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Abstract: Spherical joints have attracted increasing interest in the engineering applications of machine
tools, industrial robots, medical equipment, and so on. As one of the promising methods of detecting
the micro-clearance in spherical joints, the measurement accuracy of a spherical capacitive sensor
could be affected by imperfectness during the manufacturing and installation of the sensor. This work
presents error analysis of a spherical capacitive sensor with a differential structure and explores
the dependence of the differential capacitance on manufacturing and the installation imperfectness.
Five error sources are examined: the shape of the ball and the capacitive plate, the axial and radial offset
of the plate, and the inclined installation of the plate. The mathematical models for calculating the
capacitance errors of the spherical capacitive sensor are deduced and validated through a simulation
using Ansoft Maxwell. The results show that the measurement accuracy of the spherical capacitive
sensor is significantly affected by the shape of plates and ball, the axial offset, and the inclined angle
of the plate. In contrast, the effect of the radial offset of the plate is quite small.
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1. Introduction

Due to their flexible and compact structure, spherical joints have attracted great interest in many
engineering applications (e.g., industrial robots, machine tools and medical equipment [1,2]). However,
the clearance between the ball and socket could have a detrimental effect on the accurate motion of
multibody mechanical systems [3–5]. To achieve a high-precision kinematic performance of multibody
systems, the micro-clearance in the spherical joints is required to be detected and used for compensating
the motion error of the mechanical systems [6–11].

Many methods have been proposed to detect displacement or clearance over the last few decades
(e.g., capacitive sensors [12], magnetic sensors [13–15], microwave sensors [16], optical sensors [17],
and inductive sensors [18–20]). Compared with other methods, capacitive sensors have the advantages
of high resolution and good dynamic performance [21–25]. Ahn [26] developed a cylindrical capacitive
sensor (CCS) to measure both the axial and radial motion of a rotating spindle. The sensor includes eight
arc segments with an arbitrary angular size. Anandan and George [27] proposed a wide-range capacitive
sensor to detect both linear and angular displacements of a rotational shaft. The displacements are
determined by measuring the capacitance of four cylindrical electrodes placed around the shaft.
For spherical joints, Hu et al. [28] deployed a capacitive sensor to detect the clearance between the ball
and the socket. The capacitive sensor consists of six point capacitors. A point capacitance model is
proposed for calculating the capacitance values of the sensor. However, the theoretical capacitances
have a relatively large deviation from the simulated counterparts. Wang et al. [29] proposed a spherical
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capacitive sensor to detect the clearance in spherical joints. The sensor includes eight spherical electrode
plates and a ball. However, the fringe effect at the corners of the plates could produce capacitance
errors and reduce the measurement accuracy. To reduce the fringe effect of the capacitive sensor,
an improved spherical capacitive sensor was then developed [30]. The sensor has six spherical plates
without the sharp corners and thus could greatly reduce the fringe effect. However, the measurement
accuracy of the spherical capacitive sensor could be affected by the manufacturing and installation
imperfectness of the sensor. Thus, further studies are required to analyze the measurement error
produced by the manufacturing and installation.

This work presents a detail error analysis of a spherical capacitive sensor, mainly focusing on
the capacitance errors caused by the shape of the ball and the capacitive plate, the axial and radial
offset of the plate, and the inclined installation of the plate. The measurement principle of the spherical
capacitive sensor is briefly introduced in the Section 2. Section 3 deduces mathematical models for
the relation between capacitance errors and the shape of the ball and plates. Section 4 describes
the mathematical models used to calculate the capacitance error caused by the plate installation.
The simulation detail of the spherical capacitive sensor is given in Section 5. The theoretical and
simulated capacitances of the sensor are presented and discussed in Section 6.

2. Measurement Principle of the Spherical Capacitive Sensor

In this section, we briefly review the improved spherical capacitive sensor for clearance measurement
in spherical joints. More details can be found in [30]. The sensor is composed of six spherical capacitive
plates (CPS1 ~ CPS6) and a ball (CPe), as shown in Figure 1. Six spherical capacitive plates are
concentrically arranged in the spherical joint, and the spherical center of the plates is chosen as the
origin O of the coordinate system OXYZ. The ball is used as the common electrode. Each spherical
capacitive plate (CPS1 ~ CPS6) and the ball constitute a spherical capacitive sensor (C1 ~ C6). As such,
three pairs of capacitive sensors are formed (i.e., C1 and C3 in the X-axis, C2 and C4 in the Y-axis,
and C5 and C6 in the Z-axis). The differential capacitance of each pair (∆Cx, ∆Cy, ∆Cz) is used to detect
the eccentric displacement of the ball along the corresponding directions (δx, δy, δz)—that is, ∆Cx of
C1 and C3 for δx, ∆Cy of C/2 and C4 for δy, ∆Cz of C5 and C6 for δz. The structural parameters of the
spherical capacitive sensor are presented in Table 1.
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Figure 1. Geometry of the spherical capacitive sensor.

Table 1. Parameters of spherical capacitive sensor.

Parameters of Spherical Capacitive Sensor Value

Central angle of CPS1 ~ CPS4
Central angle of CPS5 and CPS6

0◦~30◦

35◦~45◦

Inner radius of spherical capacitive plate (R) 25 mm
Radius of the ball (r) 24.8 mm
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In this work, two assumptions are made to simplify the mathematical model. First, the capacitor
for the area element of the spherical capacitive sensor can be regarded as a parallel plate capacitor.
Second, the fringe effect of the spherical capacitive sensor can be ignored. Therefore, the capacitance
value of the spherical capacitive sensor can be calculated by

Ci = ζ
x

Ai

1
h

dA(i = 1, 2 · · · 6) (1)

where ζ represents the dielectric constant, h is the gap distance between the ball and the spherical
capacitive plate, and A is the area of the spherical capacitive plate.

