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Abstract: The rational-based neuro-transfer function (neuro-TF) method is a popular method for
parametric modeling of electromagnetic (EM) behavior of microwave components. However,
when the order in the neuro-TF becomes high, the sensitivities of the model response with respect
to the coefficients of the transfer function become high. Due to this high-sensitivity issue, small
training errors in the coefficients of the transfer function will result in large errors in the model output,
leading to the difficulty in training of the neuro-TF model. This paper proposes a new decomposition
technique to address this high-sensitivity issue. In the proposed technique, we decompose the original
neuro-TF model with high order of transfer function into multiple sub-neuro-TF models with much
lower order of transfer function. We then reformulate the overall model as the combination of the
sub-neuro-TF models. New formulations are derived to determine the number of sub-models and the
order of transfer function for each sub-model. Using the proposed decomposition technique, we can
decrease the sensitivities of the overall model response with respect to the coefficients of the transfer
function in each sub-model. Therefore, the modeling approach using the proposed decomposition
technique can increase the modeling accuracy. Two EM parametric modeling examples are used to
demonstrate the proposed decomposition technique.

Keywords: decomposition; microwave components; neural networks; parameter extraction;
parametric modeling; rational-based transfer function

1. Introduction

Parametric modeling of electromagnetic (EM) behaviors for microwave components has become
important for EM-based design in the microwave area. EM-based designs can be time-consuming, since
repetitive simulations of EM are usually required due to value adjustments of geometrical parameters.
Parametric models are developed to characterize the relationship between geometrical variables and
EM responses. The developed parametric models allow faster simulation and optimization with
varying values of geometrical parameters and can be subsequently implemented in high-level design
of circuit and system.

An artificial neural network (ANN) has been an important vehicle for parametric modeling of
EM behavior in radio frequency and microwave area [1–6]. ANN benefits from its strong learning and
generalization capabilities and it has been used for a wide variety of microwave applications [7–16].
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The universal approximation theorem [17] of ANNs provides the theoretical foundation that if sufficient
data are used in training, the good accuracy of ANN models can be achieved within the training
region. To develop an accurate parametric model, we train ANNs to learn the nonlinear relationship
between geometrical variables and EM behavior. Apart from modeling microwave passive components,
ANN has also been used for modeling microwave active components, such as power amplifiers [18],
field-effect transistor [19], high electron-mobility transistors [20], etc.

Another popular parametric modeling method is the neuro-transfer function (neuro-TF)
method [21–25], which combines neural networks and transfer functions. In the neuro-TF method,
EM responses of passive components versus frequency are represented by the transfer functions.
The transfer functions in the neuro-TF model are used as prior knowledge, which allows less hidden
neurons and less training data to be used in the model development than the ANN method. The prior
knowledge can help speed up model development and enhance the capability for learning and
generalization of the overall model. One of the popular neuro-TF methods is the pole-residue-based
neuro-TF method [22,23]. This method can deal with high-order problem. However, when the
geometrical variations become large, some poles and residues obtained from vector fitting may vary
discontinuously with respect to geometrical variables. This discontinuity issue leads to the difficulty
of training for the overall model. Hybrid-based neuro-TF method [24] is used to further reduce the
discontinuity issue of poles and residues by converting the most discontinuous poles and residues
into the rational format. Rational-based neuro-TF method [25] is an alternative neuro-TF method,
which does not have the discontinuity issue of poles and residues. The rational-based neuro-TF works
well when the order in the neuro-TF model is low. However, as the order increases, the transfer function
response is very sensitive to the coefficients of the transfer function, leading to the high-sensitivity
issue. The high-sensitivity issue can result in the difficulty of training for the overall model when the
order in the neuro-TF model is high. How to solve the high-sensitivity issue in the rational-based
neuro-TF modeling method is a challenging topic.

This paper proposes a new decomposition technique for developing a rational-based neuro-TF
model for EM microwave components, addressing the challenge of high-sensitivity issue. The proposed
technique decomposes the single neuro-TF model with high order into multiple sub-neuro-TF models
with much lower order and reformulates the overall neuro-TF model as the combination of the
sub-neuro-TF models. New formulations have been derived for determination of the number of
sub-neuro-TF models and the order of each sub-neuro-TF model. The proposed decomposition
technique can decrease the sensitivities of the overall model response with respect to the coefficients of
the transfer function, improving the overall model accuracy over the existing rational-based neuro-TF
method. Compared with the existing pole-residue-based neuro-TF method, the proposed neuro-TF
method has fewer sub-neuro-TF models and less discontinuity issue in each sub-neuro-TF model,
achieving better overall model accuracy.

We organize this paper as follows. Section 2 describes the high-sensitivity issue in the
existing rational-based neuro-TF method. Section 3 provides a detailed description of the proposed
decomposition technique and the proposed decomposition technique for developing the proposed
rational-based neuro-TF model. Section 4 demonstrates the proposed decomposition technique by two
EM examples. Section 5 concludes the paper.

2. The High-Sensitivity Issue in the Existing Rational-Based Neuro-TF Method

The existing rational-based neuro-TF modeling method [25] requires a parameter extraction
process for extraction of the coefficients of the transfer function numerator and denominator in the
neuro-TF model for each geometrical parameter sample. The existing method can be well-functioning
if the geometrical variations are small and/or the order of the transfer function in the neuro-TF model
is low. However, the existing neuro-TF method may not be suitable to address the situations where
geometrical variations become large and/or where the order of the transfer function becomes high.
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When the geometrical variations are small, the relationship between the geometrical variables
and the coefficients of the transfer function is of low nonlinearity. Since neural networks can easily
learn this relationship, the training accuracy of the neural networks is high. This results in the high
training accuracy of the overall neuro-TF model. When the geometrical variations become larger,
the relationship between the geometrical variables and the coefficients of the transfer function becomes
more nonlinear. The accuracy of the neural networks becomes lower. Under this situation, the order
of the neuro-TF model becomes an important factor in the accuracy of the overall model. When the
transfer function order becomes high, the sensitivities of the neuro-TF model response with respect to
the coefficients of the transfer function become high. With the high sensitivity, a relatively small error
of the neural networks will result in a large error of the overall neuro-TF model. How to solve this
high-sensitivity issue to increase the accuracy of the rational-based neuro-TF is a challenging topic.

