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Abstract: The use of low-dimensional materials is a promising approach to improve the key charac-
teristics of memristors. The development process includes modeling, but the question of the most
common compact model applicability to the modeling of device characteristics with the inclusion
of low-dimensional materials remains open. In this paper, a comparative analysis of linear and
nonlinear drift as well as threshold models was conducted. For this purpose, the assumption of
the relationship between the results of the optimization of the volt–ampere characteristic loop and
the descriptive ability of the model was used. A global random search algorithm was used to solve
the optimization problem, and an error function with the inclusion of a regularizer was developed
to estimate the loop features. Based on the characteristic features derived through meta-analysis,
synthetic volt–ampere characteristic contours were built and the results of their approximation by
different models were compared. For every model, the quality of the threshold voltage estimation
was evaluated, the forms of the memristor potential functions and dynamic attractors associated
with experimental contours on graphene oxide were calculated.

Keywords: memristor; low-dimensional; compact modeling; volt–ampere characteristic; dynamic
attractors; optimization

1. Introduction

One of the most promising solutions in the field of building neuromorphic systems is
associated with a memristor [1], a nonlinear element of electric circuits, which resistance can
reversibly change depending on the electrical signal entering its input. The resistive switch-
ing effect was first implemented in 2008 [2] through the atomic structure rearrangement
in local regions of nanometer size in a metal–oxide–metal structure, which demonstrated
the potential complementary metal–oxide–semiconductor (CMOS) compatibility, unique
scalability and high switching speed of memristive devices [3]. To date, memristor research
has led to the construction of complex high-performance devices capable of simulating the
behavior of complex neural networks [4], building multi-level logic elements [5], and other
devices for high-speed real-time operations [6].

Depending on the material of the functional layer and the design features of the mem-
ristive element, their main drawbacks vary from structure to structure, but most of them
are determined by the random nature of the processes occurring inside the device [7–11].
One important direction in the development of memristors is the use of promising low-
dimensional materials to increase the stability of device characteristics and form its new
properties [12–14].

However, to the best of our knowledge, the current research in the field of memris-
tive elements based on low-dimension materials does not include the study of existing
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memristor models’ applicability to them. In particular, the study of compact models is
important because such models are used as a basis for circuit models in the development of
microelectronic devices, and related to investigations of the properties of new experimental
structures, for example, for investigations of dynamic attractors.

Due to the presence of a number of experimentally determined peculiarities of compact
models, it is necessary to perform extraction of model parameters for each structure in
order to use them. The main method used for parameter extraction is the solution of the
inverse problem based on experimental measurements of the device current-voltage (I-V)
curves. In general, due to the type of evolution equation, an analytical solution of the
inverse problem cannot be obtained, and parameter extraction is an optimization problem.

Thus, the quality of the solution of the optimization problem in the study of memristors
on low-dimensional materials determines the compact model applicability to a particular
device. Therefore, introducing a function corresponding to the optimization error, it is
possible to perform a comparison of the models with each other. A synthetic sample
containing a set of key features of different structures, described below, was used as a
simulation set to compensate for the contribution of random effects of each particular
structure.

The task of evaluation of the approximation quality on a set of experimental results is
important because, according to the conclusions of the “No Free Lunch” theorem [15,16],
the effectiveness of models and optimization algorithms developed for them is inextricably
linked to the task for which they are designed, and using them on other tasks may yield
reduced effectiveness.

Examples of benchmark studies conducted to solve the optimization problem in
different subject areas are presented in [17–19].

In this paper we performed a feature meta-analysis of memristor based on low-
dimensional materials. Based on the results obtained, we conducted a study compar-
ing linear drift models [2], nonlinear drift models [20–22] and threshold adaptive mod-
els [10,23,24]. In addition to the synthetic sample of the volt–ampere characteristics built
on the basis of the features of the devices highlighted in various studies, the results of
experiments in the study of the graphene oxide memristor characteristics, first presented
in [25], are also used to investigate the descriptive power of the models. Finally, an error
function is chosen and a general optimization method is proposed for the numerical ex-
periment. Obtained results include the quality of the approximation of the volt–ampere
characteristic loop, threshold voltages and the suitability of the model for the study of
dynamic attractors.

The paper is organized as follows. Section 2 contains review of memristors based
on low-dimensional materials and main criteria for model comparison, description of
analyzed models, optimization problem statement for volt–ampere characteristic approxi-
mation, sampling of synthetic curves for model analysis, difference appearance of threshold
voltages in various models, method of dynamic attractor calculation, and proposed opti-
mization methods. Section 3 is devoted to the results of model comparison related to the
approximation of synthetic and experimental volt–ampere characteristic (VAC) approxi-
mations, assessment of threshold voltages, and dynamic attractors. In Section 4 we make
some concluding remarks.

