
micromachines

Article

Single-Switching Reachable Operation Points in a
DC-DC Buck Converter: An Approximation from
Time Optimal Control

Ilya Dikariev 1,*, Fabiola Angulo 2 and David Angulo-Garcia 3

1 Department of Optimization, Campus Cottbus, Institute of Mathematics, Brandenburg University
of Technology, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany

2 Departamento de Ingeniería Eléctrica, Electrónica y Computación—Bloque Q, Campus La Nubia,
Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia—Sede Manizales,
Manizales 170003, Colombia; fangulog@unal.edu.co

3 Grupo de Modelado Computacional—Dinámica y Complejidad de Sistemas, Instituto de Matemáticas
Aplicadas, Universidad de Cartagena, Carrera 6 # 36-100, Cartagena de Indias 130001, Colombia;
dangulog@unicartagena.edu.co

* Correspondence: dikarill@b-tu.de

Received: 4 July 2020; Accepted: 29 August 2020; Published: 31 August 2020
����������
�������

Abstract: In this paper, we study the time optimal control problem in a DC-DC buck converter in the
underdamped oscillatory regime. In particular, we derive analytic expressions for the admissible
regions in the state space, satisfying the condition that every point within the region is reachable in
optimal time with a single switching action. We then make use of the general result to establish the
minimum and maximum variation allowed to the load in two predefined design set-ups that fulfills
the time optimal single switching criteria. Finally, we make use of numerical simulations to show the
performance of the proposed control under changes in the reference voltage and load resistance.

Keywords: DC-DC synchronous buck converter; time optimal control; pontryagin maximum
principle; control synthesis

1. Introduction

In power electronics, DC-DC power converters are essential components in both industrial
and day-to-day applications, for instance, fuel and photovoltaic cells [1,2], hybrid vehicles [3],
mobile devices [4,5], and many others (see [6] for a review on recent applications).

In particular, the step-down or buck converter is of special interest for the power supply
of electronic devices. For this reason, a wide variety of controllers have been proposed for this
converter [7], which provide suitable solutions for a particular design purpose: for instance,
sliding mode control [8] allows for the robust operation of the converter to unmodeled dynamics,
PID based controllers in averaged models [9] enables the use of well-established linear feedback theory
and controllers designed using contraction theory can guarantee global stability of the converter [10],
just to mention few. However, several modern applications of the buck converter have the specific
requirement of fast dynamic response, which is not always guaranteed with the designs that are
mentioned above. For example, in Dynamic Voltage Scaling (DVS) [11] and RF amplification [12], it is
essential that the output of the converter is reached as fast as possible.

The problem of driving the system towards a desired operation point in minimum time is regarded
as the Time-optimal control problem. Time optimal problems can be solved using the Pontryagin’s
maximum principle [13,14] and this approach has been extensively used in order to minimize transient
behavior in power converters, allowing to find optimal switching surfaces in the boost converter [15],
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the buck-boost [16], and the buck converter itself in some particular conditions of operation [11,17].
An important question in the time-optimal problem is: given an initial condition, is the system able
to reach the target state with a single-switching in optimal time (SSOT for short), before shifting to
the use of the high-frequency controller to maintain the system in the vicinity of the desired point?.
Indeed, a comprehensive analytic study on the conditions under which the buck, boost, and buck-boost
topologies are able to evolve their dynamics in a single switch was first investigated in [18]. However,
it was only possible to draw conclusions on the number of switches required to reach the desired
output for the buck converter in a low resistance (high load) regime where the dynamics of the buck
converter behaves as an overdamped system and the Pontryagin’s maximum principle allows for a
straightforward analysis.

Nevertheless, any important applications of the buck converter are associated with low output
currents where the dynamics of the buck converter may behave as an underdamped oscillator [19].
The voltage specifications of mobile devices working in stand by mode is a prominent example of an
application of the buck converter in the light load regime, where the efficiency of the converter is of
utter importance for minimizing the battery drain [20–23].

The problem of constructing a-priori the subset of the state space that guarantees SSOT transitions
remains an open problem for the buck power converter in the low load regime. In this paper, we aim
to construct such a subset based on the knowledge of the dynamical properties of the system, that can
be easily exploited in canonically transformed coordinates. For this purpose, the paper is organized as
follows: in Section 2, we present the mathematical preliminaries associated to time-optimal control
and the description of the synchronous buck power converter. In Section 3, we formalize the statement
of the problem and develop a geometrical framework to find the region of the state space where it
is possible to reach output in optimal time with a single switching action. Moreover, in Section 4,
we present some practical implementation examples where we make use of the derived expressions
for time optimal regions. Additionally, we present numerical simulations showing the performance of
the proposed control in Section 5 and discuss some final remarks in Section 6.

2. Preliminaries

2.1. Buck Power Converter

Figure 1 depicts a simplified version of a synchronous buck power converter. In this system,
internal resistances are disregarded and the switches Q1 and Q2 are coupled in such a way that when
Q1 = 1 (ON), Q2 = 0 (OFF) and vice-versa. The equations describing this dynamical system are(

v̇
i̇

)
=

(
− 1

RC
1
C

− 1
L 0

)(
v
i

)
+

(
0
E
L

)
u (1)

where R is the load resistance, C is the capacitor’s capacitance, L is the coil’s inductance, and E is
the voltage provided by the power source. The state variable v corresponds to the voltage across the
capacitor and i quantifies the current flowing through the inductor. The control signal u takes values
in the discrete set {0, 1}. When u = 1 the main switch Q1 is closed (ON) and the circuit is fed by the
input voltage E. When u = 0 the main switch is open (OFF) and the power source (input voltage) does
not feed the system. In this case, the load is being fed by the capacitor and the inductor. For simplicity,
we will perform a first transformation that maps the original system (1) into a dimensionless framework
by means of the following similarity transformation x = M−1(v, i)T [24], where

M =

(
E 0
0 E√

L/C

)
(2)

Additionally, we perform a normalization in time such that t = τ/
√

LC—for simplicity in notation
we will use t as normalized time and τ as the real one-. With these transformations, a new and unique



Micromachines 2020, 11, 834 3 of 17

parameter γ = 1
R

√
L
C holds the information of the parameters in the system, allowing for us to rewrite

the equations as: (
ẋ1

ẋ2

)
=

(
−γ 1
−1 0

)(
x1

x2

)
+

(
0
1

)
u (3)

or in a compact form as ẋ = Ax + Bu.