To address the high-sensitivity issue, this paper proposes a novel decomposition technique for
the rational-based neuro-TF modeling method. The main idea is that we decompose the neuro-TF
model into sub-neuro-TF models and reformulate the overall neuro-TF model as the combination of
the sub-neuro-TF models. In this way, the order of the overall neuro-TF model is decomposed into
lower orders of the sub-neuro-TF models, decreasing the sensitivities of the overall model response
with respect to the coefficients of the transfer function. By decreasing sensitivities of the overall
model response with respect to coefficients of the transfer function using the proposed decomposition
technique, the accuracy of the overall neuro-TF model can be improved.

3. Proposed Decomposition Technique for Development of Rational-Based Neuro-TF Model

3.1. Concept of the Decomposition Technique for Rational-Based Neuro-TF Model

Let x be a vector which contains the geometrical variables. Let y represent the frequency
response, e.g., S-parameter. A general rational-based neuro-TF model [25] in frequency domain
can be expressed as

y(x, wa, wb, s) =

N

∑
j=1

aj(x, wa)sj−1

1 +
N

∑
j=1

bj(x, wb)sj
(1)

where N represents the order of the transfer function; aj and bj represent the jth coefficients of the
transfer function numerator and denominator, respectively; wa and wb represent the neural network
weights; and s represents the Laplace domain frequency.

As can be seen from (1), the direct decomposition of the rational-based neuro-TF is not easy.
In this case, we propose to reformat the rational-based transfer function and decompose the neuro-TF
model indirectly. To reformat the rational-based transfer function, we use the pole-residue-based
transfer function [23], which is another format of the transfer function. Here we define the effective
poles as the poles whose imaginary parts are positive [23]. We define the effective residues as the
residues corresponding to the effective poles [23]. We define the effective order as the order of the
pole-residue transfer function which consists only of the effective poles and residues. In order to
derive the decomposition technique for the rational-based neuro-TF model, we need to first convert
the rational-based transfer function into the pole-residue format, expressed as

y =

N

∑
j=1

ajsj−1

1 +
N

∑
j=1

bjsj
=

Ne f f

∑
j=1

rj

s− pj
+

Ne f f

∑
j=1

r∗j
s− p∗j

(2)
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where Ne f f is the effective order of the pole-residue-based transfer function; pj and rj are the jth
effective pole and residue of the pole-residue-based transfer function, respectively; and p∗j and r∗j are
the complex conjugate parts of jth effective pole and residue, respectively. To ensure that all the poles
and residues in (2) are in complex values, order N should be an even number and thus the effective
order Ne f f = N/2. It is noticed that the pole-residue-based transfer function itself is expressed as
a summation of sub-transfer functions. We can easily decompose the pole-residue-based transfer
function into multiple sub-transfer functions in pole-residue format. Let M represent the number
of the sub-transfer functions. The decomposition of the pole-residue-based transfer function can be
expressed as

y =
M

∑
i=1

yi =
M

∑
i=1

(
Ni

∑
j=1

rn(i,j)

s− pn(i,j)
+

Ni

∑
j=1

r∗n(i,j)
s− p∗n(i,j)

)
(3)

where

n(i, j) =


j, if i = 1

j +
i−1

∑
t=1

Nt, if i > 1
, (4)

yi represents the frequency response of the ith sub-transfer function; and Ni represents the effective
order of the ith sub-transfer function. The relationship between Ne f f , Ni, and M can be expressed as

Ne f f =
M

∑
i=1

Ni. (5)

After the decomposition, we convert these sub-transfer functions back into the rational format,
expressed as

yi =
Ni

∑
j=1

rn(i,j)

s− pn(i,j)
+

Ni

∑
j=1

r∗n(i,j)
s− p∗n(i,j)

=

2Ni

∑
j=1

âijsj−1

1 +
2Ni

∑
j=1

b̂ijsj

(6)

where âij and b̂ij represent the jth coefficients of the numerator and denominator for the ith sub-transfer
function, respectively. Now the rational-based transfer function can be formulated as the summation
of M sub-rational-based transfer functions. Substituting (6) into (3), we derive the rational-based
neuro-TF model incorporating decomposition technique, formulated as

y(x, wa, wb, s) =
M

∑
i=1

yi(x, wa, wb, s) =
M

∑
i=1

2Ni

∑
j=1

âij(x, wa)sj−1

1 +
2Ni

∑
j=1

b̂ij(x, wb)sj

. (7)

Table 1 illustrates the sensitivities of the proposed and the existing neuro-TF model responses with
respect to coefficients of the transfer function. In Table 1, for the existing neuro-TF model formulated
in (2), when the frequency range is small (e.g., varying around 1 to ignore the influence of sj or sj−1),
all the effective poles (i.e., pj, ∀j ∈ N) are close to each other. When the value of frequency s is in the

middle of all the effective poles, the value of ∏
Ne f f
j=1 (s− pj) becomes very small as Ne f f is high, which

makes the y too sensitive with respect to the coefficients aj and bj. This high sensitivity-issue cannot be
easily solved by simply reducing the order N in vector fitting, since the minimum value of N has been
used in vector fitting. The high-sensitivity issue can be effectively overcome by the neuro-TF model
incorporating the proposed decomposition technique, formulated in (7). For the proposed neuro-TF
model, the value of Ni is much smaller than that of Ne f f . In that case, the value of ∏Ni

j=1 (s− pn(i,j)) is
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much larger than that of ∏
Ne f f
j=1 (s− pj). Therefore, the sensitivities of y with respect to the coefficients

âij and b̂ij of the proposed neuro-TF model are much lower than those with respect to the coefficients
aj and bj of the existing neuro-TF model. With lower sensitivities of the model response with respect
to its coefficients of the transfer function, the proposed neuro-TF model can achieve higher accuracy
than the existing neuro-TF model.