Substitute the structural parameters of the spherical capacitive sensors into Equation (1);
the capacitance of six spherical capacitive sensors can be obtained by the following equations: Ci =

ζR2

d0
Fi

(
λx,λy,λz

)
, i = 1, 2 · · · 6

λx = δx
d0

,λy =
δy
d0

,λz =
δz
d0

(2)

where ζ is the dielectric constant of the medium between the ball and the spherical capacitive plates; d0

is the initial clearance between the spherical capacitive plate and the ball when the ball is at the origin
O in the socket; δx, δy, and δz represent the eccentric displacement of the ball along the X, Y, and Z axes,
respectively; and Fi(λx, λy, λz) is the function related to the non-dimensional parameters (λx, λy, λz).

By ignoring the higher-order items above the fifth order, the functional relationship between
the differential capacitance value (∆Cx, ∆Cy, ∆Cz) and the eccentric displacement (δx, δy, δz) can be
obtained as follows: 

∆Cx = C1 −C3 = ζR2

d0
∆Fx

∆Cy = C2 −C4 = ζR2

d0
∆Fy

∆Cz = C5 −C6 = ζR2

d0
∆Fz

(3)

where
∆Fx= 1.5708λx + 1.3745λx

3 + 0.2945λx
(
λy

2 + λz
2
)
+ . . .

1.2108λx
5 + 0.06136λx

(
λy

2 + λz
2
)2
+ 0.8181λx

3
(
λy

2 + λz
2
) (4)

∆Fy= 1.5708λy + 1.3745λy
3 + 0.2945λy

(
λx

2 + λz
2
)
+ . . .

1.2108λy
5 + 0.06136λy

(
λx

2 + λz
2
)2
+ 0.8181λy

3
(
λx

2 + λz
2
) (5)

∆Fz= 1.0744λz + 0.4454λz
3 + 0.5426λz

(
λx

2 + λy
2
)
+ . . .

0.1872λz
5 + 0.6956λz

(
λx

2 + λy
2
)2
+ 1.2908λz

3
(
λx

2 + λy
2
) (6)

After ignoring the non-linear errors introduced by the higher-order terms in ∆Cx, ∆Cy, and ∆Cz,
the designed spherical capacitive sensor can linearly measure the eccentric displacement of the ball in
the spherical joint, and the corresponding equations can be expressed by

δx = d0
2

1.5708ζR2 ∆Cx

δy = d0
2

1.5708ζR2 ∆Cy

δz =
d0

2

1.0744ζR2 ∆Cz

(7)

3. Measurement Error Caused by the Manufacture of the Capacitive Sensor

In the actual manufacturing process of spherical surfaces, spherical shape deviations occur due
to the installation error and wear of the cutter. Once the shape deviation of a spherical electrode
exists, there is a clearance deviation between the spherical capacitive plates and the ball, producing
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measurement errors. In this section, theoretical models are deduced to analyze the dependence of
the measurement accuracy on the shape of the ball and the plates. Considering that the ellipsoid is
the most common spherical shape, this work mainly focuses on measurement errors caused by the
ellipsoidal shapes of the ball and the plates.

3.1. Effect of the Ball Shape

If the ball shape becomes an ellipsoid, the clearance between the spherical capacitive plate and
the ball would vary with the motion of the ball in the socket, as shown in Figure 2. As a result,
the functional relationship between the capacitance and the measured displacement in the spherical
capacitive sensor is related to the ball attitude. Therefore, the shape deviation of the ball could produce
attitude error, affecting the measurement accuracy of the spherical capacitive sensor.

To illustrate the effect of the ball shape on the clearance measurement, several parameters are
defined in Figure 2a. The spherical center of the ball is fixed at the point O’. r is the radius of the ideal
ball and R is the radius of the inner spherical surface of the spherical capacitive plate. P is a point
on the surface of the ideal ball, and P’ is the intersection point of the extension line of O’P and the
ellipsoidal ball. θ is the angle between the OP and the X axis, ϕ is the angle between OP’s projection
line and the Y axis in the YOZ plane. Q is the intersection of the extension line of O’P’ and the spherical
surface inside the spherical capacitive plate. P’Q is the clearance between the spherical capacitive plate
and the ellipsoidal ball. PP’ represents the shape deviation from the ideal ball at the point P’.

As shown in Figure 2b, the clearance between the ball and the spherical capacitive plate varies
with the rotation of the ellipsoidal ball. a and b are half the length of the principal axes, corresponding
to the semi-minor axis and the semi-major axis of the ellipsoid, respectively. The attitude angle β is
the angle between the semi-major axis of the ellipsoid and the X axis. For simplification, we assume
that the shortest radius of the ellipsoid equals to the radius of the ideal ball (i.e., a = r). Initially,
the semi-major axis of the ellipsoid is along the X axis (i.e., β = 0◦), and has the smallest clearance
between the ball and the spherical capacitive plate. As the ellipsoid rotates to β = 90◦, the clearance
between the ellipsoid and spherical capacitive plates becomes largest. Therefore, the maximum attitude
error can be obtained by analyzing the measurement errors at the ball attitudes of β = 0◦ and 90◦.Micromachines 2020, 9, x 5 of 23 
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Figure 2. Sketch of the clearance between the ellipsoidal ball and the spherical plate. (a) 3D sketch,
(b) 2D projection in the XOY plane as the ball rotates at various attitudes.

The maximum radius deviation from the ideal ball is defined as follows:

∆r = b− a = b− r (8)



Micromachines 2020, 11, 837 5 of 22

The distance PP’ of the ellipsoid at different attitude angles from the ideal ball can be obtained by L00 = ∆r cos2 θ

L90 = ∆r sin2 θ
(9)

where L00 is the distance PP’ of the ellipsoid at the attitude angle of β = 0◦ and L90 is the distance PP’ of
the ellipsoid at β = 90◦.

Next, the clearance P’Q between the spherical capacitive plate and the ellipsoidal ball with
different attitudes is given by d00 = R− δy sinθ cosϕ− δz sinθ sinϕ− δx cosθ− r− ∆r cos2 θ

d90 = R− δy sinθ cosϕ− δz sinθ sinϕ− δx cosθ− r− ∆r sin2 θ
(10)

where d00 is the clearance P’Q of the ellipsoid at the attitude angle of β = 0◦ and d90 is the clearance P’Q
of the ellipsoid at β = 90◦.