−+E

Q1

Q2

Li

RC

+

−
v

u

Figure 1. Schematic diagram of a buck power converter.

This system has two possible equilibria, the first one is given by (x1, x2) = (0, 0) obtained for
u = 0 and a second one, given by (x1, x2) = (1, γ) obtained when u = 1. By switching the MOSFETs
at a high frequency it is possible to obtain a new equilibrium point corresponding to the averaged
value (x∗1 , x∗2) := ū(1, γ), where ū is the average value of u, and turns out to be the normalized
reference output x1re f = Vre f /E. Depending on the parameter values, this equilibrium can be either a
focus (complex eigenvalues obtained for 0 < γ < 2) or a node (real eigenvalues obtained for γ ≥ 2).
The quantity γ is closely related with the quality factor of the circuit (Q-factor). A value of γ > 2 is
equivalent to an overdamped circuit with Q < 1/2, also at γ = 2, Q = 1/2 and the circuit is critically
damped. Finally, as γ decreases below 2, the quality factor of the circuit increases unbounded and
Q→ ∞ when γ→ 0.

As previously pointed in the introduction, optimal control has been well studied in the case in
which the system behaves as an overdamped circuit (node type) [11]. However, when the equilibrium
of the buck converter behaves as a focus it is not possible to generically establish the number of
switches that the system will perform before reaching the operation point. In what follows, we present
the theoretical basis of time optimal control with the aim of finding the subset of the state space that
can be reached in SSOT.

2.2. Time Optimal Control

We recall the system (3) and let us assume that the control function u(t) could take values from
the convex set U = [0, 1] ⊂ R. The following part is based on Boltyanskiy’s theoretical result for
synthesis of optimal control in two-dimensional linear systems [14]. The main result is that the control
signal u(t) has to be “bang-bang” in order to be time-optimal. In other words, it has to be switched
about the extreme points of the convex polygon U of control space. In our case (3), this polygon
is one-dimensional and consists of a segment of line with extreme points u(t) = 0 and u(t) = 1,
which precisely correspond to the allowed values of u (ON and OFF) of the switches. As we will see
later, the time between commutations has to be exactly T/2, i.e., half of the oscillation period T of
the system (3), except for the very first and the very last switch which could be less than T/2. In our
case of study, we analyze time optimal trajectories that consist only of one switching actions, namely
u = 1→ u = 0 or u = 0→ u = 1.

We recall the Pontryagin maximum principle to better understand the reason why the control
function u needs to behave as described above [14]. Let us first define the Hamiltonian of a dynamical
system ẋ = f (x, u) as

H(φ, x, u) = 〈φ, f (x, u)〉. (4)
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where φ is the so-called adjoint function. The goal is to find an optimal control u∗ which transfers the
system from some point x = x0 to a point x = 0 in a minimal time. According to the Pontryagin’s
maximum principle, the optimal solution (x∗, u∗), together with its corresponding adjoint function φ∗

satisfy the following equations:

ẋ = ∂H
∂φ

φ̇ = − ∂H
∂x . (5)

Applying this result on (3), expressed in the form ẋ = Ax + Bu, we obtain

ẋ = Ax + Bu

φ̇ = −ATφ. (6)

Moreover, the optimal solution u∗ needs to maximize the Hamiltonian (4) for almost every t, namely:

H(φ∗, x∗, u∗) = sup
u∈U
H(φ∗, x∗, u) (7)

which implies

φ∗T(Ax∗ + Bu∗) = sup
u∈U

φ∗T(Ax∗ + Bu) (8)

φ∗T Bu∗ = sup
u∈U

φ∗T Bu. (9)

As stated in Section 2.1, we are interested in solutions with γ ∈ [0, 2), i.e., with underdamped
oscillatory dynamics. Accordingly, from the Equation (6), we can directly deduce the adjoint solution
φ∗, as follows:

φ∗ = reλt

(
cos(µt + α)

sin(µt + α)

)
(10)

with some real α, r. Here, λ is the damping envelope and µ = 2π/T, the damped angular frequency of
oscillation. This means that the vector φ∗ oscillates with the same period T, as the characteristic period
of the original system (3) around the origin, since the imaginary part of the eigenvalues of −AT and
A are the same. Now, we take a look to the Equation (9). The goal is to maximize the scalar product
φ∗T Bu. When the vector φ∗(t) appears in the upper half-plane of R2, φ∗(t)T Bu is maximum if u = 1.
Similarly, when the vector φ∗(t) belongs to the lower half-plane, the scalar product is maximized
with u = 0. Unfortunately, it is not possible to explicitly find the initial point φ∗(0), which makes
difficult the calculation of the time in which the control u(t) has to be switched for the first time.
What we can assure is that u(t) switches every T/2 except for the very first, and the very last time.
To solve this problem, we will make use of the solution proposed by Boltyansky in the same work [14],
which consists of constructing the set of all possibles optimal trajectories from the final point x = 0
backwards in time.

