Supplementary Material

Multi-input Logic-in-Memory for Ultra-Low Power non-von
Neumann Computing

Tommaso Zanotti ¥, Paolo Pavan ! and Francesco Maria Puglisi ?

1 Dipartimento di Ingegneria “Enzo Ferrari”, Universita di Modena e Reggio Emilia, Via P. Vivarelli 10/1, 6 41125 Modena, Italy;

francescomaria.puglisi@unimore.it (F.M.P.); paolo.pavan@unimore.it (P.P.)

Correspondence: tommaso.zanotti@unimore.it;

¥ Step | Operation Equivalent Operation
1-4 |FALSE (C, My, M,, Mj3) C=M;=M;=M3=0 |l Step | Operation Equivalent Operation
5 [2-SIMPLY (I, M) My =T 14 [SFALSE(C, M;, My, M;) C=M=My=M3=0
6 [2STMPLY (S, My) M2 = So 5 [2-SIMPLY (I, M) My=1
7 |2-SIMPLY (S, M) M; :jof s |2sDrLy s, M, - 5,
8 |2-sSIMPLY (M., T) |
7 |3smPLY M, M, Q) €= 5ol
9 |2-SIMPLY (M, Ms) Mz = So!
— 8 |2-sIMPLY (ML, M,) M; =5
10 |2-SIMPLY (1 M;) Mz = Sl + Sl
9 |FALSE(Sy) Sp=20
11 |FALSE(Sy) So=20 _
—— 10 |2-SIMPLY (M, L, S) So = Sol
12 |2-SIMPLY (M, Sp) So = Sol + 5! ye
. : So = ISg + Sol
13 |2snrPLyosn o C syl 11 |2-SIMPLY (M, M,, Sy) 0 0+ So
(a) (b)

Figure S1. 1-bit HA sequence of computing steps using (a) 2-SIMPLY only and, (b) up to 3-SIMPLY. The use of 3-SIMPLY
reduces the number of computing steps from 13 to 11.

Step|Operation Equivalent Operation

1-6 |SFALSE(C, M;, My, M; My, M) | C=Mi=My=M3=My=Ms=0
7 |2-SIMPLY (I, My) My=1T
8 |2-SIMPLY (So, M,) M, = 5
9 |2-SIMPLY (S, Ms) Mz = §;
10 |4-SIMPLY (M, M,, M5, C) C=Se511

I—> HAPTHA —C> 11 |2-SIMPLY (M,, M,) My =35
12 |2-SIMPLY (Ms, M5) Mg =5,

S, S, 13-14 |sFALSE (S, Sy) So=5,=0
15 |3-SIMPLY (I, M, Sp) So =15
16 |3-SIMPLY (M,, M,, Sp) So =1Sg + Sol
17 [3-SIMPLY (I, M, S)) Sy =Sif
18 [3-SIMPLY (M, Ms,5;) S1 =810+ 5159
19 |4-SIMPLY (M,, M,, M, S)) Sy =811+ 8,5 + 15051
(a) (b)

Figure S2. 4-SIMPLY-based implementation of two concatenated 1-bit HAs that are used to implement the popcounting
operation for BNNs. (a) Sketch of the two serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE
operations implementing the result of the operation. The use of 4-SIMPLY reduces the number of computing steps from
26 (when using only the 2-SIMPLY Figure Sla) to 19.

Step | Operation Equivalent Operation
1-8 |SFALSE (C, My, My, M, M,, Ms, Mg, M;) C=M;=M;=M;=M;=Ms
=Mg=M;=0
9 2-SIMPLY (I, M,) M =1
10 | 2-SIMPLY (S, M,) M, = 5,
11 [2-SIMPLY (S, M3) M3 = §;
12 [2-SIMPLY (S,, M) Mg = §,
13 |5-SIMPLY (M,, M,, M, Mg, C) C=5¢5.521
14 [2-SIMPLY (M,, M) M, =S5
15 |2-SIMPLY (M3, M5) Ms =S,
| 16 |2-SIMPLY (Mg, M,) M; =S,
=SIHAHASIHA P
[[C 17-19 |SFALSE(S, S. S,) 0=S;=5,=
S, S, S, 20 [3-SIMPLY (I, M,, Sp) So = Sol
21 |3-SIMPLY (M,, My, So) So =1ISg + Sl
22 |3-SIMPLY (I, M, S,) Sy =511
23 |3-SIMPLY (Mg, M, S,) S1 =S11+8:S
24 |4-SIMPLY (M;, My, M,, S) S1 =S11+ 5150 + IS5y
25 |3-SIMPLY (Mg, M,, S,) S2 = 501
26 |3-SIMPLY (I, M., S,) Sy = S5oS1+15;
27 |3-SIMPLY (Mg, M,, S,) S3 = 5081 +1S; + 5,50
28 |5-SIMPLY (M,, M,, M; M, S,) Sz =S0S1 + 152+ 5,50 + 150515,
(a) (b)

Figure S3. 5-SIMPLY-based implementation of three concatenated 1-bit HAs that are used to implement the popcounting
operation for BNNSs. (a) Sketch of the three serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE
operations implementing the result of the operation. The use of 5-SIMPLY reduces the number of computing steps from
39 (when using only the 2-SIMPLY Figure Sla) to 28.