After introducing the dimensionless coefficient K00 = d00/(R − r) = d00/d0 and K90 = d90/(R − r) =

d90/d0, Equation (10) can be expressed as follows: K00 = 1− λy sinθ cosϕ− λz sinθ sinϕ− λx cosθ− κ∆r cos2 θ

K90 = 1− λy sinθ cosϕ− λz sinθ sinϕ− λx cosθ− κ∆r sin2 θ
(11)

where κ∆r = ∆r/(R − r) = ∆r/d0, λx = δx/d0, and λy = δy/d0,λz = δz/d0.
Let λ0 = λysinθcosϕ + λzsinθsinϕ + λxcosθ + κ∆rcos2θ. Since λ0 < 1, 1/K00 can be expressed by

1
K00

=
1

1− λ0
= 1 + λ0 + λ0

2 + λ0
3 + · · · (12)

Substitute Equation (12) into Equation (1) and we can obtain the capacitance values of the spherical
capacitive sensors C1 and C3 when the ellipsoid is at the attitude angle of β = 0◦,

C1
0 =

ζ
d0

∫ θ1
0

∫ 2π
0 E(θ,ϕ)R2 sinθdθdϕ (13)

C3
0 =

ζ
d0

∫ π
π−θ1

∫ 2π
0 E(θ,ϕ)R2 sinθdθdϕ (14)

where E(θ,ϕ) =
∞∑

n=0
(λx sinθ cosϕ+ λy sinθ sinϕ+ λz cosθ+ κ∆r cos2 θ)n, and θ1 = 1/6π.

By neglecting higher-order terms beyond the fifth order, we can get the differential capacitance
∆Cx

0 for detecting the eccentric displacement along the X-axis when the ellipsoid is at the attitude
angle of β = 0◦:

∆Cx
0 =

ζR2

d0
∆Gx

0
(
λx,λy,λz

)
(15)

where
∆Gx

0 = (1.5708 + 4.7922κ4
∆r + 4.2952κ3

∆r + 3.6325κ2
∆r + 2.7489κ∆r)λx

(3.6325κ2
∆r + 4.8433κ∆r + 1.3745)λ3

x + . . .

(2.0555κ2
∆r + 0.9817κ∆r + 0.2945)λx(λ2

y + λ2
z) + . . .

1.2108λ5
x + 0.0614λx(λ2

y + λ2
z)

2 + 0.8181λ3
x(λ

2
y + λ2

z)

(16)
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Likewise, when the ellipsoid is at the attitude angle of β= 90◦, the relation of differential capacitance
and eccentric displacements can be obtained by

∆Cx
90 =

ζR2

d0
∆Gx

90
(
λx,λy,λz

)
(17)

where
∆Gx

90 = (1.5708 + 0.0614κ4
∆r + 0.0245κ3

∆r + 0.0982κ2
∆r + 0.3193κ∆r)λx

(0.2659κ2
∆r + 0.6545κ∆r + 1.3745)λ3

x + . . .

(0.092κ2
∆r + 0.1964κ∆r + 0.2945)λx(λ2

y + λ2
z) + . . .

1.2108λ5
x + 0.0614λx(λ2

y + λ2
z)

2 + 0.8181λ3
x(λ

2
y + λ2

z)

(18)

Therefore, the maximum attitude errors (HM) caused by shape deviation of the ball can be
calculated by 

HM = Max(∆Gx
0
−∆Gx

90

∆Gx90 )

0 ≤
√
λ2

x + λ2
y + λ2

z = ρ
(19)

3.2. Effect of the Plate Shape

If the inner surface of a spherical capacitive plate becomes ellipsoid, the clearance between the
ball and plates are apparently different from that between the ideal spherical surfaces, producing the
measurement error. For simplification, it is assumed that the inner surface shapes of CPS1 and CPS3

are the different parts of an ellipsoid, which has a semi-major radius of a and a semi-minor radius of b.
As a result, the clearance between CPS1 and the ball is different from that between CPs3 and the ball.
This difference becomes largest when the shape of CPS1 is the ellipsoid about the major axis and the
shape of CPS3 is the ellipsoid about the minor axis, as shown in Figure 3.Micromachines 2020, 9, x 7 of 23 
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Figure 3. Sketch of the clearance between the spherical ball and the ellipsoidal plates. (a) 3D sketch,
(b) 2D projection in the XOY plane.

As shown in Figure 3a, Q’ is the intersection of the extension line of O’P and the ellipsoidal plate,
QQ’ is the deviation of the ellipsoid from the ideally spherical plate, and PQ’ is the clearance between
the ellipsoidal plate and the ball at the point P. The clearance can be obtained by d1 = R− δy sinθ cosϕ− δz sinθ sinϕ− δx cosθ− r + ∆r cos2 θ

d3 = R− δy sinθ cosϕ− δz sinθ sinϕ− δx cosθ− r + ∆r sin2 θ
(20)

where d1 is the clearance between CPS1 and the ball, d3 is the clearance between CPs3 and the ball,
and ∆r = b − a.



Micromachines 2020, 11, 837 7 of 22

Likewise, the functional relationship between the differential capacitance (∆C’x) and the eccentric
displacement of the ball can be obtained as follows:

∆C′x = ζR2

d0

[
a0 + a1λx + Cs(λy,λz) + ∆Fs(λx,λy,λz)

]
Cs = a2

′(λ2
y + λ2

z) + a4
′(λ2

y + λ2
z)

2

∆Fs = a2λ2
x + a3λ3

x + a3
′λx(λ2

y + λ2
z) + a4λ4

x + a4
′′λ2

x(λ
2
y + λ2

z) + · · ·

1.2108λ5
x + 0.0614λx(λ2

y + λ2
z)

2 + 0.8181λ3
x(λ

2
y + λ2

z)

(21)

where a0 = −0.4537κ5
∆r + 0.5061κ4

∆r − 0.5662κ3
∆r + 0.6263κ2

∆r − 0.6263κ∆r
a1 = 2.3992κ4

∆r − 2.1598κ3
∆r + 1.8653κ2

∆r − 1.5708κ∆r + 1.5708, a2 = −0.5041κ3
∆r + 3.3295κ2

∆r − 1.6647κ∆r,
a2
′ = −0.3107κ3

∆r + 0.2142κ2
∆r − 0.1071κ∆r, a3 = 5.5019κ2

∆r − 2.7489κ∆r + 1.3745,
a3
′ = 1.0738κ2

∆r − 0.589κ∆r + 0.2945, a4 = −2.4742κ∆r, a4
′ = −0.0212κ∆r, a4

′′ = −0.9012κ∆r.
Compared with the ideally spherical plate (Equation (3)), the ellipsoidal plate (Equation (21))

produces three terms of additional capacitance errors (i.e., constant capacitance error, variable
capacitance error, and higher-order capacitance error).