Table 1. Comparison of the sensitivity of rational-based neuro-transfer function (neuro-TF) model
response with respect to the coefficients with/without decomposition.

Coeff. Transfer Function Sensitivity of Transfer Function Response w.r.t the Coeff.

Existing
Rational-

Based
Neuro-

TF model
(without
Decom-

position)

aj

y =

N

∑
j=1

ajsj−1

1+
N

∑
j=1

bjsj

∂y
∂aj

= sj−1

1+
N

∑
j=1

bjsj
= sj−1

Ne f f

∏
j=1

(
s− pj

)
·

Ne f f

∏
j=1

(
s− p∗j

)

bj
∂y
∂bj

=

−sj
N

∑
j=1

ajsj−1

1+
N

∑
j=1

bjsj


2 =

−y · sj

Ne f f

∏
j=1

(
s− pj

)
·

Ne f f

∏
j=1

(
s− p∗j

)

Proposed
Rational-

Based
Neuro-

TF model
(with

Decom-
position)

âij

y =
M

∑
i=1

yi =
M

∑
i=1

2Ni

∑
j=1

âijsj−1

1 +
2Ni

∑
j=1

b̂ijsj

∂y
∂âij

= sj−1

1+
2Ni

∑
j=1

b̂ijsj
= sj−1

Ni

∏
j=1

(
s− pn(i,j)

)
·

Ni

∏
j=1

(
s− p∗n(i,j)

)

b̂ij
∂y

∂b̂ij
=

−sj
2Ni

∑
j=1

âijsj−1

1+
2Ni

∑
j=1

b̂ijsj


2 =

−yi · sj

Ni

∏
j=1

(
s− pn(i,j)

)
·

Ni

∏
j=1

(
s− p∗n(i,j)

)

We use âi and b̂i to represent vectors which contain all the coefficients of the transfer function
numerator and denominator in the ith sub-neuro-TF model, respectively, defined as

âi =
[

âi1 âi2 · · · âij · · · âi(2Ni)

]T
(8)

and
b̂i =

[
b̂i1 b̂i2 · · · b̂ij · · · b̂i(2Ni)

]T
(9)

where i = 1, 2, ..., M and j = 1, 2, ..., 2Ni. Based on the definition of coefficients âi and b̂i, we use â
and b̂ to represent vectors which contain all the coefficients of the transfer function numerators and
denominators in all the sub-neuro-TF models, respectively, defined as

â =
[

âT
1 âT

2 · · · âT
i · · · âT

M

]T
(10)

and
b̂ =

[
b̂T

1 b̂T
2 · · · b̂T

i · · · b̂T
M

]T
(11)

where i = 1, 2, ..., M.
Figure 1 shows the structure of the neuro-TF model incorporating the proposed

decomposition technique.
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â

22
â
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Figure 1. Structure for the rational-based neuro-TF model incorporating the proposed decomposition technique.

As can be seen in Figure 1, the proposed model consists of two separate neural networks.
Neural network â(x, wa) is used to learn and represent the nonlinear relationship between the
geometrical variables x and the coefficients â of the transfer function numerators in all the sub-neuro-TF
models. Neural network b̂(x, wb) is used to learn and represent the nonlinear relationship between
the geometrical variables x and the coefficients b̂ of the transfer function denominators in all the
sub-neuro-TF models.

In the next subsection, we propose a novel decomposition technique for the parameter extraction
and development of the proposed rational-based neuro-TF model. New formulations are derived to
determine the number M of sub-neuro-TF models and the effective order Ni of the transfer function
for each sub-neuro-TF model. Using the proposed decomposition technique, we can decrease the
sensitivities of the overall model response with respect to the coefficients of the transfer function in
each sub-model, achieving better overall model accuracy.

3.2. Proposed Decomposition Technique for Parameter Extraction and Model Development

In this subsection, we propose a decomposition technique for parameter extraction and
model development. The proposed decomposition technique starts with the EM data samples,
e.g., S-parameter data for different training samples of the geometrical parameter. Let ns represent the
total number of training samples. Let Tr denote the index set of the training samples of the geometrical
variables, i.e., Tr = {1, 2, ..., ns}. Let xk and dk represent the kth sample of the geometrical variables and
EM data, respectively, where k ∈ Tr. During data generation, frequency is swept by the EM simulator
as a separate variable.

We perform the vector fitting process [26] to obtain poles and residues for each geometrical
parameter sample. A scaling-and-shifting process for the frequency range with an even number of
order N is set up during the vector fitting process to get all the poles and residues in complex values.
Let p̃(k) and r̃(k) represent vectors which contain the poles and the residues obtained after vector fitting,
respectively, at the kth geometrical sample, defined as

p̃(k) = [ p̃(k)1 p̃(k)2 · · · p̃(k)˜̀ · · · p̃(k)N ]T (12)

and
r̃(k) = [r̃(k)1 r̃(k)2 · · · r̃(k)˜̀ · · · r̃(k)N ]T (13)

where p̃(k)˜̀ and r̃(k)˜̀ denote the ˜̀th related pole and residue, respectively; and ˜̀ ∈ Ĩ = {1, 2, ..., N}.
The obtained poles/residues contain both the effective poles/residues (i.e., the poles whose imaginary
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parts are positive/the residues that related to the effective poles) and the complex conjugate parts of
the effective poles/residues.