At the end of the introduction, the authors would like to emphasize the novelty of
the paper. To the best of our knowledge, we are the first to compare the applicability of
popular compact models to the low-dimensional memristor characteristics. The article
includes the requirements for a comparison based on set of test volt–ampere characteristics,
proposed a general method for solving the optimization problem, and modification of the
error functional to solve the optimization problem of a particular lobe of the volt–ampere
characteristic. In this work we obtained the solution of the optimization problem for ten
lobes of the volt–ampere characteristic of a unique shape, for the first time the study of
the optimization problem for a set of close loops actually corresponding to the change of
device parameters from switching to switching [11] was carried out, the threshold voltages
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were estimated, and for each model, for the first time for the new experimental result, an
estimate of potential functions was obtained.

2. Materials and Methods
2.1. Review of Low-Dimensional Structures

The works on the study of vertical and lateral memristive structures [12–14,26–29]
based on combinations of molybdenum disulphide (MoS2) with different materials demon-
strate a significant variation of key characteristics. For example, the Roff to Ron ratio varies
from 102 to 108 depending on the composition and thickness of the active layer, threshold
voltages range from 0.1 V to 5 V, endurance varies from 200 cycles to more than 104,
retention up to 104 s [13], and the presence of dynamic attractors [14].

Based on the results obtained from the literature analysis [12–14,27–29] and the con-
ducted experiments, the main criteria by which it is possible to compare models are:

1. Ability to simulate a wide range of Roff
Ron
∼ 102 − 108;

2. Ability to accurately simulate threshold voltages both for the transition fromRon to
Roff and vice versa;

3. Ability to simulate a dynamic change of volt–ampere characteristic curvature near
threshold voltages;

4. Ability to simulate the dynamic attractors;
5. Stability of key values of memristor simulation result on 2D structure relatively

insignificant changes of the contour. In particular, maintaining a stable Roff
Ron

6. The result of the simulation should make sense in the original treatment of the
parameters by the authors of the model, including the associated physically justified
constraints.

2.2. Models Analysed

To simulate a memristor using compact models, it is necessary to describe the relation-
ship between the parameters of the equations and the real parameters of the device. The
focus of compact modeling is the simulation of the I-V curves of the system, the general
approach involves solving the following system of equations:

Y = F(x, X, Y)X (1)

dx
dt

= f (x, X, Y)g(x, X, Y) (2)

where X is the control signal, Y is the response, F is the function linking the input signal
and the response (resistance or conductivity), g is the evolution function, f is the window
function, x is the state variable of the memristor. In many cases [30] these equations are
simplified to:

Y = F(x, t)X (3)

dx
dt

= f (x, X)g(x, X) (4)

The first and most popular memristor model was proposed in [2]. The linear drift
model is still relevant today and is used as the basis for other models. It is described by a
system of equations:

v = (Roff(1− x) + Ronx)i (5)

dx
dt

=
Roniµ

D2 (6)

The above equations are simple, and their influence on the appearance of the VAC can
be deduced trivially from general considerations.

However, in addition to the advantages of good interpretability, computational sim-
plicity, and stability, the model has a number of key drawbacks that make it difficult to use.
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The simplicity of the model is due to strong simplifying assumptions about the processes
in the active layer of the memristor, which affect the accuracy of the model. Also, the
model explicitly includes assumptions of switching physics that severely limit the range of
approximated VACs.

The emergence of nonlinear drift models was designed to compensate for these
drawbacks. An essential part of nonlinear drift models is based on [2]. Some of the
first models were proposed by Joglekar and Wolf, Prodromakis, Biolek, Zha and their
colleagues [31–34]. Each model was designed to correct for state evolution in the linear
drift model using a window function with internal parameters. At present, there is a
tendency to extend the original window functions and build generalized window functions
on their basis [20–22], and it is the generalized nonlinear drift models that we will analyze.

Shi’s [21] nonlinear drift model is a fractional-order memristor model with the intro-
duction of a new window function and a fractional time derivative of the state variable
into the evolution equation:

C
0 Dα

t x(t) =
Roniµ

D2 (7)

f (x) = 1− [a2(x− stp(−i))2 +
(

1− a2
)
]2 (8)

where the parameter a lies in (0, 1), p is a positive real number, C
0

α
t is the partial derivative

of Caputo, defined by the formula

C
0 Dα

t x(t) =
1

Γ(n− α)

∫ t

0

x(τ)

(t− τ)α−n+1 dτ. (9)

Here n is an integer, n− 1 < α ≤ n, and Γ(z) is the Euler gamma function. In the
analysis of this model, α is assumed to be equal to one for simplicity.