The constant value a0 in Equation (21) could bring an additional constant capacitance (∆Cs
0) to

the capacitance value of the sensor, leading to an additional constant capacitance error of the sensor.
∆Cs

0 can be calculated by

∆C0
s =

ζR2

d0
a0 (22)

Since the polynomial Cs(λy,λz) is related to the measured displacement (λy and λz) rather than λx

in Equation (21), an additional variable capacitance (∆Cs) is added to the differential capacitance (∆Cx)
of the sensor. To explore the effect of the additional variable capacitance on the measurement accuracy,
we introduce the maximum additional variable capacitance (∆Cs

M), given by
∆CM

s = Max
[
ζR2

d0
Cs(λy,λz)

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(23)

Due to the presence of a higher-order term ∆Fs related to the measured λx, a higher-order
capacitance error is added to the measured differential capacitance, increasing the nonlinear error of
the capacitive sensor. The maximum capacitance error (Es

M) is expressed by
EM

s = Max
[

∆Fs(λx,λy,λz)

a1λx

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(24)

4. Measurement Error Introduced by the Installation of the Capacitive Plates

During the assembly of the spherical plates and ball, the spherical centers of six capacitive
plates may not overlap with each other, producing a measurement error of the capacitive sensor.
The installation deviation of the capacitive plates could be classified into two types (i.e., offset
installation deviation and angular installation deviation). The former is caused by the displacement of
the capacitive plate along a certain direction while the latter comes from the angular inclination of
the plate.

4.1. Effect of Offset Installation

Due to the axial symmetry of the spherical capacitive plate, the displacement of the plate can be
divided into two orthogonal directions. One is along the symmetrical axis, the other is along the radial
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direction that is orthogonal to the symmetrical axis. Accordingly, the offset installation error can be
divided into axial and radial offset installation errors, respectively.

4.1.1. Axial Offset Installation

The axial displacement of the spherical capacitive plate is presented in Figure 4. The capacitive
plate CPS1 moves a distance of m away from the ideal position along the positive x axis while the CPS3

is installed at the ideal position. Therefore, the electrode coordinate system X’1Y’1Z’1 in which CPS1 is
located is shifted by m along the positive x axis. The mathematical conversion between the coordinate
system X’1Y’1Z’1 and the coordinate system OXYZ can be given by

x′1
y′1
z′1
1

 =


1 0 0 m
0 1 0 0
0 0 1 0
0 0 0 1




x
y
z
1

 (25)
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The capacitance of the capacitive sensor CPS1 with axial displacement can be obtained by
substituting Equation (25) into Equation (2). Then, the differential capacitance value of Cx can be
given by

∆Cm
x =

ζR2

d0

[
m0 + m1λx + Cm(λy,λz) + ∆Fm(λx,λy,λz)

]
(26)

∆Fm = m2λ2
x + m3λ3

x + m3
′λx(λ2

y + λ2
z) + m4λ4

x + m4
′′λ2

x(λ
2
y + λ2

z) + · · ·

1.2108λ5
x + 0.0614λx(λ2

y + λ2
z)

2 + 0.8181λ3
x(λ

2
y + λ2

z)
(27)

Cm = m2
′(λ2

y + λ2
z) + m4

′(λ2
y + λ2

z)
2

(28)

where m0 = 0.6054κ5
m + 0.6445κ4

m + 0.6872κ3
m + 0.734κ2

m + 0.7854κm,
m1 = 3.027κ4

m + 2.5779κ3
m + 2.0617κ2

m + 2.0617κm + 1.5708, m2 = 6.0541κ3
m + 2.5779κ2

m + 2.0617κm,
m2
′ = 0.4091κ3

m + 0.2687κ2
m + 0.1473κm, m3 = 6.0541κ2

m + 2.5779κm + 1.3745,
m3
′ = 1.2272κ2

m + 0.5374κm + 0.2945, m4 = 3.0271κm, m4
′ = 0.0307κm, m4

′′ = 1.2272κm,
κm = m/(R− r).

Based on Equation (26), the axial offset installation of the spherical capacitance sensor will produce
three terms of additional capacitance errors: the constant capacitance ECm

0, the variable capacitance
VCm, and higher-order capacitance Em. They are introduced by the constant term m0, the term Cm(λy,λz),
and the higher-order term ∆Fm (λx, λy, λz), respectively.

The constant capacitance error ECm
0 can be obtained by

EC0
m =

ζR2

d0
m0 (29)



Micromachines 2020, 11, 837 9 of 22

To explore the effect of the variable capacitance VCm on the measurement accuracy, the maximum
variable capacitance error VCm

M is given by
VCM

m = Max
[
ζR2

d0
Cm(λy,λz)

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(30)

To explore the effect of the higher-order capacitance Em on the measurement accuracy, the maximum
higher-order capacitance error Em

M is obtained by
EM

m = Max
[

∆Fm(λx,λy,λz)

m1λx

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(31)

4.1.2. Radial Offset Installation

The radial displacement of a pair of spherical plates is described in Figure 5. Two typical cases of
plate displacements are identified in this work: (1) the spherical capacitive plates CPS1 and CPS3 are
misaligned, as shown in Figure 5a; (2) the spherical plates CPS1 and CPS3 are placed away from the
ideal position along the same direction, as is presented in Figure 5b.
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Figure 5. 2D sketch of the spherical capacitance sensor Cx when the spherical capacitive plate CPS1 is
radial offset from the ideal position. (a) CPS1 and CPS3 are misaligned, (b) CPS1 and CPS3 are aligned.

