
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Figure 7. The overall accuracies of ablation experiments on four datasets.

3.5. Compared with Other Different Methods

To evaluate the performance of the proposed method, seven classification methods
were selected to be compared. The methods are RBF-SVM with radial basis function kernel,
multinomial logistic regression (MLR), random forest, spatial CNN with 2-D kernels [11],
PyResNet [23], Hybrid-SN [14], and SSRN [13]. Figures 5–7 show the classification maps of
different methods on PU, KSC, SA, and Grss_dfc_2013 datasets.

The spatial size and the number of principal components are set to C × 15 × 15 and
30 for all DL methods to guarantee fairness. All the comparison experiments are carried
out five times and calculate the average values and standard deviations. Due to the SSRN
model not performing PCA in the manner described in the original paper, the results
are the same when omitting this process in experiments. Other hyperparameters of the
network are configured according to their papers.

The number of training, validation, and testing samples on University of Pavia dataset
for comparison are in accordance with the list of samples in Table 1. Table 5 reveals the
overall accuracy, average accuracy, and kappa coefficient of the different methods. It is
obvious that classic machine learning methods such as RBF-SVM, RF, and MLR achieve
relatively lower overall accuracies compared with other DL methods. They classify through
the spectral dimensions of HSIs, which ignore the importance of 2D spatial characteristics.
The proposed method obtained the best results among all the comparison methods, with
98.96% overall accuracy, which is 1.63% higher than the second-best (97.33%) achieved by
HybridSN. Figure 8 shows the classification maps of these methods.

The selection of samples for training, validation, and testing on Kennedy Space
Center dataset are consistent with the list of samples in Table 2. It is necessary to increase
the training samples for the KSC dataset to avoid the underfit of the network. The 2D
CNN model achieves the worst results among all the DL methods, which is difficult to
obtain complex spectral-spatial features via 2D convolutional filters. The SSRN model
obtains the second-best results due to its stacked 3D convolutional layers, which extract
the discriminative spectral-spatial features from raw images.
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Table 5. The categorized results of different methods on the Paiva of University dataset.

Class

Methods

Conventional Classifiers Classic Neural Networks
Proposed

RBF-SVM MLR RF 2D-CNN PyResNet SSRN HybridSN

1 89.00 ± 1.10 90.21 ± 1.56 86.11 ± 2.21 93.30 ± 1.62 93.45 ± 1.14 99.19 ± 0.59 97.64 ± 1.37 99.50 ± 0.09
2 98.10 ± 0.65 96.35 ± 1.64 96.03 ± 1.23 99.39 ± 0.82 99.45 ± 0.50 98.18 ± 3.20 99.65 ± 0.22 99.97 ± 0.02
3 60.47 ± 5.17 42.36 ± 2.17 30.19 ± 3.89 71.09 ± 3.83 77.90 ± 2.74 85.28 ± 15.81 78.24 ± 4.87 88.53 ± 0.90
4 87.37 ± 4.35 79.68 ± 3.45 76.47 ± 5.17 94.30 ± 2.25 90.08 ± 2.95 95.85 ± 1.46 96.65 ± 0.32 97.88 ± 0.30
5 99.07 ± 0.32 98.89 ± 0.33 98.26 ± 0.44 33.26 ± 47.03 99.82 ± 0.09 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
6 69.52 ± 3.50 50.48 ± 5.62 36.90 ± 4.85 95.24 ± 3.55 94.91 ± 1.41 96.42 ± 5.17 99.92 ± 0.10 99.98 ± 0.03
7 69.22 ± 12.02 5.82 ± 2.96 58.73 ± 6.89 57.18 ± 40.45 90.28 ± 0.75 94.85 ± 2.71 98.19 ± 1.26 97.92 ± 0.89
8 86.00 ± 3.04 87.85 ± 1.69 83.92 ± 5.04 87.33 ± 7.13 74.65 ± 8.45 84.49 ± 18.88 94.29 ± 2.79 98.83 ± 0.23
9 99.72 ± 0.08 99.47 ± 0.15 99.30 ± 0.20 19.30 ± 27.29 89.84 ± 1.86 99.57 ± 0.46 87.27 ± 9.37 97.12 ± 1.04