According to the authors, models with fractional derivatives better describe physical
phenomena related to nonlocality, time memory, power law and weak singularity. The
proposed window function avoids problems related to stick effect, and by varying the
parameter a one can achieve a change in the maximum value of the window function.

Zha’s generalized window function [20] is given by the formula:

f (x) = 1−
(

a(x− stp(−i))2b + (1− a)
)p

(10)

where the parameter b is a positive integer, p is a positive real number, and the parameter
a belongs to the interval (0, 1). This window function solves the problem of the stick
effect and scaling. The authors of the original paper propose a fine-tuning of this window
function to obtain adjustable resolution in memristors using a sequence of input pulses.

A nonlinear drift model with the Li’s window function [22] was developed to over-
come the stick effect, the inflexible parameter and the distorted pinched hysteresis loop
problems. The window function has the following form:

f (x) = j
{

1−
[
αx3 + a2[x− stp(−i)]2 +

(
1− a2

)
+ βx2 + γx

]p}
(11)


1
j +

(
1− a2)p ≥ 1,[

α + β + γ + 1− a2]p ≤ 1
1
j + [F(xmin)]

p ≥ 1
(12)

F(x) = αx3 +
(

β + a2
)

x2 +
(

γ− 2a2
)

x + 1 (13)

xmin =

√
(a2 + β)

2 + 3α(2a2 − γ)−
(
a2 + β

)
3α

(14)
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As the authors note, the general form of the window function allows one to adapt it to
spike neural network simulations.

Another group of nonlinear drift models includes the Yang’s [35] and Simmons’ barrier
models [36]. The latter model is considered to be the most accurate memristor model from
Hewlett Packard (HP) Labs at the moment. Models from this group were omitted in the
analysis, because in the Yang’s model the nonlinear evolution and boundary effects are
introduced with window functions, and the Simmons’ barrier model is inefficient in terms
of Simulation Program with Integrated Circuit Emphasis (SPICE) simulations [37].

There are also adaptive models with varying degrees of adaptivity. Such models
include Yakopcic’s model [24], defined by equations:

i =

{
a1xsinh(bv), v > 0
a2xsinh(bv), v < 0

(15)

dx
dt

= g(v) f (x, v) (16)

g(v) =


Ap

(
ev − eVp

)
, v > V

−An
(
e−v − eVn

)
, v < −Vn

0, −Vn ≤ v ≤ Vp

(17)

f (x, v > 0) =

{
e−αp(x−xp)wp

(
x, xp

)
, x ≥ xp

1, x < xp
(18)

f (x, v ≤ 0) =

{
e−αn(x+xn−1)wn(x, xn), x ≤ 1− xn

1, x > xn
(19)

wp
(
x, xp

)
=

xp − x
1− xp

+ 1 (20)

wn(x, xn) =
x

1− xn
(21)

Here x is the state variable, a1,2 and b are constants, Ap and An are constants that
determine the change rate of the state variable after overcoming threshold voltages, Vp
and Vn are the absolute values of the upper and lower threshold voltages, respectively.
Parameters xp and xn are restricted only to the range (0, 1).

The motivation for creating this model was the experimental confirmation of threshold
voltages as well as the inability of the models [35,38–40] to simulate a decrease in the lobe
width of the current–voltage characteristic as the average conductance per cycle increases.

The VTEAM model [23] was created by the authors as an adaptive threshold model of
a voltage controlled memristor. The current–voltage relationship in this model is defined
differently for each case. We use the following combination of equations for this model:

i =

{
a1xsinh(bv), v > 0
a2xsinh(bv), v < 0

(22)

dx
dt

=


koff

(
v

voff
− 1
)αoff

foff(x), 0 < voff < v

0 von < v < voff

kon

(
v

von
− 1
)αon

fon(x), v < von < 0

(23)
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where xon < x < xoff. The VTEAM threshold model is a modification of the earlier
TEAM [41] model used to simulate current-controlled memristors. The reason for creating
the VTEAM model was to avoid performance and reliability problems in crossbars of
threshold voltage memristors, since the voltage across all memristors is the same, and the
variable resistance does not affect the procedure of switching to the high impedance state.