(A) Displacement of CPS1 and CPS3 along opposite directions

As shown in Figure 5a, the origin of the initial coordinate XYZ is located at the center of the ball.
The positive X-axis is towards the center of the plate CPS1, while the positive Y-axis is perpendicular to
the positive X-axis based on the right-hand rule. The spherical capacitive plate CPS1 is placed away from
the ideal position with a distance of h along the positive Y direction, while CPS3 is along the negative Y
direction. As a result, they are located in the coordinate systems X1Y1Z1 and X3Y3Z3, respectively.
The distance between the centerline of CPS1 and that of CPS2 is 2h. Therefore, the mathematical relation
between the offset coordinate systems X1Y1Z1 and X3Y3Z3 and the ideal coordinate system OXYZ can
be obtained by 

x1

y1

z1

1

 =


1 0 0 0
0 1 0 h
0 0 1 0
0 0 0 1




x
y
z
1




x3

y3

z3

1

 =


1 0 0 0
0 1 0 −h
0 0 1 0
0 0 0 1




x
y
z
1

 (32)



Micromachines 2020, 11, 837 10 of 22

The capacitance of capacitive sensor CPS1 and CPS3 can be obtained by substituting Equation (30)
into Equation (2). When CPS1 and CPS3 are placed along the opposite radial directions, the differential
capacitance of ∆Ch

x can be calculated by the following equation:

∆Ch
x =

ζR2

d0

[
h1λx + Ch(λy,λz) + ∆Fh(λx,λy,λz)

]
(33)

h1 = (0.0614κ4
h + 0.2945κ2

h + 1.5708) (34)

Ch = (0.0545κ3
h + 0.2154κh)λy + (0.05453κh)(λyλ

2
z + λ3

z) (35)

∆Fh = (0.3682κ2
h + 0.2945)λxλ2

y + (0.1227κ2
h + 0.2945)λxλ2

z + · · ·

(1.0748κh)λyλ2
x + 1.3745λ3

x + 1.2108λ5
x + 0.0614λx(λ2

y + λ2
z)

2 + 0.8181λ3
x(λ

2
y + λ2

z)
(36)

where κh=h/(R-r), h1 is the coefficient of the first-order term λx, Ch (λy,λz) is a term related to the
measured λy, andλz, ∆Fh(λx,λy,λz) is a higher-order term related to λx, λy and λz.

According to Equation (31), two terms of additional capacitance errors are produced when CPS1

and CPS3 are misaligned (i.e., the variable capacitance VCh
M and the higher-order capacitance Eh

M

caused by the terms Ch(λy,λz) and ∆Fh (λx, λy, λz), respectively).
The maximum variable capacitance error (VCh

M) can be given by
VCM

h = Max
[
ζR2

d0
Ch(λy,λz)

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(37)

The maximum higher-order capacitance error (Eh
M) can be expressed by

EM
h = Max

[
∆Fm(λx,λy,λz)

h1λx

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(38)

(B) Displacement of CPS1 and CPS3 along the same direction

As presented in Figure 5b, both CPS1 and CPS3 are placed away from ideal position with a
distance of n along the positive Y direction, and located in new coordinate system X’Y’Z’. Therefore,
the mathematical relation between the offset coordinate system X’Y’Z’ and the ideal coordinate system
OXYZ can be expressed by 

x′

y′

z′

1

 =


1 0 0 0
0 1 0 n
0 0 1 0
0 0 0 1




x
y
z
1

 (39)

Next, the capacitance of capacitive sensor CPS1 and CPS3 can be obtained by substituting
Equation (34) into Equation (2). As such, the differential capacitance of ∆Cn

x can be calculated by the
following equation when CPS1 and CPS3 are placed along the same radial direction:

∆Cn
x =

ζR2

d0

[
n1λx + ∆Fn(λx,λy,λz)

]
(40)

n1 = 1.5708 + 0.06136κ4
n + 0.2945κ2

n (41)

∆Fn = (0.2454κ3
n + 0.589κn)λxλy + 0.2954λx(λ2

y + λ2
z) + (0.1227κ2

n)λx(3λ2
y + λ2

z) + · · ·

(0.8181κ2
n + 1.3744)λ3

x + (0.2454κn)λxλy(6.668λ2
x + λ2

y + λ2
z) + · · ·

1.2108λ5
x + 0.0614λx(λ2

y + λ2
x)

2 + 0.8181λ3
x(λ

2
y + λ2

x)

(42)
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where κn = n/(R − r), n1 is the coefficient of the first-order term λx, and ∆Fn(λx,λy,λz) is a higher-order
term related to λx, λy and λz.

It can be seen from Equation (35) that an additional higher-order capacitance is produced when
CPS1 and CPS3 are offset along the same radial direction. The maximum higher-order capacitance error
(En

M) can be expressed by  EM
n = Max

[
∆Fn(λx,λy,λz)

n1λx

]
vspace3pt

0 ≤
√
λ2

x + λ2
y + λ2

z = ρ
(43)

4.2. Effect of Inclined Installation

The inclined installation of the capacitive plate is shown in Figure 6. The spherical capacitive
plate CPS1 has an inclined angle of α from the ideal position and thus is located in a new coordinate
system X”1Y”1Z”1. The mathematical relation between the coordinate system X”1Y”1Z”1 and the ideal
coordinate system OXYZ can be obtained by

x′′ 1
y′′ 1
z′′ 1
1

 =


cosα − sinα 0 R cosα−R
sinα cosα 0 R sinα

0 0 1 0
0 0 0 1




x
y
z
1

 (44)
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The capacitance of capacitive sensor CPS1 and CPS3 can be obtained by substituting Equation (44)
into Equation (2). Thus, when CPS1 has an inclined angle from the ideal position, the differential
capacitance of ∆Ch

x can be calculated by

∆Cp
x =

ζR2

d0
∆Fn(λx,λy,λz) =

ζR2

d0

[
p0 + p1λx + CP(λy,λz) + ∆Fp(λx,λy,λz)

]
(45)

where p0 = −0.01875+ 0.01875cosα+ 0.000427cos2α+ 0.000031sin2α+ 0.00001cos3α+ 0.000002cosαsin2α;
p1 = 0.002509sin2α+ 0.034125cos2α+ 0.001289cos3α+ 0.749984cosα+ 0.000276cosαsin2α