In the first stage of the proposed decomposition technique, we sort the effective poles and residues
in ascending sequence according to the values of the imaginary parts of the effective poles. The effective
poles obtained from vector fitting may not be in the same sequence from sample to sample, which will
result in the discontinuity of the effective poles over the geometrical parameters from sample to
sample. The sorting process can make the effective poles located in the same sequence among different
geometrical samples, minimizing the discontinuity of the effective poles. With minimum discontinuity
issue in the effective poles, the proposed decomposition technique can be more robust, and the obtained
sub-neuro-TF models can achieve better accuracy. Let the effective poles and residues after sorting be
denoted as p(k) and r(k), respectively. The nth elements of p(k) and r(k) are denoted as p(k)n and r(k)n ,
respectively, calculated as

p(k)n = p̃(k)`n
(14)

and
r(k)n = r̃(k)`n

(15)

where
`n = arg min

˜̀∈D\Dn

{
Im( p̃(k)˜̀ )

}
(16)

D =
{

˜̀
∣∣∣ Im( p̃(k)˜̀ ) > 0, ˜̀ ∈ Ĩ

}
(17)

Dn =

{
∅, if n = 1

Dn−1
⋃
{ `n−1} if n > 1

(18)

and n ∈ I =
{

1, 2, ..., Ne f f

}
, where Ne f f = N/2.

The second stage of the proposed decomposition technique is to quantify the degree of smoothness
of the sorted effective pole/residue data with respect to the changing of the geometrical variables.
The sorted effective poles and residues are correlated with the values of geometrical variables when
the values of geometrical variables vary continuously. The quantified degree of smoothness can be
used as an indicator for decomposition. Let σ

p
n represent the deviation of the nth effective pole as the

geometrical parameter changes. Similarly, let σr
n represent the deviation of the nth effective residue as

the geometrical parameter changes. The deviations σ
p
n and σr

n are formulated as

σ
p
n = max

k∈Tr


∣∣∣∣∣Re(p(k)n )− Re(µp

n)

Re(µp
n)

∣∣∣∣∣
2

+

∣∣∣∣∣ Im(p(k)n )− Im(µ
p
n)

Im(µ
p
n)

∣∣∣∣∣
2
1/2

 (19)

and

σr
n = max

k∈Tr


∣∣∣∣∣Re(r(k)n )− Re(µr

n)

Re(µr
n)

∣∣∣∣∣
2

+

∣∣∣∣∣ Im(r(k)n )− Im(µr
n)

Im(µr
n)

∣∣∣∣∣
2
1/2

 (20)

where µ
p
n and µr

n are expressed as

µ
p
n =

1
ns

ns

∑
k=1

p(k)n (21)

and

µr
n =

1
ns

ns

∑
k=1

r(k)n . (22)
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The deviations σ
p
n and σr

n are computed using all the geometrical samples to represent the
variations of each sorted effective pole and residue. Here we define the deviation vector σ as

σ = [σ1, σ2, ..., σn, ..., σNe f f ]
T (23)

where
σn =

√
(σ

p
n )2 + (σr

n)
2 (24)

and n ∈ I. The deviation vector σ reflects the degree of smoothness of the effective pole/residue
data (p(k) and r(k)). It can be seen that the size of σ is consistent with the size of the index set
I = {1, 2, ..., Ne f f }. Based on the different values of σn, the index set I will be decomposed into
multiple subsets for parameter extraction.

In the third stage, we decompose the index set I = {1, 2, ..., Ne f f } into M subsets based on σ and
M. The initial value of M is set to two. The ultimate value of M will be determined through an iterative
decomposition process for the proposed rational-based neuro-TF model, which will be explained later
on. Since the size of the ith subset depends on the effective order Ni of the ith sub-neuro-TF model,
we determine the effective order Ni, formulated as

Ni =



⌈Ne f f

M

⌉
, if i = 1


Ne f f −

i−1

∑
j=1

Nj

M− i + 1


, if i > 1

(25)

where i = 1, 2, ..., M. By using (25), Ni is distributed as evenly as possible for each sub-neuro-TF model.
After the determination of Ni, we sort the elements of the deviation vector σ in descending

sequence. Let û denote a vector which contains the indices of the elements of σ after sorting. Let ûm

denote the mth element of û, formulated as

ûm = arg max
u∈I\Jm

{σu} (26)

where

Jm =

{
∅, if m = 1

Jm−1
⋃
{ ûm−1} , if m > 1

(27)

and m ∈ I. We define the ith subset Ii ⊆ I, where i = 1, 2, ..., M; |Ii| = Ni;
⋃M

i=1 Ii = I; and∣∣∣⋃M
i=1 Ii

∣∣∣ = |I| = Ne f f . Using the information of the index vector u and the effective order Ni, the ith
subset Ii can be expressed as

Ii =
{

ûq+1, ûq+2, ..., ûq+Ni

}
(28)

where q can be formulated as

q =


0, if i = 1

i−1

∑
t=1

Nt, if i > 1
. (29)