Step | Operation Equivalent Operation
1-10 SFALSE (C, My, M, M3, My, C=M;=M;=M3=My=Ms=Mz;=M;=Mg
M, Mg, M, Mg Ms) —Mg=0

11 |2-SIMPLY (I, M) My =1

12 |2-SIMPLY (Sp, M) M, = 5

13 |2-SIMPLY (S, M) M; = 5

14 |2-8IMPLY (S;, M) Mg = 5,

15 |2-SIMPLY (Ss, Mg) Mg = 55

16 |6-SIMPLY (Mg M,;, M,, M, M, O) € = 50515551

17 | 2-SIMPLY (M,, M) My =5,

18 | 2-SIMPLY (M3, M3) Ms =5,

19 |2-SIMPLY (Mg, M) M; =5,

20 |2-SIMPLY (Mg, My) Mg =53

I_> p] bp 2124 |sFALSE(S, 5, S, S3) So=5:1=5,=35;=0
HA HA HA HA C e
25 |3SIMPLY (I, M,, S) So = Sof
S S S S 26 [3SIMPLY (M, M,, Sp) Sp = 1Sg + Sol
0 1 2 3

27 [3SIMPLY(I,M,,S)) §; =511

28 |[3-SIMPLY (M, M, 5,) S =810+ 5,5

29 |4-SIMPLY (M;, M,, M,,5,) S1 =510+ 5,59+ I5)S1

30 |3-SIMPLY (Ms, M, S,) S2 = SoS1

31 |3-SIMPLY (I, Mg, S,) Sz = 5oS1+15;

32 [3-SIMPLY (M, M, Sy) Sz = SoS1+15; + 5,5,

33 |5-SIMPLY (M, M, M3 My, S,) 52 = So51 + ISz + 5250+ 1505152
34 |3-SIMPLY (I, Mj, S3) S3 =8I

35 [4-SIMPLY (M,;, M5, M; S3) 83 =S5 +15,5,

36 |4-SIMPLY (M;, M, Mg S3) S3 = Ssl +15:5; +15:5,

37 4-SIMPLY (M, M5, M, S3) S3 = S30 + 18535, + 15350 + 531 + 15355 + 1535,

(a) (b)

Figure S4. 6-SIMPLY-based implementation of four concatenated 1-bit HAs that are used to implement the popcounting
operation for BNNs. (a) Sketch of the four serially connected half-adders (HAs). (b) Sequence of IMPLY and FALSE
operations implementing the result of the operation. The use of 6-SIMPLY reduces the number of computing steps from
52 (when using only the 2-SIMPLY Figure Sla) to 37.

| FALSE(CMP) | cMP = 0
——————————|
FALSE(M,) M, =0

2 — SIMPLY(S;, My) | M, = §;
2 — SIMPLY(TH_ M,)| M, = S; TH,

i>0 yes]

FALSE(M,, M3, EX;) |M, =M, = EX; = 0
2 — SIMPLY(TH, M,)| M, = TH;

2— SIMPLY(M,.S;) |S; =S. TH,
2 — SIMPLY(S, M3) | M, =S, TH,
i=i-1 2 — SIMPLY(My,M3) | My = S; ®TH,;
2 — SIMPLY (M3, EX,)| EX; = S, ®TH, = x,
J=it
—
yes =
@ |2 — SIMPLY(EX; M| M, =x, ..x;5 TH,
no F

|2 — SIMPLY(M, ,CMP)| CMP = CMP + M, |

no

[ResultincmMP |

CMP = S THy + xS, THu g + =+ X o 228 THg
where x,,, = S,,®TH,,
n=m+1

#Steps = 0.5n% + 11.5n — 7

Figure S5. Flowchart building the sequence of computing steps required for implementing the activation function of a
BNN neuron, i.e., the comparison with a threshold (TH), when using the 2-SIMPLY operation (i.e., 2-SIMPLY-baseline in
Figure 11). The formula for the comparison operation is reported together with the scaling of the number of computing
steps (i.e., #steps) as a function of the number of compared input bits (n).

| FALSE(CMP,EX) | CMP=EX=0
|
v

FALSE(M,) M, = 0
2 SIMPLY(S, M,) | M, = §,
2— SIMPLY(TH, M,)| M, = 5, TH,
es
i<m y l
ho FALSE(M,, M5) M, =0

2 — SIMPLY(EX,M,) | My = Xy ...%;
2 — SIMPLY(M4,My) | M, =x,, ..x;5; TH;

|2 — SIMPLY(M, ,CMP)| CMP = CMP + M, |
!