CP(λy,λz) = (0.7854− 0.000092sin3α− 0.749984sinα− 0.031616cosαsinα− 0.001104cos2αsinα)λy

+(−0.734046 + 0.050189cos2α+ 0.003682cos3α+ 0.682504sin2α+ 0.044179cosαsin2α)λy
2

+(0.687223− 0.687223sin3α− 0.147262cos2αsinα)λy
3 + (−0.003682 + 0.003682cosα)λz

2

+(0.147262− 0.147262sinα)λyλz
2
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∆Fp(λx,λy,λz) = (−0.053871 + 0.682504cos2α+ 0.051542cos3α+ 0.050189sin2α+ 0.011044cosasin2α)λx
2

+(0.687223cos3α+ 0.147262cosαsin2α)λx
3

+(−0.088357cos2αsinα− 1.26463 cosαsinα− 0.00736sin3α)λyλx

+(0.147262− 0.147262sin3α− 1.76714cos2αsinα)λyλx
2 + (0.147262cosα)λz

2λx

+(0.147262cos3α+ 1.76714cosαsin2α)λy
2λx

Therefore, the inclined installation of the plate CPS1 could produce three terms of additional
capacitance errors: the constant capacitance error indicated by the constant term p0, the variable
capacitance error represented by the term Cp(λy,λz), and the higher-order capacitance error indicated
by higher-order term ∆Fp(λx,λy,λz).

The constant error capacitance ECp
0 can be expressed by

EC0
p =

ζR2

d0
p0 (46)

The maximum variable capacitance (VCP
M) can be given by

VCM
p = Max

[
ζR2

d0
Cp(λy,λz)

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(47)

The maximum higher-order capacitance error (Ep
M) can be calculated by

EM
p = Max

[
∆Fp(λx,λy,λz)

p1λx

]
0 ≤

√
λ2

x + λ2
y + λ2

z = ρ
(48)

5. Simulation Setup

In order to explore the effect of the shape and installation error of a spherical capacitive sensor on
the clearance measurement, the software Ansoft Maxwell was used to simulate the capacitance of the
sensor with installation and shape errors. For simplification, only spherical capacitive plates CPS1 and
CPS3 were examined, forming a pair of capacitive sensors C1 and C3 in the X-axis. The differential
capacitance ∆Cx of C1 and C3 was calculated at various eccentricities of the ball. The simulation model
of the capacitive sensor is presented in Figure 7. The ideal radius of the ball was 24.8 mm and the ideal
inner radius of the plates was 25 mm. Two plates had a central angle of 0◦~30◦ and a thickness of
0.5 mm. The material of the sensor was set to be brass and the medium between the ball and the plates
was assumed to be air. The eccentric displacement of the ball varied from −40 to 40 µm along the X
axis. Thus, the corresponding eccentricity was within the range of −0.2 ~ 0.2.
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6. Results and Discussions

6.1. Effect of the Manufacture Deviation of Spherical Capacitive Sensor

6.1.1. Measurement Error Caused by the Ball Shape

The capacitance of the sensor would vary with the rotation of the ball if the shape of the ball
becomes ellipsoid. This could lead to an attitude error of the ball. Figure 8 shows the theoretical
relation of the maximum attitude error and the eccentricity of the ellipsoidal ball. The ellipsoid
has a shape of ∆r = 1, 2, and 5 µm, respectively. Hereinafter, the maximum value of the theoretical
capacitance error is obtained from 1000 × 1000 points on a sphere for each eccentricity of the ball,
which is generated using the sphere function in Matlab. Although the maximum attitude error Hm

increases with the rising eccentricity ρ of the ball, the increase of Hm in three cases is very slight,
within the range of 0 ≤ ρ ≤ 0.2. This is due to the differential arrangement of the capacitive plates.
The differential capacitance of the sensor has a good linear relationship with the eccentric displacement
of the ball. At ∆r = 1 µm, the maximum attitude error caused by the shape deviation of the ball is less
than 0.8%. With an increase of ∆r to 2 µm, the maximum attitude error is between approximately
1.52% and 1.61%. Further, at ∆r = 5 µm, the maximum attitude error reaches 4.0%. Therefore, it is
suggested that the shape deviation of the ball be within 1 µm to improve the measurement accuracy of
the spherical capacitive sensor.Micromachines 2020, 9, x 14 of 23 
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Figure 8. Maximum attitude error caused by shape deviation of the ball. (a) ∆r = 1 µm, (b) ∆r = 2 µm,
(c) ∆r = 5 µm.

Figure 9 presents the dependence of the differential capacitance ∆Cx on the eccentricity of the
ellipsoidal ball at attitudes of β = 0◦ and 90◦. The ellipsoidal ball has a shape deviation of ∆r = 10 µm
and the eccentric displacement of the ball is from -40 to 40 µm along the X axis. The simulation results
exhibit a good agreement with the theoretical counterparts, suggesting the feasibility of the proposed
mathematical model for the ellipsoidal ball. The differential capacitances at β = 0◦ and 90◦ (∆Cx

0 and
∆Cx

90) rise with the increasing eccentricity of the ellipsoidal ball. When the ball is located at the origin
(δx = 0), the differential capacitance at β = 0◦ is equal to that at 90◦. However, when the ball has an
eccentric displacement, there is a deviation between the differential capacitance at β = 90◦ and that at
β = 0◦. The difference becomes larger with the increasing eccentricity of the ellipsoidal ball, reaching at
7.7% at an eccentric displacement of δx = 40 µm.
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Figure 9. Dependence of the differential capacitance ∆Cx on the eccentric displacement of the
ellipsoidal ball.