3. Single-Switching in Optimal Time (SSOT) Region in the Buck Converter

In a buck power converter, we are interested in driving the system towards an operation point
given by: (x∗1 , x∗2) := (x1re f , γx1re f ) with x1re f = Vre f /E. Vre f is such that

x1re f ∈ [um, uM], with 0 ≤ um ≤ uM ≤ 1. (11)

From a practical point of view, um = 0.1, uM = 0.8, the values that are outside this range are
usually not desired. Moreover, we are only interested in values of γ ∈ (0, 2), leading to a focus-type of
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dynamics. To this end, we shall define the area of the state space that include the set of all possible
desired points given the restrictions above as Pg:

Pg := {(x1, x2) | um ≤ x1 ≤ uM ∩ x2 > γ1x1 ∩ x2 < γ2x1, 0 < γ1 < γ2 < 2} (12)

An schematic illustration of Pg is shown in Figure 2a.
We will focus on the case in which the system is operating at a given point and, due to a variation

in the system’s parameters, we need to drive the dynamics towards a new operation point in a
single switching action. With this, we are effectively disregarding far from equilibrium dynamics
and restricting our analysis to the subset Pp ⊂ Pg which can be time-optimally driven into Pp itself
with a single commutation (u = 1 → u = 0 or viceversa). This subset will depend on the changes
of γ and x1re f .

0 0.5 1
0

0.5

1

1.5

x1

x
2

γ 2
x 1

γ1x1

2x
1

uMum

(a) Pg region (shaded area) as defined in (12).
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γ 2
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L

(b) An operation point x∗ can be reached via the trajectory
u = 0 (blue line) or u = 1 (red line).

Figure 2. Pg region and generic partition of Pg in the sets A, B and C.

Let us focus on Figure 2b and the generic operation point denoted by x∗ = (x∗1 , x∗2). This point
can only be reached via a trajectory with u = 0 or with u = 1. The parts of the trajectories that reach x∗

in less than T/2 define indeed the optimal switching surface composed by the trajectory segments S0

and S1.
In order to construct the Pp set, let us integrate backwards in time during T/2 starting from x∗

and u = 1. This generates the switching surface S1. For the trajectory to be time optimal, the control
action cannot be active for more than T/2, therefore, further backward integration has to be made
with u = 0 leading to the trajectory segment L, as stated in Section 2.2. A similar construction can be
performed starting with u = 0, which generates the switching surface S0 by backwards integration
during T/2. Nevertheless, it turns out that the furthest point of S0, denoted in the scheme as P will
always lay in the third quadrant for any operation point x∗ in Pg. For this reason, the construction
described before, divides the set Pg in three sets: A,B, C (see Figure 2b). The set C turns out to be
empty for some operation points (x∗1 , x∗2), and will be of interest later.

Now, starting from any point of the region A, the point x∗ can be reached with a control sequence
u = 1→ u = 0 (i.e., with a single switching). Every trajectory initiated by u = 1 starting at any point
in A will intersect the switching surface S0 in time t < T/2 and, consequently, reach x∗ in optimal
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time t∗ < T. In a similar way, if an initial point lays within the set B then the optimal control is the
sequence u = 0→ u = 1.

The last set C contains the points that require two switches to reach x∗ in optimal time in the
following way:

u(t) =


0, t ∈ [0, t0)

1, t ∈ [t0, t0 + T/2)

0, t ∈ [t0 + T/2, t0 + T/2 + t1]

(13)

with some positive t0, t1. To any operation point x we define the corresponding set Cx as depicted in
the Figure (note, that the set Cx could be empty for some x). Our task now is to calculate the union

C0 =
⋃

x∈Pg

Cx, (14)

which define the inadmissible set. The admissible set Pp will then be Pg \ C0.
With the aim of finding C0, we will apply the following canonical transformation to the system (3)

with a properly calculated matrix P:

y = P−1x, P =

(
γ
2

√
4−γ2

2
1 0

)
, (15)

in such a way to represent the system in the canonical form

ẏ =

(
λ −µ

µ λ

)
y + P−1

(
0
1

)
u, (16)

where λ = − γ
2 and µ = 1

2

√
4− γ2. With this transformation, it is easy to see that, for u = 0

(corresponding to the case in which equilibrium is at the origin), the radial distance of the points along
any trajectory of the system can be expressed in polar coordinates as

r = r0e(α+α0)
λ
µ . (17)

Similarly, when u = 1, the equilibrium is now translated to the point F = −P−1 A−1(0, 1)T and radius
of each point in the trajectory is also given by (17) measured from F.

As stated before, the switching surface S1 is also a trajectory with a focus in F. Since the
equilibrium point x∗ lays along the line OF it can be expressed as x∗ = cF, 0 ≤ c ≤ 1 (see Figure 3a).
Now, let us define the new operation point x′ := c′F with c′ < c, with polar coordinates r′0, α′0 and
α′0 = α0. With these considerations the following quotient is always guaranteed to be larger than 1:

r′0
r0

=
‖P−1(c′F− F)‖
‖P−1(cF− F)‖ =

1− c′

1− c
> 1. (18)

This implies that the switching surface Sx∗
1 , which corresponds to the optimal surface for x∗,

is always at the interior (respect to the focus F) of the switching surface Sx′
1 . Let us build the sets

B′ and C ′, which correspond to the operation point x′ in the same manner as B, C were built for x∗

(see Figure 3a). From (18) we deduce that B ⊂ B′ and, consequently, C ⊃ C ′.
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(a) The optimal switching surfaces of a generic
operation point x∗ and a perturbed one x′.
The equilibrium for u = 1 is shown in the scheme as F.
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of the switching surfaces, as in Figure 2.

Figure 3. Scheme of the problem statement.

Using this fact, and recalling Equation (14) we obtain:

C0 =
⋃

x∈{Pg |x1=uM}
Cx. (19)

This means that we are able to construct the set C0 only by making use of the operation points laying
on the line x1 = uM.

