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Abstract: This study proposes AlGaN/GaN/silicon high-electron mobility transistors (HEMTs)
grown by a metallorganic chemical vapor deposition (MOCVD) system. The large-signal linearity
and high-frequency noise of HEMTs without and with different passivation layers are compared.
The experimental data show that the addition of a TiO2 passivation layer to undoped AlGaN/GaN
HEMT’s increases the value of the third-order intercept point (OIP3) by up to 70% at 2.4 GHz. Further-
more, the minimum noise figure (NFmin) of the HEMT with TiO2 passivation is significantly reduced.

Keywords: metallorganic chemical vapor deposition (MOCVD); passivation; HfO2; TiO2; GaN;
high-electron mobility transistor (HEMT)

1. Introduction

Heterostructure field-effect transistor (HFET) technology has become essential in
microwave communication systems [1,2]. III-nitride high-electron-mobility transistors
(HEMTs) are of significant importance in the development of next-generation power appli-
cations [3–5]. The AlGaN/GaN heterostructure has the advantage of large electron velocity
and high breakdown electric field. Furthermore, the polar properties of the AlGaN/GaN
heterojunction allows the formation of two-dimensional electron gas (2DEG). Even without
intentional doping, the 2DEG concentrations of the AlGaN/GaN HEMTs is as high as the
order of 1013 cm−2.

Many passivation materials have been investigated to effectively passivate the surface
of AlGaAs/InGaAs [6] and InAlAs/InGaAs/InP [7] HEMTs by using either a wet or dry
process. The performance of AlGaN/GaN HEMT technology is limited by charge trapping
effects. Consequently, various candidates for passivation has been attempted to neutralize
the net surface charge arising from the combination of surface states and the polarized
barrier [8–18]. Most works focus on the performance of the passivated AlGaN/GaN HEMTs
at room temperature. The room-temperature characteristics of AlGaN/GaN HEMT with
HfO2 and TiO2 passivation were reported [11]. However, AlGaN/GaN heterostructure is
a promising material system for high-temperature electronics. HEMTs that can operate
at high temperatures are helpful in broad extent of applications [13,19]. Consequently,
the high-temperature characteristics of the passivated AlGaN/GaN HEMTs are measured
herein. Furthermore, the linearity in power amplifier is important when we move towards
the fifth generation (5 G) wireless systems. Increasing the linearity of HEMTs can supply
many advantages at the system level. Consequently, the large-signal linearity of the
passivated AlGaN/GaN HEMTs are also studied. To the best of the authors’ knowledge,
there has not been a comparison of the large-signal linearity and noise figure for the
AlGaN/GaN HEMTs with HfO2 and TiO2 passivation. Experimental results demonstrate
the high-performance passivated HEMT with stable operation at elevated temperatures up
to 420 K. The measured large-signal linearity and high-frequency noise of the passivated
HEMT are better than for the identical geometry unpassivated HEMT.
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2. Device Structure and Experiments

The studied devices were built on silicon substrate with epilayers that were grown by
metal-organic chemical vapor deposition (MOCVD). The layer structure of the HEMT is as
follows. First, a buffer was grown, followed by an undoped GaN. Then, 30 nm undoped
Al0.26Ga0.74N layer was formed and capped by a 2 nm GaN layer.

Mesa etching was employed to achieve device isolation. Ti/Al/Au ohmic contacts
for the source and drain electrodes were deposited. The gate metallization involved Ni,
capped with Au. The HEMT without passivation is the reference HEMT. In our study,
the HEMT with HfO2 passivation is referred to as HfO2-HEMT. The HEMTs with TiO2
passivation is referred to as TiO2-HEMT. The TiO2 film was sputtered in a sputtering
system using a three-inch high-purity target of titanium dioxide in a mixture of argon
and oxygen gas. HfO2 film was sputtered using hafnium dioxide. Figure 1 displays the
layer structure of the studied HEMTs with passivation. The cross section of the passivated
HEMTs was investigated by a transmission electron microscopy (TEM) (JEOL Co., Tokto,
Japan). The probe station was fitted with a heated device stage. The DC characteristics of
the HEMTs were measured with a Keithley 4200 semiconductor characterization system
(Tektronix, Beaverton, OR, USA). The field-effect transistor had a gate length of 1 µm.
The gate-to-drain spacing was 2 µm. The gate-to-source spacing was also 2 µm.
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Figure 1. Cross section of the studied passivated AlGaN/GaN high-electron mobility transis-
tor (HEMT).

3. Results and Discussion

TEM samples are examined in a JEM-2100F (JEOL Co., Japan) operating at an acceler-
ating voltage of 200 kV. Figure 2 illustrates the TEM cross section of the HEMTs with HfO2
and TiO2. The thicknesses of HfO2 and TiO2 films are approximately 22.65 and 19.79 nm,
respectively.