6.1.2. Measurement Error Produced by the Plate Shape

The ellipsoidal plate was able to produce a constant capacitance error, variable capacitance error,
and higher-order capacitance error to the measured differential capacitances of the spherical capacitive
sensor. Figure 10 shows the theoretical capacitance error when the shape of the capacitive plates
becomes ellipsoid. Several observations can be made. First, the maximum higher-order capacitance
error increases slightly with the rising shape error of the plate ∆r from 0 to 6 µm (Figure 10a).
At ∆r = 6 µm, the maximum higher-order capacitance error exhibits an exponential increase to about
4.2%, as the eccentricity of the ball goes up from 0 to 0.2. Compared with the ideal plate (∆r = 0),
the increase of the maximum higher-order capacitance error for the ellipsoidal plate at ∆r = 2 µm
is less than 0.2%. Therefore, the increased higher-order capacitance error can be ignored when the
shape deviation of the plate ∆r is no more than 2 µm. Second, the variable capacitance error rises
significantly with the increasing ∆r (Figure 10b). At ∆r = 1 µm, the variable capacitance error is less than
0.7 × 10−4 pF when the eccentricity of the ball is in the range of 0 ≤ ρ ≤ 0.2. At ∆r = 6 µm, the variable
capacitance error rises to about 3.4 × 10−3 pF at ρ = 0.2. Third, the constant capacitance error exhibits
an approximately linear relationship with the shape deviation of the capacitive plate (Figure 10c).
Compared with the variable capacitance error, the absolute value of the constant capacitance error is
much larger, reaching about 0.1 pF at ∆r = 1 µm. However, it should be pointed out that the constant
capacitance error can be eliminated by the calibration of the capacitive sensor.

Figure 11 shows the dependence of the differential capacitance ∆Cx on the eccentric displacement
of the ball when the capacitive plates become ellipsoid. The eccentric displacement varies from −40
to 40 µm along the X axis. It can be seen that the theoretical results exhibit a good agreement with
the simulated counterparts, suggesting the feasibility of the proposed mathematical model for the
ellipsoidal capacitive plates. Moreover, the differential capacitance of the ellipsoidal plates (∆r = 10 µm)
is smaller than that of the ideal plates (∆r = 0). This can be mainly ascribed to the negative constant
capacitance error mentioned above. The difference between the capacitance value of the ellipsoidal
plates and that of the ideal plates exhibits an evident increase with the rising eccentricity of the ball.
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6.2. Effect of the Installation Deviation of Spherical Capacitive Plates

6.2.1. Measurement Error Caused by the Offset Installation

Once one capacitive plate CPS1 has an axial offset from the ideal position, it could introduce
three kinds of capacitance errors to the differential capacitance of the spherical capacitive sensor Cx.
Figure 12 presents theoretical capacitance errors of the capacitive sensor Cx at different offsets of CPS1.
The displacement m of CPS1 increases from 0 to 10 µm along the X axis. The following observations
can be drawn. First, the maximum higher-order capacitance error exhibits an increase with the rising
offset m from 0 to 10 µm (Figure 12a). At m = 2 µm, the maximum higher-order capacitance error is
less than 4% when the eccentricity of the ball is within the range of 0 ≤ ρ ≤ 0.2. And compared with the
ideal condition (m = 0 µm), the increase of the maximum higher-order capacitance error for m = 2 µm
is less than 0.4%. Second, the variable capacitance error exhibits a significant growth with the increase
of the axial offset of the capacitive plate (Figure 12b), especially at a large eccentricity of the ball. At the
axial offset of m = 2 µm, the variable capacitance error is less than 1.8 × 10−3 pF. Since the sensitivity of
the spherical capacitive sensor is of 0.22 pF/µm [22], the corresponding displacement variation is less
than 10 nm. Third, the constant capacitance error exhibits a linear relationship with the axial offset of
the capacitive plate. Although the constant capacitance error could reach 0.1 pF at m = 1 µm, it can be
eliminated by simple calibration of the capacitive sensor.
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Figure 13 compares the theoretical and simulated values of the differential capacitance of ∆Cx
m

at various axial offsets m of the capacitive plate CPS1. The axial displacements examined are 0, 10,
and 20 µm, respectively. The eccentric displacement of the ball varies from −40 to 40 µm along the
X axis. It can be observed that the theoretical results agree well with the simulated counterparts,
suggesting the feasibility of the proposed theoretical model. Moreover, the differential capacitance
∆Cx

m for the axial offset of the plate (m = 10 and 20 µm) is smaller than that of the ideal position of the
plate (m = 0). This can be mainly ascribed to the negative constant capacitance error mentioned above.
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when the plate is axial offset.

The radial offset of the capacitive plate can be divided into two regimes: the misaligned
displacement of a pair of plates, and the identical displacement of the two plates. Figure 14 shows the
capacitance error of the capacitive sensor Cx at various eccentricities of the ball when capacitive plates
CPS1 and CPS3 are radial offset from the ideal position and misaligned with each other. CPS1 has a
radial displacement of 2~10 µm along the positive Y axis while CPS3 is placed with the same distance
along the negative Y axis. Two kinds of additional capacitance errors are produced (i.e., higher-order
capacitance error and variable capacitance error). As the radial displacement h of the capacitive plate
increases from 0 to 10 µm, the values of the higher-order capacitance error all collapse into one line.
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This indicates that the higher-order capacitance error is independent on the radial displacement of
the plates. In contrast, the variable capacitance error exhibits a remarkable growth with the increase
of the radial displacement h of the plates. At h = 4 µm, the variable capacitance error is less than
1.2 × 10−2 pF, and the displacement error is less than 55 nm. Further increase h to 10 µm and the
variable capacitance error becomes 6.0 × 10−2 pF at the eccentricity of the ball ρ = 0.2, five times of that
of h = 4 µm. It should be pointed out that the variable capacitance error for radial offset of the plates is
much larger than that for the axial offset of the plates.
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Figure 15 compares the theoretical and simulated differential capacitance of the capacitive sensor
(Cx) at various eccentric displacements of the ball when the capacitive plates CPS1 and CPS3 are
radial offset and misaligned with each other. CPS1 is offset 50 and 100 µm along the positive Y axis,
while CPS3 is offset with the same distance along the negative Y axis. The eccentric displacement of the
ball varies from −40 to 40 µm along the X axis. It can be seen that the theoretical results agree well
with the simulated counterparts, suggesting the feasibility of the proposed mathematical model for the
misaligned radial offset of the plates. Moreover, the differential capacitance exhibits a slight variation
with the increase of the radial offset h of the plates. Although the variable capacitance error mentioned
above grows significantly with the increase of the radial offset, the total value is still quite small.