OA (%) 88.84 ± 0.34 82.77 ± 0.42 80.85 ± 0.69 90.00 ± 2.38 93.64 ± 0.62 96.14 ± 2.27 97.33 ± 0.45 98.96 ± 0.09
AA (%) 84.27 ± 1.65 72.34 ± 0.29 73.99 ± 1.40 72.26 ± 8.43 90.04 ± 0.71 94.87 ± 1.67 94.65 ± 1.04 97.75 ± 0.22

Kappa × 100 84.96 ± 0.50 76.50 ± 0.50 73.76 ± 0.89 86.53 ± 3.31 91.53 ± 0.82 94.90 ± 2.94 96.46 ± 0.60 98.62 ± 0.12
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Figure 8. The classification maps of different methods on University of Pavia dataset. (a) False color
map with truth labels, (b) ground truth, (c) RBF-SVM (d), MLR (e), RF (f) 2D-CNN (g), PyResNet
(h) SSRN, (i) HybridSN, and (j) proposed.

The proposed method achieves the best results with (OA = 99.07%, AA = 97.70%, and
Kappa = 98.97%). The quantitative classification results in terms of three indices, and the
accuracies for each class are reported in Table 6. The classification maps of these methods
are displayed in Figure 9.

The selection of samples for training, validation, and testing on Salinas Valley and
Grass_dfc_2013 datasets is consistent with the list of samples in Tables 3 and 4. Mean-
while, the quantitative results of different methods on these two datasets are reported in
Tables 7 and 8, respectively. The proposed method outperforms other comparison methods
in terms of OA, AA, and Kappa indicators. The 3D multibranch feature fusion module
can extract the multiscale features from raw hyperspectral images and improve the perfor-
mance significantly. Figures 10 and 11 reveal the classification maps of methods on these
two datasets, which clearly show that the proposed model has better visual impressions
than other comparison methods. For other models, the HybridSN and SSRN models have
better classification performance than traditional machine learning methods and shallow
DL classifiers. Specifically, the HybridSN model achieves 98.97% in OA, 98.95% in terms of
AA, and 98.85% in terms of Kappa on the SA dataset, demonstrating the excellent feature
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representation ability in deep neural networks. SSRN model achieves 97.62% in OA, 98.47%
in AA, and 97.36% in Kappa. The large kernel filters are good at extracting original features
from HSIs without the PCA process. By comparison, the shallow 2D classifiers such as 2D
CNN and PyResNet cannot obtain comprehensive features and miss rich spectral informa-
tion during the training process. Therefore, they do not achieve competitive classification
performance as HybridSN and SSRN models.

Table 6. The categorized results of different methods on the Paiva of University dataset.

Class

Methods

Conventional Classifiers Classic Neural Networks
Proposed

RBF-SVM MLR RF 2D-CNN PyResNet SSRN HybridSN

1 95.85 ± 0.66 95.83 ± 0.79 94.63 ± 1.12 99.22 ± 1.00 99.42 ± 0.24 100.00 ± 0.00 99.48 ± 0.46 99.97 ± 0.06
2 85.39 ± 3.40 86.48 ± 2.06 81.19 ± 6.49 90.26 ± 4.42 88.43 ± 2.64 100.00 ± 0.00 95.52 ± 2.76 99.91 ± 0.18
3 88.09 ± 4.18 90.87 ± 4.98 89.48 ± 2.32 88.69 ± 3.39 96.52 ± 2.16 100.00 ± 0.00 92.26 ± 5.44 99.22 ± 0.80
4 42.47 ± 5.36 34.45 ± 6.04 68.11 ± 5.63 68.43 ± 1.62 65.20 ± 4.68 95.30 ± 1.81 81.14 ± 7.23 90.82 ± 5.06
5 47.45 ± 5.56 24.55 ± 11.17 46.48 ± 4.11 20.92 ± 29.59 66.44 ± 1.98 73.56 ± 3.10 77.38 ± 4.87 98.01 ± 2.70
6 47.67 ± 3.57 44.95 ± 2.56 37.09 ± 4.22 50.97 ± 36.05 90.13 ± 1.60 98.38 ± 1.65 95.83 ± 4.21 99.61 ± 0.57
7 83.58 ± 5.51 79.37 ± 7.81 75.79 ± 10.16 32.98 ± 46.65 100.00 ± 0.00 100.00 ± 0.00 97.05 ± 3.15 82.52 ± 34.95
8 90.77 ± 1.36 70.93 ± 4.96 72.58 ± 5.28 87.20 ± 2.37 99.40 ± 0.53 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
9 94.53 ± 2.41 83.89 ± 1.50 92.78 ± 4.10 100.00 ± 0.00 99.86 ± 0.20 99.22 ± 1.11 99.91 ± 0.17 99.92 ± 0.10