yes

}

| Resultin CMP

FALSE(M{,M5,M;) |M,=M,=M,= 0
2 — SIMPLY(S;, M) |M, =S5,

2 — SIMPLY(TH, M,)| M, = TH;

2 — SIMPLY(TH,,S;) |S; =5, TH,

2 — SIMPLY(M,,M,) | M, = S;TH;

2 — SIMPLY (M4, M3) | My = S; TH;

2 — SIMPLY(S;,M;) |M, =5, ®TH, = x;
2 — SIMPLY(M3,EX) |EX = % +... +X;

i=i-1
n=m+1

ifn=1- #Steps =5

else — #Steps = 18n — 12

Figure S6. Flowchart building the sequence of computing steps optimized for large number of input bits, that is used to
implement the activation function of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 2-SIMPLY
operation (i.e., 2-SIMPLY Opt. Wide Words in Figure 11). The formula for the comparison operation is reported together
with the scaling of the number of computing steps (i.e., #steps) as a function of the number of compared input bits (n).

|FAL.S‘E(CMP) | cup =0
FALSE(Ml) M, =0

2 — SIMPLY(S, M,) | M, =

es
i>0 y
no FALSE(M,, EX;) M,=EX; =0
2 — SIMPLY(TH;, M,) M, =TH,;
3—SIMPLY(M,, S, EX;) |EX; = 5TH;
3 — SIMPLY(M,,TH, EX;)| EX; =S; ®TH,

[=i] |2- SIMPLY(TH M) M, =5, TH, |

=+
| 2 — SIMPLY(EX;,My)| M, = x,, ..x;5 TH,

| 2 — SIMPLY(M, ,CMP)| CMP = CMP + M, |

=

Resultin CMP

o

le—d

é

n=m+1
#Steps = 0.5n% +8.5n — 4

Figure S7. Flowchart building the sequence of computing steps that is used to implement the activation function of a BNN
neuron, i.e., the comparison with a threshold (TH), when using the 3-SIMPLY operation and optimizing only the steps
required for computing the intermediate XNOR operations (i.e., 3-SIMPLY Only XNOR in Figure 11). The formula for the
comparison operation is reported together with the scaling of the number of computing steps (i.e., #steps) as a function of
the number of compared input bits (n).

| FALSE(CMP) | Ex=0

FALSE(M,) M, =0
2 — SIMPLY(S, M) | M,

I
ke

yes

2 - SIMPLY(TH;, M) M, = 5;TH;
3 — SIMPLY(EX,M,,CMP) |CMP = CMP + EX - M;

[Resultin CMP

FALSE(M,, M) M,=M;=0

2 — SIMPLY (TH;, M») M, =TH,

3— SIMPLY(TH,, My, M3) |M, = S;TH;

3 — SIMPLY(M,,S;, M) M, =S, ®TH, = x;

yes

FALSE(EX) EX=0

3 — SIMPLY(My,M, ,CMP) | CMP = CMP + M,
2 —SIMPLY(TH;, M,) M, =5;TH;

3 — SIMPLY(EX,M{,CMP) |[CMP =CMP +EX - M,

2 — SIMPLY (M3, EX) EX = Xp+...+X;

n=m-+1

ifn=1- #Steps =5
if n=2- #Steps = 15
else — #Steps =10n—5

Figure S8. Flowchart building the optimized sequence of computing steps that is used to implement the activation function
of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 3-SIMPLY operation (i.e., 3-SIMPLY Opt. in
Figure 11). The formula for the comparison operation is reported together with the scaling of the number of computing
steps (i.e., #steps) as a function of the number of compared input bits (n).

[FaALSE(CMP) [cMp=0
|

i
FALSE(M,) M, =0

2—SIMPLY(S, M) | M; = 5

yes

2 — SIMPLY(TH;, M,) M, =S; TH;
3 — SIMPLY(EX,M, ,CMP) |CMP = CMP + EX - M,
i

[Resultin cMP

FALSE(M3, M) M,=M;=0

2 — SIMPLY(TH;, M) M, =TH;

3 — SIMPLY(TH,M{,M3) |M; =STH,;

3 — SIMPLY(M,,5;, M) M; =S, ®TH; = x;

yes

no FALSE(EX) EX=0
3 — SIMPLY(My, M, ,CMP) |CMP = CMP + M,
[4—SIMPLY(EX, My M, CMP)|[CMP = CMP + EX - T, - I, |

|2 — SIMPLY (M3, EX) EX = XTp+...+%;

n=m-+1

ifn=1- #Steps =5

if n=2- #Steps = 15
else — #Steps =9n —3

Figure S9. Flowchart building the optimized sequence of computing steps that is used to implement the activation function
of a BNN neuron, i.e., the comparison with a threshold (TH), when using the 4-SIMPLY operation (i.e., 4-SIMPLY Opt. in

Figure 11). The formula for the comparison operation is reported together with the scaling of the number of computing
steps (i.e., #steps) as a function of the number of compared input bits (n).