Figure 16 shows the theoretical capacitance error when both CPS1 and CPS3 are radial offset along
the same direction. The radial displacement n of two plates varies from 0 to 100 µm along the positive
Y axis. The eccentricity of the ball varies from 0 to 0.2. According to Equation (35), the higher-order
capacitance error is produced in this case. It can be seen that the maximum higher-order capacitance
error exhibits a slight increase with the growth of the radial offset n of two capacitive plates. Even at
n = 100 µm, the increase of the higher-order capacitance error is less than 0.3%, in comparison with the
ideal position of the plates. This suggests that the identical radial offset of two plates has a neglected
effect on the measurement accuracy of the sensor.
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Figure 17 presents the theoretical and simulated differential capacitance of the capacitive sensor Cx

at various eccentric displacements of the ball when both CPS1 and CPS3 are radial offset along the Y axis.
The radial displacement n of the plate is set to 50 and 100 µm, respectively. The eccentric displacement
of the ball varies from -40 to 40 µm along the X axis. It can be observed that the theoretical results
exhibit a good agreement with the simulated counterparts, indicating the feasibility of the proposed
mathematical model for radial offsetting two plates along the same direction. Moreover, the differential
capacitance varies slightly with the increase of the radial offset n of the plates. At n = 100 µm, a slight
increase of the differential capacitance can be observed only at the eccentric displacement of the ball
δx ≥ 30 µm, compared with that for the ideal position of the plates.
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6.2.2. Measurement Error Produced by the Angular Installation

Once the capacitive plate is inclined with an angle to the ideal position, three kinds of capacitance
errors can be produced, including higher-order capacitance errors, variable capacitance errors,
and constant capacitance errors. Figure 18 shows the theoretical capacitance error of Cx when
the capacitive plate CPS1 is tilted. The inclined angle α of CPS1 increases from 0◦ to 0.4◦ and the
eccentricity of the ball varies from −0.2 to 0.2. Three observations can be made. First, the higher-order
capacitance error presents a slight increase with the growth of the inclined angle (α) of the plate
CPS1. At an inclined angle of α = 0.1◦, the increased higher-order capacitance error is less than 0.3%
compared with the ideal counterpart. Second, the variable capacitance error rises significantly with the
increase of the inclined angle. At the inclined angle of α = 0.02◦, the variable capacitance error has an
approximately linear relationship with the eccentricity of the ball ρ, reaching −2.4 × 10−2 pF at ρ = 0.2.
Further, the corresponding displacement error is less than 0.11 µm. By increasing α to 0.1◦, the variable
capacitance error could reach −0.12 pF at ρ = 0.2, five times that of α = 0.02◦. Third, the constant
capacitance error exhibits an exponential growth with the increase of the inclined angle of the plate.
The value of the constant capacitance error is of 0.1 pF at α = 0.12◦ and could reach to 0.95 pF at
α = 0.36◦.
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Figure 19 compares the theoretical and simulated values of differential capacitance ∆Cx
P at

various eccentric displacements of the ball when the plate CPS1 is inclined with an angle to the ideal
position. The inclined angles are 0.2◦ and 0.4◦, respectively. The eccentric displacement of the ball
varies from −40 to 40 µm. It can be seen that the theoretical values agree well with the simulated
counterparts, indicating the feasibility of the proposed mathematical model for the inclined installation
of the capacitive plates. Moreover, the differential capacitance ∆Cx

P exhibits a slight growth as the
inclined angle α rises from 0◦ to 0.2◦. By further increasing α to 0.4, a remarkable growth of ∆Cx

P can
be observed. This can be mainly ascribed to the exponential growth of the constant capacitance error
mentioned above.
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To obtain a good measurement accuracy of the spherical capacitive sensor, the manufacturing
and installation imperfectness should be maintained in a small certain range. The spherical shape
deviations of both plates and ball are suggested to be kept within 1 µm. The axial offset of the capacitive
plate is required to be within 2 µm. The radial offset of the plate has limited effect on the measurement
accuracy of the capacitive sensor due to the differential structure of the sensor. The effect of the inclined
angle of the plate is quite significant, which is required to be controlled within 0.2◦.

7. Conclusions

This work mainly explores the effects of manufacturing and installation imperfectness on the
measurement accuracy of a spherical capacitive sensor. The detail mathematical models are built
for calculating and analyzing the capacitance errors of the capacitive sensor. A simulation with the
software Ansoft Maxwell was conducted to validate the feasibility of the proposed mathematical
models. The main conclusions are given as follows.

(1) If the shape of the ball becomes ellipsoid, the capacitance of the spherical capacitive sensor could
change with the rotation of the ball in a spherical joint, which leads to a large attitude error. If the
shape error of the ball reaches 10 µm, the attitude error is about 7.7% at the eccentric displacement
of ball δx = 40 µm.

(2) The ellipsoidal plate can produce higher-order capacitance errors, variable capacitance errors,
and constant capacitance errors. For the shape error of the plate ∆r = 10 µm, the total capacitance
error is of 15% at the eccentric displacement of ball δx = 40 µm. This mainly comes from the
negative constant additional capacitance.

(3) The axial offset of the plate can generate higher-order capacitance errors, variable capacitance
errors, and constant capacitance errors. Compared with the ideal position, the differential
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capacitance for the axial offset of the plate m = 10 µm is reduced by 17.2% at the eccentric
displacement of ball δx = 40 µm. This reduction can be mainly ascribed to the negative constant
additional capacitance.

(4) If a pair of plates is radial offset and misaligned, a higher-order capacitance error and variable
capacitance error are produced. For the radial offset of the plate h = 100 µm, the total capacitance
error is of 5.2% at the eccentric displacement of ball δx = 40 µm.

(5) If a pair of plates is radial offset and aligned, only a higher-order capacitance error is produced.
At the eccentric displacement of ball δx = 40 µm, the differential capacitance for the radial offset
of n = 50 µm is increased by 1.3% compared with that for the ideal position.

(6) The inclined capacitive plate could produce a higher-order capacitance error and variable
capacitance error. For the inclined angle of the plate α = 0.2◦, the total capacitance error is about
5% at the eccentric displacement of ball δx = 40 µm.
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