We previously developed a mobility modification model (MMM). This model is based
on the Yakopcic’s model, which demonstrates competitive simulation accuracy and speed
of the experimental VAC approximation. The model was obtained by multiplying the
evolution equation by functions to account for inhomogeneities that modify the mobility
of charge carriers:

i(v) = iYakopcic(v) ·
n

∏
i=1

Ui(x) (24)

Ui(x) =

exp
(
− (x−xi)

2

2σ2
i

)
, x < xi

1, x ≥ xi

(25)

Here iYakopcic(v) is the current–voltage relation in the Equation (15), Ui(x) is the
accounting function of the i-th inhomogeneity, is the number of inhomogeneities, is the
effective position of the i-th inhomogeneity in the state space of a memristor, is the effective
width of a given inhomogeneity. The motivation for creating this model was the presence
of inhomogeneities in the active layer of a memristor that change the mobility of charge
carriers [42].

The above equations were solved using the 4th order predictor–corrector method. The
idea behind the predictor-corrector method is to use a suitable combination of an explicit
and an implicit technique to obtain a method with better convergence characteristics. The
explicit and implicit methods are third order Adams Methods [43], called Adams–Bashforth
and Adams–Moulton methods respectively.

2.3. Optimization Problem

To compare the models with each other, it is necessary to solve the inverse problem
for each model using the method of optimization of some functional. In general terms,
with relation to an arbitrary criterion the functional can be written as:

L(P) = Aim(P) + λG(S(P), S0)→ min
P

(26)

where P is the vector of model parameters, Aim(P) is the error for the criterion, λ is
regularization parameter, S0 is area of fitted i-v curve, S(P) is area of fitting i-v curve, G is
the regularizer represented in Figure 1 as a function of areas.

We propose to use a regularizer related to the physical property of the curve to obtain
a single solution in the parameter space of the model. This is due to the fact that the
simulation result of some key features can be directly determined only by a part of the
model parameters. Due to uniqueness of characteristics, regularizer based on the value of
approximated contour area allows simultaneously to take into account uncharacteristic
for usual contours features and to optimize values of other parameters, implementing
physically adequate constraint independent from model.
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Figure 1. Regularizer function dependence on area of current-voltage (I-V) curve.

2.4. Synthetic Sampling

Analyzing the results of both the experiment performed and those obtained in the
works of other authors, we can conclude that the lowest accuracy of the obtained results
refers to the region of switching between states and some of its vicinity. Moreover, the
different character of switching can be observed not only between devices on different
materials, but also within one series of switching. This phenomenon is connected with a
set of effects: with peculiarities of experiment, with the equipment signal of registration,
different nature of the functional domain effects, and so on. Thus, a significant part of the
features that are possible to distinguish in the switching domain can refer not just to a
structure of a certain type, but even to a specific device or even experiment. Consequently,
due to the ambiguous nature of the switching region features (e.g., set voltage [26]), when
comparing models, priority should be given to the pre-switching regions.

Thus, parts one and four of Figure 2 are considered indirectly, through the value of the
regularizer, as a function of the area. The choice of a particular area is conditioned, among
other things, by the estimation of the characteristic values of the readout voltage.

Therefore, the parts two and three of the I-V contour are used to construct the basic
error function. The points over which the approximation functional was constructed were
selected proportionally to the maximum voltage amplitude in the structure during the
switching process.

For 100 voltage points proportional to the maximum voltage, the square of the current
value difference (MSE) was calculated and averaged for the approximation result and the
testing sample using the formula:

MSE =
1
n

n

∑
k=1

(Ik − ik)
2 (27)

where Ik is the model current at point k, ik is the loop current at point k, n is the total
number of points for which the error is estimated.

Based on experimental contours, including [12,14,44–46], we designed asymmetric
elements of the VAC contours (Figure 3), significantly different for right and left parts.
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Figure 2. Example of volt–ampere characteristic (VAC) curve partition.

Figure 3. Model asymmetric elements of I-V curve.

2.5. Threshold Voltages

Threshold voltages in memristor models correspond to the values of the electric field
strengths, above which the memristor resistance dynamics change significantly. This effect
physically corresponds to changes within the conducting regions.