The unpassivated and passivated HEMTs are subjected to high-temperature testing.
Figure 3 presents the drain currents (IDS) at different temperatures versus drain-to-source
voltage (VDS). The DC measurements are taken as functions of temperatures over the range
300 to 420 K. Figure 4 shows the extrinsic transconductance (gm) and drain current versus
gate-to-source voltage of the studied HEMTs at various temperatures. The gate voltage
swing (GVS) is defined by the voltage range within which the gm value deviates from its
maximum value by 20%. The GVS value is increased from 1.7 V to 3.2 V at 300 K after
TiO2 passivation. IDS versus VDS at pinch-off conditions and the threshold drain current
characteristics at 300 K for the three HEMTs herein were studied [11]. Figure 5a plots
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drain current at VGS = 0 V (IDSS) versus temperature of the studied HEMTs. Experimental
results reveal that IDSS values of the studied HEMTs are increased when the HEMTs are
passivated. The increased drain current density is attributable to the increased sheet
electron concentration after passivation [8,11]. The studied three HEMTs depicts good
pinch-off characteristics at various temperatures. Increasing the temperature decreases IDSS.
The falloff in drain current density at elevated temperatures result from the degradation
of the electron mobility. Furthermore, the threshold voltage (Vth) is extracted by linear
extrapolation of the root of drain current against Vg curves. The values of Vth of the
TiO2-HEMT are −5.5, −5.33, −5.2, −4.96, and −4.89 V at 300, 330, 360, 390, and 420 K,
respectively. The magnitude of the Vth value is reduced at high temperature because of the
decreased drain current density.
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Figure 2. Cross-sectional TEM images of (a) HfO2-HEMT and (b) TiO2-HEMT.
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Figure 4. Extrinsic transconductance and drain current characteristics of (a) HEMT, (b) HfO2-HEMT, and (c) TiO2-HEMT 
at various temperatures. 

Figure 3. Family of drain-source output curves of (a) HEMT, (b) HfO2-HEMT, and (c) TiO2-HEMT at various temperatures.
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at various temperatures. 
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Figure 6. Fundamental output power and third-order intermodulation component of (a) HEMT, (b) HfO2-HEMT, and (c) 
TiO2-HEMT. 
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Figure 5. (a) IDSS and (b) gm,max of the studied HEMTs at various temperatures.

Figure 5b plots the maximum extrinsic transconductance (gm,max) versus temperature
of the investigated HEMTs. When the temperature is increased, the maximum extrinsic
transconductance varies in the same tendency as IDSS. At 420 K, the gm,max values for HEMT,
HfO2-HEMT, and TiO2-HEMT are 56.3, 69, and 105 mS/mm, respectively. Experimental
results demonstrate the TiO2-HEMT perform well even at high temperatures.

Two-tone intermodulation distortion is measured to demonstrate the large-signal
linearity performance. Figure 6 shows the fundamental and third-order output powers
versus input power of the studied devices. The red dashed lines are extrapolated to predict
the intersection at the third-order intercept point (OIP3). The values of OIP3 are 10.5, 13.7,
and 17.9 dBm, respectively. HfO2 passivation increases the OIP3 value by around 30% and
TiO2 passivation increases it by 70%. The large-signal linearity of the HEMT is significantly
improved when the HEMT is passivated by TiO2. The improved device linearity of the
TiO2-HEMT is attributed to increased gm,max [18] and GVS values [20].
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Figure 6. Fundamental output power and third-order intermodulation component of (a) HEMT, (b) HfO2-HEMT, and (c) 
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Noise figure is measured over the 2–6 GHz frequency range using an ATN NP5B 
noise parameter test set in conjunction with the HP-8510C network analyzer. Figure 7 
shows the minimum noise figure (NFmin) and associated power gain (Ga) versus frequency 

Figure 6. Fundamental output power and third-order intermodulation component of (a) HEMT, (b) HfO2-HEMT,
and (c) TiO2-HEMT.

Noise figure is measured over the 2–6 GHz frequency range using an ATN NP5B noise
parameter test set in conjunction with the HP-8510C network analyzer. Figure 7 shows the
minimum noise figure (NFmin) and associated power gain (Ga) versus frequency for the
studied HEMTs. Figure 7 reveals that the relationship between the noise and frequency is
near linear. Quantitatively, NFmin is given by [21–23]

NFmin = 1 + 2π f kCgs

√
Rs + Rg

gm
(1)

where f is frequency; k is the Fukui constant; Cgs is the input gate-source capacitance; Rs
is the source series resistance, and Rg is the gate series resistance. The NFmin values of
HEMT, HfO2-HEMT, and TiO2-HEMT are 1.94 dB, 1.79 dB, and 1.68 dB. The TiO2-HEMT
has the smallest NFmin of the three devices because it has the highest gm. Furthermore,
the associate gain of the TiO2-HEMT is also improved.
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Figure 7. Minimum noise figure and associated gain of the studied (a) HEMT, (b) HfO2-HEMT, 
and TiO2-HEMT. 

4. Conclusions 
AlGaN/GaN/silicon grown by MOCVD have been successfully fabricated and meas-

ured. The high-temperature characteristics of the proposed devices are investigated. TiO2-
HEMT exhibits the best large-signal linearity of the studied devices. Furthermore, the 
NFmin value of TiO2-HEMT is smallest of the studied devices herein. 
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4. Conclusions

AlGaN/GaN/silicon grown by MOCVD have been successfully fabricated and mea-
sured. The high-temperature characteristics of the proposed devices are investigated.
TiO2-HEMT exhibits the best large-signal linearity of the studied devices. Furthermore,
the NFmin value of TiO2-HEMT is smallest of the studied devices herein.
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