10 92.69 ± 4.21 86.37 ± 30.35 81.81 ± 3.19 88.37 ± 2.79 97.25 ± 2.06 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
11 96.98 ± 1.52 94.96 ± 1.43 95.81 ± 1.77 99.56 ± 0.63 98.67 ± 0.43 100.00 ± 0.00 99.73 ± 0.53 100.00 ± 0.00
12 85.83 ± 3.29 84.81 ± 2.61 82.21 ± 1.93 84.91 ± 9.16 70.71 ± 4.69 100.00 ± 0.00 98.23 ± 1.89 100.00 ± 0.00
13 99.93 ± 0.14 99.86 ± 0.18 99.74 ± 0.09 99.84 ± 0.23 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

OA (%) 87.59 ± 0.55 83.01 ± 0.69 84.87 ± 0.89 87.91 ± 1.77 92.84 ± 0.21 98.81 ± 0.17 97.28 ± 0.59 99.07 ± 0.82
AA (%) 80.86 ± 0.87 75.18 ± 0.86 78.28 ± 0.86 77.80 ± 5.35 90.16 ± 0.06 97.42 ± 0.19 95.12 ± 0.73 97.70 ± 2.83

Kappa×100 86.16 ± 0.61 81.03 ± 0.77 83.12 ± 0.98 86.51 ± 1.98 92.02 ± 0.24 98.67 ± 0.18 96.97 ± 0.65 98.97 ± 0.92
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AA (%) 80.86 ± 0.87 75.18 ± 0.86 78.28 ± 0.86 77.80 ± 5.35 90.16 ± 0.06 97.42 ± 0.19 95.12 ± 0.73 97.70 ± 2.83 
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Table 7. The categorized results of different methods on the Paiva of University dataset.

Class

Methods

Conventional Classifiers Classic Neural Networks
Proposed

RBF-SVM MLR RF 2D-CNN PyResNet SSRN HybridSN

1 97.28 ± 1.25 97.76 ± 0.69 97.07 ± 1.28 99.89 ± 0.15 99.77 ± 0.33 98.74 ± 0.93 99.99 ± 0.02 100.00 ± 0.00
2 99.53 ± 0.29 99.62 ± 0.20 99.80 ± 0.10 98.92 ± 1.67 99.99 ± 0.01 99.99 ± 0.01 100.00 ± 0.00 100.00 ± 0.00
3 96.81 ± 1.75 95.36 ± 2.28 88.51 ± 3.57 100.00 ± 0.00 100.00 ± 0.00 99.06 ± 1.32 99.99 ± 0.02 100.00 ± 0.00
4 98.72 ± 0.61 98.78 ± 0.30 95.06 ± 2.66 82.72 ± 3.62 93.70 ± 1.90 99.71 ± 0.26 95.92 ± 0.86 99.81 ± 0.12
5 95.96 ± 1.94 98.29 ± 0.47 94.15 ± 3.07 96.58 ± 1.31 94.91 ± 1.29 94.76 ± 2.25 95.98 ± 0.91 97.45 ± 0.42
6 99.50 ± 0.41 99.77 ± 0.14 98.83 ± 0.88 99.96 ± 0.08 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
7 99.44 ± 0.18 99.48 ± 0.11 98.34 ± 1.48 99.52 ± 0.45 99.77 ± 0.25 99.66 ± 0.24 99.95 ± 0.04 99.95 ± 0.03
8 89.97 ± 1.28 86.38 ± 3.12 81.03 ± 1.51 90.90 ± 1.58 87.79 ± 1.38 93.28 ± 4.67 98.50 ± 0.55 99.63 ± 0.07
9 99.04 ± 0.47 99.16 ± 0.26 98.84 ± 0.16 99.92 ± 0.13 99.82 ± 0.17 99.60 ± 0.45 99.86 ± 0.19 100.00 ± 0.00