Depending on the type of model, thresholds can be included explicitly or implicitly. In
the VTEAM and Yakopcic’s threshold models, threshold voltages appear in the evolution
equations explicitly:
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dx
dt

=

{
0 negativeth.vol < v < positiveth.voltage
6= 0 othervise

(28)

In the exponential drift model [47], instead of threshold voltage, a characteristic value
of the electric field is accounted in the vacancy drift rate as follows:

v ≈ f ae(−
UA
kBT )sinh

(
qEa

2kBT

)
=

{
µE E� E0

µE0eE/E0 E ∼ E0
(29)

The threshold voltage is not specified in the linear drift model. In the nonlinear
drift models based on it, the threshold voltage is not explicitly specified either. However,
depending on the values of the window function parameters, one can observe a nonlinear
evolution simulating the presence of threshold characteristics. In this case the evolution of
the state variable occurs along the entire switching cycle.

The presence of the threshold voltages is confirmed experimentally, so it is necessary
to account them in modeling. Taking into account the threshold values generate additional
computational complexity, because due to the asymmetry of the I-V curve, we have to
additionally determine a group of related parameters separately for the left and right lobe
of the I-V curve.

2.6. Dynamic Attractors

Dynamic attractors are defined as dynamic equilibrium points in the state space of the
memristor at fixed model parameters [48].

To find the attractors, minima of the so-called potential function of the memristor
should be calculated as minima of the following function:

U(x) = −
x

f (x, V(t))dxdt (30)

This formula implies that the memristor is voltage controlled and f is the right part of
the evolution Equation (2).

In particular, we have previously explicitly demonstrated the possibility to obtain
attractors for the Yakopcic’s and MMM models [10]. Also, the original paper by Slipko and
Pershin [49] considers dynamic attractors for some nonlinear drift models with different
window functions.

2.7. Optimization Method

As the most popular method for solving the optimization problem is a combination
of multistart method for some parameters and gradient descent for the rest. Application
of this approach is justified for a small number of considered switching cycles for each
particular model.

The search method for an optimal solution for a set of models is determined by the
complexity of each individual model, which is associated with unique parameter sets and
equations complexity.

Thus, it is important to use a general global optimization algorithm. One of the
well-studied global optimization methods is random search [50,51].

By random search we will imply an iterative algorithm for finding the minimum of
the target function f (x), x ∈ X ⊂ Rn, with its’ step being defined as follows:

xk+1 = argmin
x∈{xk+ζk ,xk}

f (x) (31)

where {ζk}+∞
k=1 is a sequence of random vectors.
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A common choice of ζk is:
ζk = Akξk + bk (32)

where {ξk }+∞
k=1 are independent equally distributed random vectors, Ak and bk are param-

eters (matrix and vector respectively) depending only on the results of previous iterations,
e.g., in the most general case:

Ak = A
(
{xi}k−1

i=1 , { f (xi)}k−1
i=1 , {Ai}k−1

i=1 , {bi}k−1
i=1 , {ξi}k−1

i=1

)
(33)

bk = b
(
{xi}k−1

i=1 , { f (xi)}k−1
i=1 , {Ai}k−1

i=1 , {bi}k−1
i=1 , {ξi}k−1

i=1

)
(34)

However, a simpler dependence is usually chosen. In the following, we will assume
that:

Ak = A(xk−1, f (xk−1)) (35)

bk = b(xk−1, f (xk−1)) (36)

Usually, ξk is selected as normally distributed or uniformly distributed on a unit
sphere.

There are theoretical results guaranteeing the convergence of this algorithm to the
probability optimum under rather general assumptions, as well as estimates of the ex-
pectation of the number of steps to convergence [50,51]. For example, if we assume that
functions f , A and b are continuous, and ξk have a distribution with nonzero density on all
space Rn, then there is a probability convergence to a global minimum:

f (xk)
P→ min

x∈X
f (x) (37)

Earlier studies have been conducted [52] on estimation of expectation of number of
steps τ of algorithm before achievement of accuracy > 0, i.e., f (xτ)−min

x∈X
f (x) ≤ ε. Let q(x)

be the density of distribution of random variables ξk, Rε =

{
x ∈ X

∣∣∣∣ f (xτ)−min
x∈X

f (x) ≤ ε

}
.

Then

τ = O


sup
x∈X

q(x)(
in f

x,y∈X
q(x− y)

)2 ·
1

µ(Rε)

 (38)

where µ is Lebesgue measure in Rn.
We used the adaptive random search algorithm implemented in the Python program-

ming language. The algorithm step depends on the current argument value. The step has
normal distribution with zero expected value and standard deviation proportional to the
absolute value of the argument.

As an experimental curve for the calculation, we used the results of experiments on
the study of the characteristics of the graphene oxide memristor, first presented in [25]. The
I-V contour of the memristor is presented in Figure 4.
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Figure 4. Schematic representation of the investigated structure and its volt–ampere characteristic.