Next, we show that C0 can be calculated by making use of a single operation point on the
line x1 = uM, corresponding to the smallest value of the load, namely γ1. To do this, we need to
demonstrate that given two points x1 = (x1

1, x1
2), x2 = (x2

1, x2
2) of Pg, it turns out that

∀x1∀x2 ∈ Pg : x1
1 = x2

1, x1
2 < x2

2 =⇒ Cx1 ⊃ Cx2 , (20)

Let x1 and x2 be chosen as from Equation (20). Let us pass to the canonically transformed system
via the matrix P−1

x1 according to Equation (15). We now prove that, for every ray from O, the radial
distance r̃1 to the point of the trajectory L of y1 is always smaller than r̃2—that of y2 (see Figure 3b).
Since γ2 > γ1, and so λ2

γ2
< λ1

γ1
, we can estimate the quotient between those two distances, as follows:

r̃1

r̃2
=

r1e−(α+α0)
λ1
γ1

r2e−(α+α0)
λ2
γ2

<
r1

r2
,

where r1, r2 are the initial radii and α0 the angle, see Figure 3b. Accordingly, it is sufficient to show
r1
r2

< 1.
Secondly, we define the vector v2 = (1, γ2)

T , which points to the focus that generates the
switching surface Sx2

1 . Under the canonical transformation v2 is mapped to z2 = P−1
x1 v2. Therefore,

the radial distance r2 to the endpoint of Sx2

1 can be expressed as

r2 = ‖z2‖ (1− uM)e−π
λ2
µ2 + ‖z2‖ = ‖z2‖

(
1 + (1− uM)e−π

λ2
µ2

)
. (21)
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Here, we used the fact that the vectors to the endpoints of the surfaces Sx1,2

1 and corresponding vectors
v1,2 are colinear. Similarly, for the vector v1 = (1, γ1)

T , which points to the focus generating the
switching surface Sx1

1 , is mapped to z1 = P−1
x1 v1 and the radial distance r1 is:

r1 =

(
‖z1‖ (1− uM)e−π

λ1
µ1 + ‖z1‖

)
e−θ

λ1
µ1 = ‖z1‖

(
1 + (1− uM)e−π

λ1
µ1

)
e−θ

λ1
µ1 , (22)

where θ is the angle between z1 and z2:

θ = arccos
〈z1, z2〉
‖z1‖ ‖z2‖

, (23)

and

‖z1‖ =
2√

4− γ2
1

and ‖z2‖ =
2
√

γ2
2 − γ1γ2 + 1√

4− γ2
1

. (24)

Therefore, we have:

r1

r2
≤ ‖z1‖
‖z2‖

e−θ
λ1
µ1 =

e−θ
λ1
µ1√

γ2
2 − γ1γ2 + 1

. (25)

After the application of the mean value theorem and some straightforward algebra it can be seen that
for every γ2 > γ1, the r.h.s of Equation (25) leads to r1

r2
< 1. From this inequality, it is concluded

that the set C constructed with the operation point with the smallest possible γ contains all of the
inadmissible regions of operation points with larger γ:

x1
1 = x2

1 = uM, x1
2 < x2

2 =⇒ Cx2 ⊂ Cx1 . (26)

Hence, the set C0 (see Equation (19)) is built using the optimal trajectory passing through
x = (uM, uMγ1):

C0 = Cx
x=(uM ,uMγ1)

(27)

Now, we are left with approximating the admissible region Pp which can be made calculating the
intersection of L with the boundaries of the region Pg, which we denote with the points Q1 and Q2

(see Figure 4a). Let us start with Q1 the intersection between L and the segment OF2 with F2 = (1, γ2) .
One can verify that the coordinate Q1 can be expressed as:

Q1 = cF2, with c =
|OQ1|
|OF2|

=
1√

γ2
2 − γ1γ2 + 1

(
1 + (1− uM)e

πγ1√
4−γ2

1

)
e

θγ1√
4−γ2

1 . (28)

Similarly, Q2 can be obtained by solving the angle θ, when the x1 coordinate of the point in the
trajectory L reaches uM. This can be found by solving the following equation with respect to θ:〈

r1P

(
cos(α0 − θ)

sin(α0 − θ)

)
,

(
1
0

)〉
= uM, (29)

r1

〈(
cos(α0 − θ)

sin(α0 − θ)

)
, PT

(
1
0

)〉
= uM. (30)
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where α0 = arg(P−1
x1 v1) = arctan 2−γ2

1

γ1
√

4−γ2
1
. Substituting the expressions for r1, λ1, µ1 and P we obtain:

2√
4− γ2

1

(
1 + (1− uM)e

πγ1√
4−γ2

1

)
e

θγ1√
4−γ2

1

γ1

2
cos(α0 − θ) +

√
4− γ2

1

2
sin(α0 − θ)

 = uM. (31)

Let the solution of θ in Equation (31) be θ̄, this allows for us to express the coordinates of Q2 as

Q2 =

(
uM,

uM cos(α0 − θ̄)

sin
(
arcsin γ1

2 + α0 − θ̄
)) . (32)

Once Q1 and Q2 have been obtained, a linear fit can be performed between these two points to
straightforwardly approximate the curved segment of the trajectory. The resulting Pp region after this
procedure is shown in the red shaded area in Figure 4a.
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(a) General procedure to approximate the
single-switching in optimal time (SSOT) admissible
region given γ1 and γ2.
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(b) Particular case in which Q1 = Q2,
which corresponds to a design case where γ2

is known.

Figure 4. Pp regions in two sample design cases.

4. Examples with Predefined Design Criteria

Now, we make use of the analytic approximation to the SSOT region Pp to describe some
applications in the design of a buck converter. Very often, a power converter is designed with
nominal specifications of maximum or minimum working load. A useful question that the geometrical
methodology that we proposed here can answer is: given that there is a predefined maximum
(or minimum) load, what is the smallest (largest) variation of the load such that the system is still able
to reach the operation point in SSOT?