10 85.27 ± 2.60 83.70 ± 1.11 81.16 ± 3.21 97.78 ± 2.31 99.61 ± 0.36 99.11 ± 0.64 99.40 ± 0.31 99.87 ± 0.08
11 90.35 ± 2.53 89.12 ± 2.30 82.84 ± 3.58 99.77 ± 0.29 100.00 ± 0.00 99.91 ± 0.13 99.94 ± 0.08 100.00 ± 0.00
12 99.55 ± 0.44 99.70 ± 0.10 98.41 ± 0.68 99.31 ± 0.53 99.93 ± 0.07 98.38 ± 1.33 99.83 ± 0.34 99.93 ± 0.08
13 96.98 ± 0.96 97.89 ± 1.68 95.45 ± 3.21 96.54 ± 2.19 99.93 ± 0.05 98.13 ± 0.09 99.49 ± 0.60 99.96 ± 0.09
14 92.94 ± 1.50 91.62 ± 1.94 93.15 ± 1.48 88.42 ± 4.46 95.84 ± 0.71 98.08 ± 0.94 96.75 ± 3.65 99.75 ± 0.10
15 47.86 ± 1.19 50.73 ± 4.21 52.43 ± 2.55 88.39 ± 4.00 98.13 ± 0.70 97.21 ± 1.81 98.04 ± 0.43 99.80 ± 0.22
16 94.80 ± 4.26 92.25 ± 2.29 88.56 ± 3.21 99.72 ± 0.24 99.83 ± 0.04 99.94 ± 0.08 99.55 ± 0.49 100.00 ± 0.00

OA (%) 88.78 ± 0.29 88.33 ± 0.40 86.25 ± 0.47 95.35 ± 0.35 96.63 ± 0.20 97.62 ± 0.73 98.97 ± 0.06 99.73 ± 0.02
AA (%) 92.75 ± 0.41 92.47 ± 0.23 90.23 ± 0.70 96.15 ± 0.20 98.06 ± 0.09 98.47 ± 0.18 98.95 ± 0.20 99.72 ± 0.02

Kappa × 100 87.45 ± 0.32 86.96 ± 0.44 84.64 ± 0.54 94.82 ± 0.39 96.26 ± 0.22 97.36 ± 0.80 98.85 ± 0.07 99.70 ± 0.02

Table 8. The categorized results of different methods on the Paiva of University dataset.

Class

Methods

Conventional Classifiers Classic Neural Networks
Proposed

RBF-SVM MLR RF 2D-CNN PyResNet SSRN HybridSN

1 92.34 ± 5.15 86.39 ± 0.38 94.55 ± 2.19 92.19 ± 0.88 97.81 ± 0.69 98.29 ± 1.22 98.35 ± 0.73 98.06 ± 0.74
2 84.79 ± 7.71 94.47 ± 4.11 97.78 ± 0.85 95.67 ± 3.15 98.46 ± 0.50 97.59 ± 0.08 98.60 ± 0.74 99.08 ± 0.23
3 97.22 ± 1.30 99.70 ± 0.00 91.81 ± 2.02 93.67 ± 2.09 99.15 ± 0.57 98.69 ± 0.72 99.64 ± 0.20 99.70 ± 0.06
4 90.29 ± 2.11 97.11 ± 0.38 92.65 ± 1.39 92.64 ± 2.04 96.02 ± 1.16 97.77 ± 0.10 99.60 ± 0.17 97.8 ± 0.10
5 94.86 ± 1.68 99.13 ± 0.40 96.00 ± 2.36 99.97 ± 0.04 99.92 ± 0.12 99.83 ± 0.18 99.81 ± 0.27 100.00 ± 0.00
6 81.86 ± 1.30 82.20 ± 1.34 78.71 ± 3.77 72.05 ± 9.31 91.05 ± 2.57 87.92 ± 0.61 96.96 ± 2.10 94.5 ± 1.90
7 79.14 ± 4.57 85.61 ± 2.66 81.26 ± 4.36 75.00 ± 1.11 85.39 ± 2.60 91.43 ± 0.61 91.70 ± 1.40 93.44 ± 0.25
8 58.72 ± 7.63 50.73 ± 2.72 71.57 ± 2.09 57.82 ± 3.61 92.78 ± 0.52 90.24 ± 0.33 90.08 ± 0.70 91.71 ± 0.79
9 75.64 ± 6.74 70.39 ± 5.03 74.33 ± 2.81 58.30 ± 1.33 92.60 ± 0.74 97.20 ± 1.00 96.22 ± 1.65 99.41 ± 0.61