3. Results
3.1. Approximation

The feature approximation was conducted for the synthetic sample contours char-
acteristics (Figure 3). To separate out the features of the right and left branches of the
characteristics, which approximation quality we want to obtain, the calculation of the MSE
on the branches Ron and Roff of the corresponding lobe was used as the error function
on the criterion from Equation (26). From the results of the approximation (Figures 5–8,
Table 1) of the right and left parts of the VAC, it can be seen that the adaptive models show
significantly better results to the nonlinear models. It is important to note that, despite this,
for some features the nonlinear drift models show superior results, in particular Shi’s [21]
model, which justifies their application to some modeling problems.

Figure 5. Results of the optimization of the right lobe of the synthetic sampling circuits (Figure 3) by
the Shi’s model.
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Figure 6. Results of the optimization of the right lobe of the synthetic sampling circuits (Figure 3) by
the Zha’s model.

Figure 7. Results of the optimization of the right lobe of the synthetic sampling circuits (Figure 3) by
the VTEAM.
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Figure 8. Results of the optimization of the right lobe of the synthetic sampling circuits (Figure 3) by
the mobility modification model (MMM).

Table 1. Square of the current value difference (MSE) values of optimization task solutions.

Contour
Number

Strukov Right
Lobe, MSE

Strukov Left Lobe,
MSE

Zha Right
Lobe, MSE

Zha Left
Lobe, MSE

Shi Right Lobe,
MSE

Shi Left lobe,
MSE

1 1.05 × 10−66 5.33 × 10−7 2.12 × 10−8 5.03 × 10−7 1.3642 × 10−9 1.82 × 10−7

2 5.95 × 10−8 9.54 × 10−8 1.42 × 10−8 1.85 × 10−8 9.3538 × 10−9 1.14 × 10−8

3 8.60 × 10−6 5.23 × 10−7 9.37 × 10−8 1.90 × 10−7 6.3078 × 10−8 1.90 × 10−7

4 1.61 × 10−9 1.92 × 10−9 1.03 × 10−8 6.50 × 10−9 9.7192 × 10−8 1.36 × 10−9

5 2.82 × 10−6 3.04 × 10−6 1.40 × 10−7 1.70 × 10−6 1.45 × 10−7 1.79 × 10−6

Contour
Number

Mobility Modified
Right Lobe, MSE

Mobility Modified
Left Lobe, MSE

VTEAM Right
Lobe, MSE

VTEAM Left
Lobe, MSE

Yakopcic Right
Lobe, MSE

Yakopcic Left
Lobe, MSE

1 8.07 × 10−10 1.05 × 10−9 6.53 × 10−8 2.64 × 10−7 9.37 × 10−9 3.29 × 10−6

2 1.86 × 10−10 1.55 × 10−10 1.36 × 10−9 1.77 × 10−9 1.33 × 10−10 1.98 × 10−9

3 5.85 × 10−8 6.11 × 10−8 7.17 × 10−8 1.83 × 10−7 5.97 × 10−8 1.51 × 10−7

4 3.02 × 10−10 2.99 × 10−10 1.34 × 10−9 8.79 × 10−9 3.60 × 10−9 3.18 × 10−9

5 1.39 × 10−7 1.85 × 10−7 1.40 × 10−7 1.22 × 10−6 1.39 × 10−7 2.12 × 10−6

However, in order to evaluate the optimization quality, it is necessary to make an
assessment of the model stability to small changes of the test contours. To assess how
sensitive the solution of the optimization problem is under such conditions, the curvature
of the synthetic contours was artificially increased to 110% with a step of 2% and an
insignificant change in amplitude (Figure 9).

Adaptive models remain their approximation accuracy given in the Table 1 with the
increase of synthetic curves curvature. In turn, both the linear model and the nonlinear
models built on its basis showed (Table 2) either no response to the change of contour
curvature (which corresponds to the smooth growth of the error with curvature increase),
or revealed other, significantly different from the previous state, shapes of the resulting
contours (the change of metric occurred by leaps) with corresponding sharp change of
model parameters.
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Figure 9. Example of curvature change of first synthetic curve.

Table 2. Variation of the error function from a curvature change at each point in steps of 2%.