Let us first focus on the case in which a load increase is presented to the system. If the
converter is working at minimum nominal load, which we denote as γ1, what is the Pp region if
the system is allowed to vary its load to the maximum allowed γ2? Here, both γ1 and γ2 are given,
and we are only left with calculating the points Q1 and Q2 as explained in Section 3. For instance,
introducing the values of γ1 = 0.1 and γ2 = 1.6 in Equations (28) and (32), leads to the coordinates
Q1 = (0.5936, 1.1872) and Q2 = (0.8, 1.05) which is precisely the case that is depicted in Figure 4a.
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Similarly, the second problem refers to the case in which the converter is working with the
maximum nominal load, which we will set to γ2 and we want to calculate the minimum allowed
change in the load γ1 such that the region bounded by γ1 and γ2 leads to the SSOT region. Here, γ2 is
known and γ1 is unknown. However from Figure 4b, it can be seen that set-up corresponds to the case
in which Q1 = Q2. For this case we only need to set c = uM in Equation (28) and solve with respect
to γ1:

uM

√
γ2

2 − γ1γ2 + 1(
1 + (1− uM)e

πγ1√
4−γ2

1

) = e
θγ1√
4−γ2

1 . (33)

For γ2 = 1.8 and uM = 0.8, this results in γ1 ≈ 0.32, as can depicted in Figure 4b. Of course, this last
calculation depends on the maximum output voltage uM. In Figure 5, we can see the variation of
γ1 with respect to γ2 at different uM. Note, that for uM ≈ 0.618, γ2 = 2 results in γ1 = 0, in other
words, the corresponding region C0 (the inadmissible region of Pg) is indeed empty. An alternative
derivation of the Pp region of these two sample design criteria using the original formulation of the
system without canonical transformations can be found in the Appendix A.
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Figure 5. γ1 calculated with respect to a given γ2 in the special case Q1 = Q2 (see Figure 4b).

5. Numerical Simulations

In this section, we show the numerical results for two different working conditions, namely
under variations of the reference voltage and the system’s load. The parameters that are used for
the simulation are: L = 2 mH, C = 40µF, and E = 40 V. Variations in γ are obtained varying R.
The switching period of the MOSFET is assumed to be Ts = 25 µs, which is equivalent to T = 0.08835
in the dimensionless system according to the transformation t = τ/

√
LC.

5.1. Changes in the Reference Voltage and Load

On one hand, in Figure 6a, we show the results obtained by applying the time optimal control
to the system, assuming a constant load (constant γ) with several sudden variations in the reference
voltage. As can be seen from the figure, the output of the system reaches the final value in optimal time
(for the cases considered here this time corresponds roughly to three to four dimensionless time units).
Moreover, it is also possible to observe that a single switch is used to control the system (see transition



Micromachines 2020, 11, 834 11 of 17

from blue to red in the time trace). Once the system has reached the desired value, a high frequency
controller needs to be used to maintain the output close to the reference point (purple region). For this
particular case, we have made use of proportional controller to compensate the duty cycle at the
reference value and supply the value of the duty cycle in steady state. On the other hand, in Figure 6b,
we show the results when the reference voltage is held constant (x1re f = 0.6) and γ varies. As in the
previous case, the system converges to the operation point in optimal time which is roughly the same,
as in the case of reference variations. It can be observed that the system handles better the changes
in the reference when compared with the variations in the load (see larger over/under-shoots) in
Figure 6b with respect to Figure 6a. This observation can be understood on the basis that a change in
the load implies a change in the intrinsic dynamics of the system, while changes solely in the reference
does not. It shall be noticed that the small oscillations observed in the purple traces are a consequence
of the finite commutation frequency of the MOSFET. An ideal switch with infinite frequency would
lead to a completely flat segment at the reference value.
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(a) Time trace of the output voltage. Here γ = 1.5
and x1re f varies.
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(b) Time trace of the output voltage. Here x1re f = 0.6
and γ varies.

Figure 6. Independent variations in the reference voltage and in the load parameter. In both figure
the changes are performed every eight time units. The blue (red) segment of the trace corresponds to
the dynamics of the converter with u = 0 (u = 1). The purple segment illustrates the dynamics in the
neighborhood of the operation point driven by a high frequency proportional controller. In (a), x1re f
changes from x1re f = 0.7 to x1re f = 0.3 to x1re f = 0.6 to x1re f = 0.1 to x1re f = 0.8 keeping a value of
γ = 1.5. In (b), γ changes from γ = 1.75 to γ = 0.75 to γ = 1.5 to γ = 0.2 to γ = 1.88, while keeping
x1re f = 0.6.

With the aim of determining the time taken by the system to reach the steady operation at
different x1re f variations, we show in Figure 7 the settling times when the system transits from an
initial reference value to another, at several values of fixed load, namely, γ = 0.1, γ = 1, and γ = 1.9.
For a given γ, the maximum settling time is obtained for step-down transitions, i.e., for changes from a
large reference to a lower value. It can be also noticed that in general the settling time tends to increase
for increasing values of γ, leading to the largest value when the load resistance is minimal. This is
not surprising, since the natural frequency of oscillation of the system is related with the quantity

µ =

√
4−γ2

2 (see Equation (16)), which increases with decreasing γ. Currently, since the settling time of
the system closely depends on how fast the trajectory evolves towards the optimal switching surface,
it is expected that systems with faster intrinsic dynamics lead to smaller settling times.

Similarly, Figure 8 depicts the settling times between different transitions of γ when x1re f is fixed.
In this case as x1re f increases the settling time does. This behavior is explained by the fact that the
distance between the operation points when transitioning from one γ to another, are small when
compared with the same transition at large x1re f values. From the trend of these graphics, it is expected
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that the worst expected settling times required to move from an operation point to another within the
admissible region Pp, corresponds to the transition from upper right corner operation points to the
lower left ones. It shall be noticed that the uncolored region in Figure 8c correspond to transitions
outside Pp that require more than one switching action.
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Figure 7. Settling times for different variations of x1re f at fixed values of γ.