In the fourth stage, we group the effective poles p(k) and their complex conjugate parts (p∗)(k)

into pole subsets and group the effective residues r(k) and their complex conjugate parts (r∗)(k) into
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residue subsets, based on the information of subsets Ii, ∀i = 1, 2, ..., M. Let p̂(k)
i and r̂(k)i denote the

pole and residue data for the ith sub-neuro-TF model, respectively, expressed as

p̂(k)
i =

[
p(k)ûq+1

(p∗ûq+1
)(k) p(k)ûq+2

(p∗ûq+2
)(k) ... p(k)ûq+Ni

(p∗ûq+Ni
)(k)
]T

1×2Ni
(30)

and
r̂(k)i =

[
r(k)ûq+1

(r∗ûq+1
)(k) r(k)ûq+2

(r∗ûq+2
)(k) ... r(k)ûq+Ni

(r∗ûq+Ni
)(k)
]T

1×2Ni
(31)

where i = 1, 2, ..., M; and q is calculated by (29).
We convert these grouped pole and residue data (i.e., p̂(k)

i and r̂(k)i ) into the coefficient data of the

transfer function numerator â(k)
i and the transfer function denominator b̂(k)

i for the ith sub-neuro-TF
model. Since the nonlinear relationships between the geometrical variables x and the coefficients of
the numerators âi are usually similar among different sub-neuro-TF models, we use one single neural
network â(x, wa) to learn the relationships between the geometrical variables x and the coefficients of
the numerators â of all the sub-neuro-TF models [25]. We use another single neural network b̂(x, wb)

to learn the relationships between the geometrical variables x and the coefficients of the denominators
b̂ of all the sub-neuro-TF models. Let (xk, â(k)) and (xk, b̂(k)) denote the training data which are used
to train the two neural networks â(x, wa) and b̂(x, wb), respectively, expressed as

â(k) =
[
(â(k)

1 )T (â(k)
2 )T · · · (â(k)

i )T · · · (â(k)
M )T

]T
(32)

and
b̂(k) =

[
(b̂(k)

1 )T (b̂(k)
2 )T · · · (b̂(k)

i )T · · · (b̂(k)
M )T

]T
(33)

where i = 1, 2, ..., M.
In the fifth stage, we train the proposed neuro-TF model. First, a preliminary training process [22]

is performed for the two neural networks â(x, wa) and b̂(x, wb) using the obtained training data
(xk, â(k)) and (xk, b̂(k)), respectively. The two neural networks are trained separately to learn the
relationships between the geometrical variables x and the coefficients (i.e., â and b̂). After the
preliminary training, we combine the trained neural networks with the transfer functions to obtain
the overall proposed neuro-TF model. Even though the neural networks are trained well, the training
and testing errors of the overall proposed model may still not satisfy the accuracy criteria. To make
the overall proposed model satisfy the accuracy criteria, we perform a model refinement training
process [22] to refine the overall proposed model. The training data for the proposed overall model
are (xk, dk), where k ∈ Tr. The objective of the training is to minimize the training error ETr of the
overall model by optimizing the neural network weights wa and wb. The training error function ETr is
formulated as

ETr(wa, wb) =
1

2ns
∑

k∈Tr

∑
λ∈Ω

∥∥∥∥∥ M

∑
i=1

yi(wa, wb, xk, sλ)− dk,λ

∥∥∥∥∥
2

(34)

where ns denotes the total number of training samples; Ω denotes the index set of frequency samples; M
represents the number of the sub-neuro-TF models; and yi represents the output of the ith sub-neuro-TF
model, which is also a function of xk, wa and wb, and sλ.

We use the training data (xk, dk) to verify the quality of trained overall model. If the training
error ETr is lower than a user-defined threshold Et, the whole training process is terminated and
the model is ready for testing. Otherwise, the two neural networks are under-learned. In that case,
we should increase the number of hidden neurons for the two neural networks and repeat the two
training processes.

After the model is trained, we test the quality of the model using independent testing data which
are never used in training. We define ETs to be the testing error. If the testing error ETs is also lower
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than the threshold Et, the model development is finished and the current value of M is regarded as the
final M. Otherwise, we increase the number M of sub-neuro-TF models by one (i.e., M = M + 1) and
repeat the parameter extraction and training processes from the third stage to the fifth stage (25)–(34)
of the proposed decomposition technique.

Here we summarize the proposed decomposition technique in a stepwise algorithm as follows.

Step 1: Select the effective poles and residues (p(k) and r(k)) by (12)–(18).
Step 2: Obtain the deviation vector σ by (19)–(24).
Step 3: Initialize the number M of the sub-neuro-TF models to two.
Step 4: Obtain the effective order Ni by (25) and subset Ii by (26)–(29) with the current value of M for

the ith sub-neuro-TF model.
Step 5: Obtain the pole and residue data p̂(k)

i and r̂(k)i by (30)–(31) for the ith sub-neuro-TF model.

Convert data p̂(k)
i and r̂(k)i into data â(k)

i and b̂(k)
i . Obtain the training data (xk, â(k)) and

(xk, b̂(k)) by (32)–(33) for the two neural networks â(x, wa) and b̂(x, wb).
Step 6: Perform the preliminary training of the two neural networks and refinement training of the

overall model by (34).
Step 7: Use the training data (xk, dk) to verify the trained overall model. If the training error ETr is

lower than a user-defined threshold Et, go to Step 8. Otherwise, increase the number of hidden
neurons and go to Step 6.

Step 8: Use the testing data to verify the overall model. If the testing error ETs is lower than the
user-defined threshold Et, go to Step 9. Otherwise, increase the number M of sub-neuro-TF
models by one (i.e., M = M + 1) and go to Step 4.

Step 9: Stop the modeling process.

Figure 2 shows a flow diagram of the development process for the overall neuro-TF model using
the proposed decomposition technique.
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Figure 2. The flow diagram of the overall model development process using the proposed
decomposition technique.