Contour
Number Change, % Strukov Right,

MSE Shi Right, MSE Zha Right, MSE

1

2 1.8031 × 10−6 3.5255 × 10−7 3.1759 × 10−7

4 1.9426 × 10−6 4.4437 × 10−7 3.9757 × 10−7

6 2.0762 × 10−6 5.3765 × 10−7 4.9378 × 10−7

8 2.2007 × 10−6 6.3164 × 10−7 5.8080 × 10−7

10 2.3222 × 10−6 7.2599 × 10−7 6.6951 × 10−7

2

2 5.6493 × 10−8 2.6314 × 10−8 1.5371 × 10−8

4 5.7224 × 10−8 4.7862 × 10−8 1.3464 × 10−8

6 6.6868 × 10−8 6.6300 × 10−8 1.1857 × 10−8

8 6.6492 × 10−8 5.1609 × 10−8 2.6316 × 10−8

10 9.3126 × 10−8 1.9201 × 10−8 1.0540 × 10−7

3

2 1.5912 × 10−7 2.9133 × 10−7 1.6499 × 10−7

4 1.7898 × 10−7 3.1641 × 10−7 1.4925 × 10−7

6 1.9726 × 10−7 3.3961 × 10−7 1.3694 × 10−7

8 2.1396 × 10−7 2.0479 × 10−7 1.6952 × 10−7

10 2.2919 × 10−7 2.2103 × 10−7 1.8353 × 10−7

4

2 2.8724 × 10−8 1.1760 × 10−7 2.0208 × 10−9

4 5.5844 × 10−9 8.8149 × 10−8 1.8848 × 10−9

6 9.8905 × 10−9 7.1674 × 10−9 1.1188 × 10−9

8 2.6937 × 10−9 1.1180 × 10−8 6.7628 × 10−9

10 2.4394 × 10−9 2.9521 × 10−8 1.5930 × 10−8
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Table 2. Cont.

Contour
Number Change, % Strukov Right,

MSE Shi Right, MSE Zha Right, MSE

5

2 2.9821 × 10−6 3.9269 × 10−8 4.4490 × 10−8

4 1.2834 × 10−6 1.5185 × 10−8 9.4892 × 10−10

6 2.2725 × 10−6 4.7225 × 10−9 8.9434 × 10−8

8 3.6496 × 10−6 7.8721 × 10−9 1.0245 × 10−8

10 4.3954 × 10−6 8.0405 × 10−9 1.8237 × 10−7

3.2. Threshold Voltages

The threshold voltage was estimated within the framework of approximation by
models with an explicit threshold voltage parameter. The results of the approximation
are presented in the Table 3. The best result was obtained by the mobility modification
model for the positive threshold voltage on the second loop: 0.87 V on the model loop
and ∼1 V on the experiment. In other cases, the estimates of the threshold voltages on the
loops are given, as a rule, inaccurately and differ from the experimental ones by an order
of magnitude: ∼0.1 V instead of 1 V.

Table 3. The approximation accuracy of the threshold voltages in percent, and the values relative to which they were calcu-
lated.

Contour
Number

Modified
Yakopcic
Left, %

Modified
Yakopcic
Right, %

Yakopcic
Left, %

Yakopcic
Right, %

VTEAM
Left, %

VTEAM
Right, %

Real
Voltage
Right, %

Real
Voltage
Left, V

1 99.00 85.24 90.00 100.00 99.00 92.08 1.20 −1.00

2 86.09 20.96 88.70 85.45 98.26 85.58 1.10 −1.15

3 100.00 95.56 100.00 99.61 90.63 81.79 1.40 −0.32

4 99.87 85.09 29.03 100.00 90.32 33.58 0.40 −0.31

5 84.21 65.38 99.04 88.33 78.95 90.88 3.00 −0.38

3.3. Attractors

To construct the potential function of the memristor for the experimentally obtained
curve, it was approximated by the basic models. The optimal values by which the potential
function is constructed are given in the corresponding tables (Tables 4–10).

Table 4. Optimal values of linear drift model parameters obtained by approximation of the experi-
mental loop.

Parameter Value

µ, m2/(V · s) 1.01 × 10−14

Roff, Ω 5.00 × 104

Ron, Ω 7.99 × 106

D, m 1.00 × 108

xstart 0.20
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Table 5. Optimal values of VTEAM model parameters with rectangular window function, obtained
by approximating the experimental contour.

Parameter Value Parameter Value

kon −1.00 a1, A 2.85 × 10−7

koff 9.98 a2, A 9.2 × 10−8

αon 3.02 xo f f 0.00

αoff 0.10 xon 0.50

voff, V 1.23 xstart 0.00

von, V −0.50

b, V−1 1.21

Table 6. Optimal values of the Yakopcic’s model obtained by approximation of the experimental loop.