0.5 1 1.5

 - initial

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 -
 fi

na
l

0

0.5

1

1.5

2

2.5

3

3.5

4

(a) x1re f = 0.1

0.5 1 1.5

 - initial

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 -
 fi

na
l

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) x1re f = 0.6

0.5 1 1.5

 - initial

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

 -
 fi

na
l

0

0.5

1

1.5

2

2.5

3

3.5

4

(c) x1re f = 0.8

Figure 8. Settling times for different variations of γ at fixed values of x1re f .

5.2. Simultaneous Changes in the Reference Voltage and Load

Finally, we are interested in analyzing the behavior of the system when both parameters,
load resistance, and reference voltage change simultaneously. In particular, in Figure 9 we simulate the
system with the following variations: At t = 0 the system starts from x1re f = 0.75, γ = 1.9 and the
new desired operation point is changed to x1re f = 0.5 and γ = 0.32. After, at t = 8, x1re f changes to 0.8
and γ to 1.99. Just at t = 16 other change is introduced and x1re f = 0.1 and γ = 0.1. Finally, at t = 24,
a further change is performed with x1re f = 0.8, γ = 1.99. As in the previous subsection, a high
frequency proportional controller has been applied when the the trajectory reaches the neighborhood
of the operation point. Once again, the settling times are ≈ 3 time units, which correspond in real units
to settling times in the order of 1 ms.
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Figure 9. Time traces of the output voltage for simultaneous variations of γ and x1re f . Here, four sudden
changes are shown at t = 0, t = 8, t = 16 and t = 24 characterized by the following variations of the
duple (x1re f , γ): (0.75, 1.9)→ (0.5, 0.32)→ (0.8, 1.99)→ (0.1, 0.1)→ (0.8, 1.99). The color code of the
time trace, as in Figure 6.

6. Conclusions and Final Remarks

In this paper we made use of the Pontryagin’s maximum principle to derive the admissible
region Pp in the state space of a synchronous buck DC/DC converter, which can be reached in optimal
time with a single commutation (SSOT) from any point within the same region. In doing so, we
made use of a geometric analysis of the trajectories described by the buck converter in canonical
coordinates to better understand the admissible subset of the phase plane fulfilling the SSOT condition.
Furthermore, we studied two different design set-ups of the buck converter, and used the results
obtained previously in order to illustrate the usage of our calculations. Finally, we showed, by means
of numerical simulations, that the proposed time optimal control performs adequately under voltage
and load variations, both independently and simultaneous.

The most critical procedure in the design of the optimal control studied here is the ability to
calculate on-line the proper commutation time, i.e., the time in which the trajectory hits the optimal
switching surface, which strongly depends on parameter variations, as explained throughout the text.
This problem has been previously identified and several solutions proposed in the form of look-up
tables [11], near-time optimal solutions [25] and raster surfaces [26]. These methodologies can be used
as a complement to the theoretical derivations presented here.

The difficulty of calculating the switching times online is nonetheless compensated with a
significant reduction in the settling times of the system. In the simulations shown here, we have
shown settling times t∼3 time units (less than 1 ms in real time units). As a comparison, the same
buck converter model with similar parameter values has been recently used to design a globally stable
controller [10]. The settling times reported there are 10 times larger than those shown here. It shall be
noticed that γ contains the information of the system’s parameters in a single value. This amounts to
say that different combinations of L and C can be chosen in such a way to modify the time scale of the
system’s response and the ranges of R in which the buck converter can operate under the damped
conditions studied here.

It is also worth noticing that the optimal control presented here is useful during the transient
behavior following a perturbation from the usual operation point. After the trajectory has reached
the neighborhood of this point, we are constrained to use high frequency regulation in order to
maintain the trajectory within the neighborhood. Indeed, we saw that the system’s performance
in steady state strongly depends on the commutation frequency of the MOSFET. Limitations of the
commutation frequency produces undesired oscillations around the operation point and effectively
increases the settling times. Additional controllers, such as P or PIs in the high frequency steady
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operation, can be used in order to better handle undesired oscillations and/or reject disturbances.
Additionally, further optimization can be performed during this high frequency regime, which we
expect to explore in the future.

Throughout this manuscript, we have chosen to study the buck converter as a proof-of-concept
to extend the ideas of estimating the SSOT regions in other physical problems of interest. We predict
that such an estimation can be also performed in other piece-wise linear converters, such as boost,
buck-boost, and boost-flyback converters by making use of a similar geometrical approach shown here.
However, it shall be noticed that most power converters (boost, buck-boost, and flyback) are different
from the buck converter from a mathematical perspective. For instance in the buck converter the action
of the switching action amounts to shift the equilibrium without changing its properties. Meanwhile,
the commuting action in the other converters produce changes in the topology of the system (different
eigenvalues), a property that may require additional calculations.
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Appendix A

In this appendix we reproduce the results in Section 4 making use of the original system and using
a more intuitive numerical approach (although it must be noticed that the methods are equivalent).
Let us start rewriting the original system here:(

v̇
i̇

)
=

(
− 1

RC
1
C

− 1
L 0

)(
v
i

)
+

(
0
E
L

)
u (A1)

With L = 2 mH, C = 40µF and E = 40 V. R varies according to the changes in the load and its limits
are given by the limits of γ value in the problem statement. Different choices of L and C change also
the range of variation of R. To compute the solution of the proposed problem using these equations,
we recall that:

1. γ = 1
R

√
L
C . As the changes are given in the load (resistance), we fix the values of L and C and

compute the limiting value of Rlim such that it results in a γ = 2. This will correspond to the
lowest admissible value for R.

2. As γ is inversely proportional to R, γ1 corresponds to the highest value of the resistance and γ2

corresponds to the lowest value of the load resistance.
3. x1re f = vre f /E; then 0.1E < vre f < 0.8E. This means that after the value of the source power (E)

is known, the limits of the vre f are known too.
4. With an adequate switching frequency, any reference point given by (v∗, i∗) = (vre f , vre f /R) can

be reached, where vre f = ūE
5. The two equilibria of the system according to the switch position are (E, E/R) when u = 1,

and (0, 0), when u = 0.