10 54.95 ± 11.71 52.92 ± 9.58 74.25 ± 4.64 69.33 ± 6.48 99.26 ± 0.54 100.00 ± 0.00 99.91 ± 0.13 100.00 ± 0.00
11 62.75 ± 6.41 56.71 ± 1.61 72.87 ± 1.81 79.91 ± 8.67 97.02 ± 0.61 99.46 ± 0.76 99.74 ± 0.26 99.91 ± 0.07
12 53.50 ± 10.72 47.12 ± 3.31 70.78 ± 4.91 86.43 ± 2.02 97.10 ± 0.78 99.66 ± 0.00 99.11 ± 0.48 99.57 ± 0.08
13 20.13 ± 7.94 4.03 ± 2.95 7.13 ± 2.48 9.34 ± 5.32 81.99 ± 4.99 89.46 ± 1.50 94.93 ± 0.48 94.84 ± 0.25
14 81.08 ± 12.99 82.60 ± 8.35 93.32 ± 3.23 92.77 ± 2.82 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100 ± 0.00
15 98.53 ± 0.44 98.81 ± 0.13 89.51 ± 3.56 100.00 ± 0.00 99.95 ± 0.08 99.84 ± 0.22 100.00 ± 0.00 100 ± 0.00

OA (%) 75.49 ± 0.71 74.57 ± 0.78 81.23 ± 0.60 80.10 ± 0.57 95.56 ± 0.51 96.96 ± 0.15 97.52 ± 0.30 97.96 ± 0.13
AA (%) 75.05 ± 0.90 73.80 ± 0.97 79.10 ± 0.84 78.34 ± 0.72 95.23 ± 0.64 96.49 ± 0.06 97.64 ± 0.32 97.87 ± 0.18

Kappa × 100 73.47 ± 0.77 72.45 ± 0.84 79.67 ± 0.66 78.45 ± 0.61 95.20 ± 0.55 96.72 ± 0.16 97.31 ± 0.32 97.80 ± 0.14
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Figure 11. The classification maps of different methods on Grass_dfc_2013 dataset. (a) false color
map with truth labels, (b) ground truth, (c) RBF-SVM, (d) MLR, (e) RF, (f) 2D-CNN, (g) PyResNet,
(h) SSRN, (i) HybridSN, and (j) proposed.

4. Conclusions

In this paper, a novel deep learning method called 3D-2D multibranch feature fusion
and dense attention network is proposed for hyperspectral images classification. Both 3D
and 2D CNNs are combined in an end-to-end network. Specifically, the 3D multibranch
feature fusion module is designed to extract multiscale features from the spatial and
spectrum of the hyperspectral images. Following that, a 2D dense attention module is
introduced. The module consists of a densely connected block and a spatial-channel
attention block. The dense block is intended to alleviate gradient vanishing in deep layers
and enhance the reuse of features. The attention module includes the spatial attention block
and the spectral attention block. The two blocks can adaptively select the discriminative
features from the space and the spectrum of redundant hyperspectral images. Combining
the densely connected block and attention block can significantly improve the classification
performance and accelerate the convergence of the network. The elaborate hybrid module
raises the OA by 0.93–1.75% on four different datasets. Additionally, the proposed model
outperforms other comparison methods in terms of OA by 1.63–18.11% on the PU dataset,
0.26–16.06% on the KSC dataset, 0.76–13.48% on the SA dataset, and 0.46–23.39% on the
Grass_dfc_2013 dataset. These experimental results demonstrate that the model proposed
can achieve satisfactory classification performance.
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