Parameter Value Parameter Value

Vp, V 0.48 αp 7771

Vn, V 1.43 αn 1451

Ap 0.28 a1, A 2.2 × 10−7

An 100 a2, A 5.84 × 10−8

xp 0.99 b, V−1 1.44

xn 0.90 xstart 0.20

Table 7. Optimal values of the MMM model obtained by approximation of the experimental loop.

Parameter Value Parameter Value Parameter Value Parameter Value

Vp, V 0.49 αp 7771 σ0 1 x0 0.20

Vn, V 1.41 αn 1451 σ1 1 x1 0.40

Ap 0.28 a1, A 2.64 × 10−7 σ2 1 x2 0.60

An 100 a2, A 1.28 × 10−7 σ3 1 x3 0.80

xp 1.00 b, V−1 1.44 xstart 0.20

xn 0.87

Table 8. Optimal values of parameters of the nonlinear drift model with Zha window function,
obtained by approximation of the experimental loop.

Parameter Value Parameter Value

µ, m2/(V · s) 9.06 × 10−13 p 5.07

Roff , Ω 8.45× 106 a 0.25

Ron , Ω 4.86× 104 b 1

D , m 1.05 × 10−8

xstart 0.19
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Table 9. Optimal values of parameters of the nonlinear drift model with Li window function, obtained
by approximation of the experimental loop.

Parameter Value Parameter Value

µ, m2/(V · s) 3.07 × 10−13 a 0.30

Roff , Ω 1.73 × 107 α 1.67

Ron , Ω 3.02 × 104 β 0.48

D , m 3.34 × 10−8 γ 1.37

xstart 0.07 p 3.41 × 10−7

j 1.46

Table 10. Optimal values of parameters of the nonlinear drift model with Shi window function,
obtained by approximation of the experimental loop.

Parameter Value Parameter Value

µ, m2/(V · s) 1.39 × 10−13 a 0.01

Roff , Ω 1.54 × 107 p 3.17

Ron , Ω 5.79 × 104

D , m 1.69 × 10−8

xstart 0.14

For the most accurate approximating models a similar result was obtained: the at-
tractor is located at the right end of the region of acceptable values of the state variable
(Figure 10). Less accurate models show divergent results (Figure 11): both different po-
sitions of attractors and their complete absence. The Yakopcic’s model is omitted as its
potential function has the same form as that of MMM.

Figure 10. Potential functions of models with optimal parameter values: (a) VTEAM; (b) MMM.
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Figure 11. Potential memristor functions of drift models with window functions: (a) Shi’s; (b) rectangular; (c) Zha’s; (d) Li’s.

4. Discussion

In this paper we performed a feature meta-analysis of memristor based on low-
dimensional materials. Based on the results obtained, we conducted a study compar-
ing linear drift models [2], nonlinear drift models [20–22] and threshold adaptive mod-
els [10,23,24]. A global random search algorithm was used to solve the optimization prob-
lem, and an error function with the inclusion of a regularizer was developed to estimate the
loop features. Based on the characteristic features derived through meta-analysis, synthetic
volt–ampere characteristic contours were built and the results of their approximation by
different models were compared. For every model, the quality of the threshold voltage
estimation was evaluated, the forms of the memristor potential functions and dynamic
attractors associated with experimental contours on graphene oxide were calculated.

As a result of the study, we identified several main requirements to the model. The
basic ones are the possibility of simulation of a wide range of Ron/Roff, simulation of curve
conductivity dynamics, stability of simulation result with respect to small perturbations of
a curve. To evaluate these parameters, we performed optimization by the mean-square
error of the simulation result from the approximated contour with a regularizer. To evaluate
the approximation quality of different features, the optimization was performed separately
for the left and right parts of the volt–ampere characteristic. The use of the regularizer was
required to bound the parameters weakly related to the features of a particular area of the
VAC, as well as to keep the shape of the VAC contour physically reasonable. As a result, it
was demonstrated that modeling of memristor features should be based on the application
of adaptive models that can, in addition to high approximation accuracy, take into account
the small change in device characteristics from switching to switching.
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The experimental contour of the volt–ampere characteristic was used to evaluate the
accuracy of threshold voltage calculations as a result of solving the approximation problem
for threshold models and to evaluate the existence of dynamic attractors as a result of the
approximation by all models considered. For considered adaptive models a similar result
was obtained: the attractor is located at the right end of the region of admissible values of
the state variable. On the contrary, linear and nonlinear models show divergent results:
both different positions of attractors and their complete absence. It is shown that for the
tests given in the article the best results with respect to the chosen comparison parameters
were shown by the models presented in the articles [10,23].
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