4. Application Examples

4.1. Three-Order Waveguide Filter Modeling

A three-order waveguide filter [27] is used to illustrate the rational-based neuro-TF method
using the proposed decomposition technique. As can be seen in Figure 3, a = 19.05 mm,
b = 9.525 mm, and t = 2.0 mm and the geometrical variables are x = [L1 L2 W1 W2]

T for the three-order
waveguide filter. Four geometrical variables, i.e., x = [L1 L2 W1 W2]

T , are used as model inputs and
the real and imaginary parts of S11, i.e., y = [RS11 IS11]

T , are used as model outputs.
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Figure 3. Geometrical variables and 3D configuration of the three-order waveguide filter example.

Full-wave EM simulations are performed using the ANSYS HFSS EM simulator to generate
training and test samples for parametric modeling. Both training samples and test samples are
generated using the design of experiments (DOE) [28] sampling method. As shown in Table 2,
the proposed parametric modeling technique is performed for three cases according to different
geometrical parameter ranges. Case 1 is with a narrower range, Case 2 is with an increased range,
and Case 3 is with a wider range. In all cases, we set the total order N of the overall transfer function
to 10 for every sample. Subsequently, Ne f f equals five for the three cases. In Case 1 and Case 2,
the frequency range is from 11.65 GHz to 12.35 GHz and the number of frequency samples per
geometrical sample equals 71. In Case 3, the frequency range is from 11.0 GHz to 13.0 GHz and the
number of frequency samples per geometrical sample equals 201. We use seven levels of DOE for all
cases to generate the training and test samples. The numbers for training samples and testing samples
are both 49. Table 2 lists the specific ranges of training samples and test samples for the three cases.

Table 2. Definition of training and test samples for the three-order waveguide filter example.

Geometrical
Parameters (mm)

Training
Samples

(49 Samples)

Test Samples
(49 Samples)

Min Max Steps Min Max Steps

Case 1
(Narrower Range)

L1 13.84 14.12 0.05 13.86 14.10 0.04

L2 15.05 15.35 0.05 15.07 15.33 0.04

W1 8.91 9.09 0.03 8.93 9.08 0.03

W2 5.94 6.06 0.02 5.95 6.05 0.02

Case 2
(Increased Range)

L1 13.70 14.26 0.09 13.75 14.21 0.08

L2 14.90 15.50 0.10 14.95 15.45 0.08

W1 8.82 9.18 0.06 8.85 9.15 0.05

W2 5.88 6.12 0.04 5.90 6.10 0.03

Case 3
(Wider Range)

L1 13.28 14.68 0.23 13.40 14.56 0.19

L2 14.44 15.96 0.25 14.57 15.83 0.21

W1 8.55 9.45 0.15 8.63 9.38 0.13

W2 5.70 6.30 0.10 5.75 6.25 0.08

We scale and shift the frequency range and set the total order N to ten (an even number) during
the vector fitting process, ensuring that the obtained poles and residues are in complex values.

Since the initial value of the number M of sub-neuro-TF models is set to two, the proposed model
is initially trained with M = 2. Using the proposed decomposition technique with M = 2, the effective
orders are determined as N1 = 3 and N2 = 2 for all the three cases and the subsets are determined
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as I1 = {2, 4, 5} and I2 = {1, 3} for Case 1 and Case 2 and I1 = {2, 3, 4} and I2 = {1, 5} for Case 3.
The proposed neuro-TF model with M=2 has a frequency variable for each sub-neuro-TF model, four
input geometrical variables, and two outputs. The overall transfer function consists of two sub-transfer
functions. The high effective order Ne f f of 5 is decomposed into lower effective orders N1 of 3 and N2

of 2.
The NeuroModelerPlus software is used for training of the proposed model. Suitable numbers of

hidden neurons are used to achieve a good learning of the proposed neuro-TF model. The user-defined
threshold Et for the three-order waveguide filter example is set to 1%. Three parametric models are
developed for the three cases using the proposed technique. The average training errors of the trained
models with M = 2 are 0.239%, 0.467%, and 1.490% for Case 1, Case 2, and Case 3, respectively.
The average testing errors of the trained models with M = 2 are 0.267%, 0.496%, and 1.840% for
Case 1, Case 2, and Case 3, respectively. On the one hand, since the training and testing errors for
both Case 1 and Case 2 are lower than Et, the two trained models with M = 2 are the final models
for both Case 1 and Case 2. On the other hand, since the testing error for Case 3 is higher than Et,
we increased M to three and redeveloped the model with M = 3 for Case 3. Figure 4 illustrates the
model structure with M = 3 for the three-order waveguide filter example. As illustrated in Figure 4,
the overall transfer function consists of three sub-transfer functions. The high effective order Ne f f of 5
is decomposed into lower effective orders N1 of 2, N2 of 2, and N3 of 1. The subsets are determined as
I1 = {2, 4}, I2 = {3, 5}, and I3 = {1} for Case 3. The average training and testing errors of the trained
models with M = 3 are 0.746% and 0.962%, which are lower than Et. Therefore, the trained model with
M = 3 is the final model for Case 3. The number of different parameter extractions in the proposed
technique depends on both M and the number ns of total training samples. Specifically, the number
of different parameter extractions equals ns multiplied by (M-1). In this example, we performed 49
different parameter extractions for Cases 1 and 2, and 98 different parameter extractions for Case 3.
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â
22
â
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Figure 4. Structure for the proposed rational-based neuro-TF model with M = 3 of the three-order
waveguide filter example.

For comparison purpose, we apply the existing modeling approach using rational-based
neuro-TF [25] to the three separate cases of this example.