Subregion Pp for R ∈ (Rlow, Rhigh), where Rlow and Rhigh are known. This case corresponds
to the case in which γ1 and γ2 are known. We propose to find the set of reachable points starting from
0.8E (1, 1/Rhigh). To solve the problem it is necessary to find two key points: The first one is given
by the coordinates of the initial condition vre f IC (1, 1/Rlow)

T with vre f IC unknown, whose orbit ends
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at the point 0.8E (1, 1/Rhigh)
T when R = Rhigh after τ = τ1 + T/2 and the control action takes the

sequence u = 0→ u = 1. This is equivalent to the point Q2 in Figure 4a. The second point is given by
the intersection of this orbit with the line vre f = 0.8E (see point Q1 in the same figure). The upper part
of the region Pg is finally bounded -at least approximately- by a straight line from the first point to
second one. With this in mind, we proceed to find the first point solving the matrix equation

0.8E

(
1

1/Rhigh

)
= vre f IC eA(T/2+t1)

(
1

1/Rlow

)
+ A−1

(
eAT/2 − I

)
B (A2)

with T/2 = 2πRhighC
√

L/
√

4R2
lowC− L. After, the second point is given by the intersection of the

solution starting from vre f IC (1, 1/Rlow)
T with the line given by v = 0.8E after an unknown time τ2.

This point has coordinates 0.8E (1, 1/r), where r is unknown. To solve this we need to find the solution
of the equation

0.8E

(
1

1/r

)
= vre f IC eAt2

(
1

Rlow

)
(A3)

Once we have solved for r and τ2 we can give and approximated value to the region Pp as

Pp = {i ≥ v/Rhigh} ∩ {0.1E ≤ v ≤ 0.8E} ∩ {i ≤ v/Rlow} ∩ {i ≤ mv + b} (A4)

where b = vre f IC (1−m Rlow)/Rlow and

m =
0.8E Rlow − vre f IC r

(0.8E− vre f IC )(Rlow r)
.

Subregion Pp for R ∈ [Rlow, Rhigh] with Rlow known. This corresponds to the case in which
γ2 (Rlow) is known and Rhigh (γ1) is unknown. To compute Rhigh we take the point 0.8E (1, 1/Rlow)

T

which corresponds to upper point on the region Pg, which lies in the intersection between the lines
v = 0.8E, and i = v/Rlow. With this condition and making u = 0, the system evolves during an
unknown time τ1 to reach the unknown point v(τ1)(1, 1/Rhigh)

T . The solution can be easily found as:

X := v(τ1)

(
1

1/Rhigh

)
= 0.8EeAτ1

(
1

1/Rlow

)
(A5)

Here eAτ is the state transition matrix of the system when R = Rhigh. Now, starting from this point

and considering u = 1 during a time τ = T/2 = 2πRhighC
√

L/
√

4R2
highC− L (corresponding to

the oscillation period time for the damped system), the solution must reach the desired final point
0.8E (1, 1/Rhigh)

T ; that is, the following equation must be satisfied:

0.8E

(
1

1/Rhigh

)
= eAT/2X + A−1

(
eAT/2 − I

)
B (A6)

where A and B are defined by the Equation (1) and I is the identity matrix of dimension 2. The previous
equation can be expressed as

0.8E

(
1

1/Rhigh

)
= 0.8E eA(T/2+τ1)

(
1

Rlow

)
+ A−1

(
eAT/2 − I

)
B (A7)
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where we are left with the unknown variables are Rhigh and t1. In this way, the region Pp is given by:

Pp = {i ≥ x1/Rhigh} ∩ {0.1 E ≤ v ≤ 0.8 E} ∩ {i ≤ x1/Rlow} (A8)

similar to the Figure 4b.

References

1. Kolli, A.; Gaillard, A.; De Bernardinis, A.; Bethoux, O.; Hissel, D.; Khatir, Z. A review on DC/DC converter
architectures for power fuel cell applications. Energy Convers. Manag. 2015, 105, 716–730. [CrossRef]

2. Taghvaee, M.; Radzi, M.; Moosavain, S.; Hizam, H.; Marhaban, M.H. A current and future study on
non-isolated DC–DC converters for photovoltaic applications. Renew. Sustain. Energy Rev. 2013, 17, 216–227.
[CrossRef]

3. Yalamanchili, K.P.; Ferdowsi, M. Review of multiple input DC-DC converters for electric and hybrid
vehicles. In Proceedings of the 2005 IEEE Vehicle Power and Propulsion Conference, Chicago, IL, USA, 7–9
September 2005; pp. 160–163.

4. Labbe, B.; Allard, B.; Lin-Shi, X.; Chesneau, D. An integrated sliding-mode buck converter with switching
frequency control for battery-powered applications. IEEE Trans. Power Electron. 2012, 28, 4318–4326.
[CrossRef]

5. Priewasser, R.; Agostinelli, M.; Marsili, S.; Straeussnigg, D.; Huemer, M. Comparative study of linear and
non-linear integrated control schemes applied to a Buck converter for mobile applications. Elektrotechnik und
Inf. 2010, 127, 103–108. [CrossRef]

6. Hossain, M.; Rahim, N. Recent progress and development on power DC-DC converter topology, control,
design and applications: A review. Renew. Sustain. Energy Rev. 2018, 81, 205–230. [CrossRef]

7. Sira-Ramirez, H.J.; Silva-Ortigoza, R. Control Design Techniques in Power Electronics Devices; Springer Science
& Business Media: Berlin/Heidelberg, Germany, 2006.

