
Supplementary Material

Multi-input Logic-in-Memory for Ultra-Low Power non-von

Neumann Computing

Tommaso Zanotti 1,*, Paolo Pavan 1 and Francesco Maria Puglisi 1

1 Dipartimento di Ingegneria “Enzo Ferrari”, Università di Modena e Reggio Emilia, Via P. Vivarelli 10/1, 6 41125 Modena, Italy;

francescomaria.puglisi@unimore.it (F.M.P.); paolo.pavan@unimore.it (P.P.)

* Correspondence: tommaso.zanotti@unimore.it;

(a) (b)
Figure S1. 1-bit HA sequence of computing steps using (a) 2-SIMPLY only and, (b) up to 3-SIMPLY. The use of 3-SIMPLY

reduces the number of computing steps from 13 to 11.

(a) (b)
Figure S2. 4-SIMPLY-based implementation of two concatenated 1-bit HAs that are used to implement the popcounting

operation for BNNs. (a) Sketch of the two serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE

operations implementing the result of the operation. The use of 4-SIMPLY reduces the number of computing steps from

26 (when using only the 2-SIMPLY Figure S1a) to 19.

HA HA
C

S
0
 S

1

I

(a) (b)
Figure S3. 5-SIMPLY-based implementation of three concatenated 1-bit HAs that are used to implement the popcounting

operation for BNNs. (a) Sketch of the three serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE

operations implementing the result of the operation. The use of 5-SIMPLY reduces the number of computing steps from

39 (when using only the 2-SIMPLY Figure S1a) to 28.

HA HA

S
0
 S

1

I
HA

C

S
2

(a) (b)

Figure S4. 6-SIMPLY-based implementation of four concatenated 1-bit HAs that are used to implement the popcounting

operation for BNNs. (a) Sketch of the four serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE

operations implementing the result of the operation. The use of 6-SIMPLY reduces the number of computing steps from

52 (when using only the 2-SIMPLY Figure S1a) to 37.

HA HA

S
0
 S

1

I
HA

S
2

HA
C

S
3

𝐶𝑀𝑃 = 𝑆
𝑚

𝑇𝐻𝑚
̅̅ ̅̅ ̅̅ + 𝑥𝑚𝑆

𝑚
−

1
𝑇𝐻𝑚−1
̅̅ ̅̅ ̅̅ ̅̅ ̅ + ⋯ + 𝑥𝑚 ∙ … ∙ 𝑥1𝑆

0
𝑇𝐻0
̅̅ ̅̅ ̅

where 𝑥𝑚 = 𝑆𝑚⨁𝑇𝐻𝑚
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑛 = 𝑚 + 1

#𝑺𝒕𝒆𝒑𝒔 = 𝟎. 𝟓 𝒏𝟐 + 𝟏𝟏. 𝟓𝒏 − 𝟕

Figure S5. Flowchart building the sequence of computing steps required for implementing the activation function of a

BNN neuron, i.e., the comparison with a threshold (TH), when using the 2-SIMPLY operation (i.e., 2-SIMPLY-baseline in

Figure 11). The formula for the comparison operation is reported together with the scaling of the number of computing

steps (i.e., #steps) as a function of the number of compared input bits (n).

𝑛 = 𝑚 + 1

𝑖𝑓 𝑛 = 1 → #𝑺𝒕𝒆𝒑𝒔 = 𝟓

𝑒𝑙𝑠𝑒 → #𝑺𝒕𝒆𝒑𝒔 = 𝟏𝟖𝒏 − 𝟏𝟐

Figure S6. Flowchart building the sequence of computing steps optimized for large number of input bits, that is used to

implement the activation function of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 2-SIMPLY

operation (i.e., 2-SIMPLY Opt. Wide Words in Figure 11). The formula for the comparison operation is reported together

with the scaling of the number of computing steps (i.e., #steps) as a function of the number of compared input bits (n).

𝑛 = 𝑚 + 1

#𝑺𝒕𝒆𝒑𝒔 = 𝟎. 𝟓 𝒏𝟐 + 𝟖. 𝟓𝒏 − 𝟒

Figure S7. Flowchart building the sequence of computing steps that is used to implement the activation function of a BNN

neuron, i.e., the comparison with a threshold (TH), when using the 3-SIMPLY operation and optimizing only the steps

required for computing the intermediate XNOR operations (i.e., 3-SIMPLY Only XNOR in Figure 11). The formula for the

comparison operation is reported together with the scaling of the number of computing steps (i.e., #steps) as a function of

the number of compared input bits (n).

𝑛 = 𝑚 + 1

𝑖𝑓 𝑛 = 1 → #𝑺𝒕𝒆𝒑𝒔 = 𝟓

𝑖𝑓 𝑛 = 2 → #𝑺𝒕𝒆𝒑𝒔 = 𝟏𝟓

𝑒𝑙𝑠𝑒 → #𝑺𝒕𝒆𝒑𝒔 = 𝟏𝟎𝒏 − 𝟓

Figure S8. Flowchart building the optimized sequence of computing steps that is used to implement the activation function

of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 3-SIMPLY operation (i.e., 3-SIMPLY Opt. in

Figure 11). The formula for the comparison operation is reported together with the scaling of the number of computing

steps (i.e., #steps) as a function of the number of compared input bits (n).

𝑛 = 𝑚 + 1

𝑖𝑓 𝑛 = 1 → #𝑺𝒕𝒆𝒑𝒔 = 𝟓

𝑖𝑓 𝑛 = 2 → #𝑺𝒕𝒆𝒑𝒔 = 𝟏𝟓

𝑒𝑙𝑠𝑒 → #𝑺𝒕𝒆𝒑𝒔 = 𝟗𝒏 − 𝟑

Figure S9. Flowchart building the optimized sequence of computing steps that is used to implement the activation function

of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 4-SIMPLY operation (i.e., 4-SIMPLY Opt. in

Figure 11). The formula for the comparison operation is reported together with the scaling of the number of computing

steps (i.e., #steps) as a function of the number of compared input bits (n).