Comparisons of number M of sub-neuro-TF models, effective order Ni for ith sub-neuro-TF model,
hidden neuron numbers, and average errors for training and testing between different rational-based
neuro-TF modeling methods and EM data are shown in Table 3.
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Table 3. Comparisons of different rational-based neuro-TF modeling approaches for the three-order
waveguide filter example.

Modeling Methods
No. of
Sub-

Models

Ne f f
or
Ni

No. of
Hidden
Neurons

Average
Training

Error

Average
Testing

Error

Case 1
(Narrower

Range)

Existing
Rational
Neuro-TF
Method

1 5

NN for Numerator 10

0.630 % 0.718 %

NN for Denominator 10

Proposed
Rational
Neuro-TF
Method

2 3
2

NN for Numerator 10

0.239 % 0.267 %

NN for Denominator 10

Case 2
(Increased

Range)

Existing
Rational
Neuro-TF
Method

1 5

NN for Numerator 10

1.953 % 2.017 %

NN for Denominator 10

Proposed
Rational
Neuro-TF
Method

2 3
2

NN for Numerator 10

0.467 % 0.496 %

NN for Denominator 10

Case 3
(Wider
Range)

Existing
Rational
Neuro-TF
Method

1 5
NN for Numerator 10

5.073 % 6.604 %
NN for Denominator 10

1 5
NN for Numerator 40

3.222 % 50.69%
NN for Denominator 40

Proposed
Rational
Neuro-TF
Method

2 3
2

NN for Numerator 10
1.490 % 1.840 %

NN for Denominator 10

3
2
2
1

NN for Numerator 10
0.746 % 0.962 %

NN for Denominator 10

In Case 1, since the geometrical variations are small, the relatively low nonlinear relationship
between the geometrical variables and the coefficients of the transfer function can be easily represented
by the neural networks with less hidden neurons of both the existing model and the proposed
model in the preliminary training. With the high training accuracy of the neural networks of both
models, both models can have high training accuracy in the refinement training. For these reasons,
both methods in this case can obtain good training and testing accuracy.
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In Case 2, since the geometrical variables vary within an increased range, the relationship between
the geometrical variables and the coefficients of the transfer function becomes more nonlinear than that
in Case 1. In this case, the sensitivities of the overall model response with respect to the coefficients of
the transfer function have higher effects on the accuracy of the overall model. Since the orders and the
sensitivities for the proposed model are much lower than those for the existing model, the proposed
model can obtain more accurate training and testing results than the existing method.

In Case 3, the geometrical variables vary within a wider range, the relationship between the
geometrical variables and the coefficients of the transfer function becomes highly nonlinear. In this
case, the sensitivities of the overall model response with respect to the coefficients of the transfer
function have large effects on the accuracy of the overall model. The proposed model with M = 2 have
smaller training and testing errors than the existing model but still can not satisfy the model accuracy
criteria. Therefore, we increased the M to be 3. With M = 3, the proposed model can satisfy the
model accuracy criteria. It can be concluded from the above three cases that the neuro-TF model using
the proposed decomposition technique has much lower sensitivities of the overall model response
with respect to the coefficients of the transfer function, improving the modeling accuracy over the
existing method.

Figure 5 shows the output |S11| in dB of the proposed neuro-TF model for three different test
geometrical samples in Case 3 of the three-order waveguide filter example. We compare the model
response using the proposed technique with M = 3, using the proposed technique with M = 2, using
the existing neuro-TF method, and EM data. We also provide comparisons of the real and imaginary
parts of S11, as shown in Figure 6. The geometrical variables for the three test samples are x = [14.37
14.57 9.25 6.17]T (mm), x = [14.17 15.20 8.75 6.25]T (mm), and x = [14.56 15.20 8.63 6.17]T (mm). These
three test samples belong to Case 3.
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Figure 5. Comparison of magnitude in decibels of S11 different modeling approaches and EM data:
(a) test sample x = [14.37 14.57 9.25 6.17]T (mm), (b) test sample x = [14.17 15.20 8.75 6.25]T (mm),
and (c) test sample x = [14.56 15.20 8.63 6.17]T (mm) for the three-order waveguide filter example.
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It is observed from Figures 5 and 6 that the neuro-TF model using the proposed decomposition
method can achieve better model accuracy for different geometrical samples which are never used
in training.
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Figure 6. Comparison of Re(S11) and Im(S11) for different modeling approaches and EM data at test
sample x = [14.56 15.20 8.63 6.17]T (mm) for the three-order waveguide filter example. (a) Re(S11) and
(b) Im(S11).

4.2. Four-Order Bandpass Filter Modeling

A four-order bandpass filter [29] is used to illustrate the rational-based neuro-TF method using
the proposed decomposition technique. As can be seen in Figure 7, the geometrical variables are
x = [h1 h2 h3 hc1 hc2]

T for the four-order bandpass filter, where h1, h2, and h3 denote the heights of the
posts between the coupling windows, and hc1 and hc2 denote the heights of the posts in the resonant
cavities. These five geometrical variables are used as model inputs and the real and imaginary parts of
S11 are used as model outputs.

h1 hc2

h3

h2

hc1

Figure 7. Geometrical variables and 3D configuration of the four-order bandpass filter example.

Similar to the first example, ANSYS HFSS EM simulator and DOE sampling method are used
for generation of training and test samples. As shown in Table 4, the proposed parametric modeling
technique is performed for two different cases according to different geometrical parameter ranges.
Case 1 is with a narrower parameter range and Case 2 is with a wider parameter range. In both cases,
we set the total order N of the overall transfer function to 12 for every sample. Subsequently, Ne f f
equals six for the two cases. In both cases, the frequency range is from 10.50 GHz to 11.50 GHz and
the number of frequency samples per geometrical sample equals 101. We use nine levels of DOE to
generate the training samples and eight levels of DOE to generate the test samples for both cases.
The numbers for the training samples and the testing samples are 81 and 64, respectively. Table 4 lists
the specific ranges of training samples and test samples for the two cases.
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Table 4. Definition of training and test samples for the four-order bandpass filter example.