8. Alsmadi, Y.M.; Utkin, V.; Haj-ahmed, M.A.; Xu, L. Sliding mode control of power converters: DC/DC
converters. Int. J. Control 2018, 91, 2472–2493. [CrossRef]

9. Guo, L.; Hung, J.Y.; Nelms, R. PID controller modifications to improve steady-state performance of digital
controllers for buck and boost converters. In Proceedings of the APEC Seventeenth Annual IEEE Applied
Power Electronics Conference and Exposition (Cat. No. 02CH37335), Dallas, TX, USA, 10–14 March 2002;
Volume 1, pp. 381–388.

10. Angulo-Garcia, D.; Angulo, F.; Osorio, G.; Olivar, G. Control of a DC-DC buck converter through contraction
techniques. Energies 2018, 11, 3086. [CrossRef]

11. Soto, A.; de Castro, A.; Alou, P.; Cobos, J.A.; Uceda, J.; Lotfi, A. Analysis of the buck converter for scaling the
supply voltage of digital circuits. IEEE Trans. Power Electron. 2007, 22, 2432–2443. [CrossRef]

12. Cheng, P.; Vasić, M.; Garcia, O.; Oliver, J.A.; Alou, P.; Cobos, J.A. Minimum time control for multiphase buck
converter: Analysis and application. IEEE Trans. Power Electron. 2013, 29, 958–967. [CrossRef]

13. Kirk, D.E. Optimal Control Theory: An Introduction; Courier Corporation: North Chelmsford, MA, USA, 2004.
14. Pontryagin, L.; Boltyanskii, V.; Gamkrelidze, R.; Mishchenko, E. The Mathematical Theory of Optimal

Processes. In L. S. Pontryagin Selected Works; CRC Press: Boca Raton, FL, USA, 1986; Volume 4.
15. Nazarzadeh, J.; Jafarian, M.J. Applying bilinear time-optimal control system in boost converters.

IET Power Electron. 2013, 7, 850–860. [CrossRef]
16. Shariatmadar, S.; Jafarian, S.M.J. Application of minimum-time optimal control system in buck-boost

bi-linear converters. Eng. Technol. Appl. Sci. Res. 2017, 7, 1753–1758.
17. Jafarian, M.; Nazarzadeh, J. Time-optimal sliding-mode control for multi-quadrant buck converters.

IET Power Electron. 2011, 4, 143–150. [CrossRef]
18. Dhople, S.V.; Kim, K.A.; Domínguez-García, A.D. Time-optimal control in dc-dc converters: A maximum

principle perspective. In Proceedings of the 2014 IEEE Applied Power Electronics Conference and Exposition
(APEC 2014), Fort Worth, TX, USA, 16–20 March 2014; pp. 2804–2808.

http://dx.doi.org/10.1016/j.enconman.2015.07.060
http://dx.doi.org/10.1016/j.rser.2012.09.023
http://dx.doi.org/10.1109/TPEL.2012.2226754
http://dx.doi.org/10.1007/s00502-010-0705-6
http://dx.doi.org/10.1016/j.rser.2017.07.017
http://dx.doi.org/10.1080/00207179.2017.1306112
http://dx.doi.org/10.3390/en11113086
http://dx.doi.org/10.1109/TPEL.2007.909305
http://dx.doi.org/10.1109/TPEL.2013.2256798
http://dx.doi.org/10.1049/iet-pel.2013.0288
http://dx.doi.org/10.1049/iet-pel.2009.0316


Micromachines 2020, 11, 834 17 of 17

19. Grigore, V.; Hatonen, J.; Kyyra, J.; Suntio, T. Dynamics of a buck converter with a constant power
load. In Proceedings of the PESC 98 Record. 29th Annual IEEE Power Electronics Specialists Conference
(Cat. No. 98CH36196), Fukuoka, Japan, 22 May 1998; Volume 1, pp. 72–78.

20. Sun, J.; Xu, M.; Ren, Y.; Lee, F.C. Light-load efficiency improvement for buck voltage regulators. IEEE Trans.
Power Electron. 2009, 24, 742–751.

21. Ahn, Y.; Jeon, I.; Roh, J. A multiphase buck converter with a rotating phase-shedding scheme for efficient
light-load control. IEEE J. Solid-State Circuits 2014, 49, 2673–2683. [CrossRef]

22. Alghamdi, M.K.; Hamoui, A.A. A Spurious-Free Switching Buck Converter Achieving Enhanced
Light-Load Efficiency by Using a ∆Σ-Modulator Controller With a Scalable Sampling Frequency. IEEE J.
Solid-State Circuits 2012, 47, 841–851. [CrossRef]

23. Wang, J.M.; Wu, S.T.; Jane, G.C. A novel control scheme of synchronous buck converter for ZVS in light-load
condition. IEEE Trans. Power Electron. 2011, 26, 3265–3273. [CrossRef]

24. Fossas, E.; Zinober, A. Adaptive Tracking Control of Nonlinear Power Converters. IFAC Proc. 2001, 34,
267–272.

25. Yousefzadeh, V.; Babazadeh, A.; Ramachandran, B.; Pao, L.; Maksimovic, D.; Alarcon, E. Proximate
time-optimal digital control for dc-dc converters. In Proceedings of the 2007 IEEE Power Electronics
Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 124–130.

26. Pitel, G.E.; Krein, P.T. Minimum-time transient recovery for DC–DC converters using raster control surfaces.
IEEE Trans. Power Electron. 2009, 24, 2692–2703. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/JSSC.2014.2360400
http://dx.doi.org/10.1109/JSSC.2012.2185179
http://dx.doi.org/10.1109/TPEL.2011.2142324
http://dx.doi.org/10.1109/TPEL.2009.2030805
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	Buck Power Converter
	Time Optimal Control

	Single-Switching in Optimal Time (SSOT) Region in the Buck Converter
	Examples with Predefined Design Criteria
	Numerical Simulations
	Changes in the Reference Voltage and Load
	Simultaneous Changes in the Reference Voltage and Load

	Conclusions and Final Remarks
	
	References