Geometrical
Parameters (mm)

Training
Samples

(81 Samples)

Test Samples
(64 Samples)

Min Max Steps Min Max Steps

Case 1
(Narrower Range)

h1 3.4 3.56 0.02 3.41 3.55 0.02

h2 4.3 4.46 0.02 4.31 4.45 0.02

h3 4.0 4.16 0.02 4.01 4.15 0.02

hc1 3.2 3.36 0.02 3.21 3.35 0.02

hc2 2.9 3.06 0.02 2.91 3.05 0.02

Case 2
(Wider Range)

h1 3.3 3.62 0.04 3.32 3.6 0.04

h2 4.2 4.52 0.04 4.22 4.5 0.04

h3 3.9 4.22 0.04 3.92 4.2 0.04

hc1 3.1 3.42 0.04 3.12 3.4 0.04

hc2 2.8 3.12 0.04 2.82 3.1 0.04

Similar to the first example, the proposed model is initially trained with M = 2. With M = 2,
the effective orders are determined as N1 = 3 and N2 = 3 for both cases and the subsets are determined
as I1 = {2, 4, 5} and I2 = {1, 3, 6} for both cases. The proposed neuro-TF model with M = 2 has a
frequency variable for each sub-neuro-TF model, five input geometrical variables, and two outputs.
The overall transfer function consists of two sub-transfer functions. The high effective order Ne f f of 6
is decomposed into lower effective orders N1 of 3 and N2 of 3.

The NeuroModelerPlus software is used for training of the proposed model. The user-defined
threshold Et for the four-order bandpass filter example is set to 2%. Two parametric models are
developed for the two cases using the proposed technique. The average training errors of the trained
models with M = 2 are 1.487% and 2.252% for Case 1 and Case 2, respectively. The average testing
errors of the trained models with M = 2 are 1.672% and 4.397% for Case 1 and Case 2, respectively.
On the one hand, since the training and testing errors for Case 1 are lower than Et, the trained model
with M = 2 is the final model for Case 1. On the other hand, since the testing error for Case 2 is
higher than Et, we increased M to three and redeveloped the model with M = 3 for Case 2. Figure 8
illustrates the model structure with M = 3 for the four-order bandpass filter example. As illustrated
in Figure 8, the overall transfer function consists of three sub-transfer functions. The high effective
order Ne f f of 6 is decomposed into lower effective orders N1 of 2, N2 of 2, and N3 of 2. The subsets are
determined as I1 = {2, 5}, I2 = {3, 4}, and I3 = {1, 6} for Case 2. The average training and testing
errors of the trained model with M = 3 are 1.624% and 1.982%, respectively, which are lower than Et.
Therefore, the trained model with M = 3 is the final model for Case 2. In this example, we performed
162 different parameter extractions for each case.
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Figure 8. Structure for the proposed rational-based neuro-TF model with M = 3 of the four-order
bandpass filter example.

For comparison purpose, we apply the existing modeling approach using rational-based neuro-TF
to the two separate cases of this example. Comparisons of number M of sub-neuro-TF models, effective
order Ni for ith sub-neuro-TF model, hidden neuron numbers, and average errors for training and
testing between different rational-based neuro-TF modeling methods and EM data are shown in
Table 5.

In Case 1, since the geometrical variations are relatively small, the relationship between the
geometrical variables and the coefficients of the transfer function is moderately nonlinear. In this case,
the sensitivities of the overall model response with respect to the coefficients of the transfer function
have moderate effects on the accuracy of the overall model. Since the orders and the sensitivities for
the proposed model are much lower than those for the existing model, the proposed model can obtain
more accurate training and testing results than the existing method.

In Case 2, the geometrical variables vary within a wider range, the relationship between the
geometrical variables and the coefficients of the transfer function becomes highly nonlinear. In this
case, the sensitivities of the overall model response with respect to the coefficients of the transfer
function have large effects on the accuracy of the overall model. The proposed model with M = 2
have smaller training and testing errors than the existing model but still can not satisfy the model
accuracy criteria. Therefore, we increased the M to be 3. With M = 3, the proposed model can satisfy
the model accuracy criteria. It can be again concluded from the above two cases that the neuro-TF
model using the proposed decomposition technique has much lower sensitivities of the overall model
response with respect to the coefficients of the transfer function, improving the modeling accuracy
over the existing method.

Figure 9 shows the output |S11| in dB of the proposed neuro-TF model for three different test
geometrical samples in Case 2 of the four-order bandpass filter example. We compare the model
response using the proposed technique with M = 3, using the proposed technique with M = 2, using
the existing neuro-TF method, and EM data. We also provide comparisons of the real and imaginary
parts of S11, as shown in Figure 10. The geometrical variables for the three test samples are x = [3.52
4.46 3.96 3.28 3.07]T (mm), x = [3.60 4.22 4.20 3.40 3.10]T (mm), and x = [3.36 4.38 4.00 3.36 3.02]T (mm).
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Figure 9. Comparison of magnitude in decibels of S11 for different modeling approaches and EM data:
(a) test sample x = [3.52 4.46 3.96 3.28 3.07]T (mm), (b) test sample , x = [3.60 4.22 4.20 3.40 3.10]T (mm),
and (c) test sample x = [3.36 4.38 4.00 3.36 3.02]T (mm) for the four-order bandpass filter example.
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Figure 10. Comparison of Re(S11) and Im(S11) for different modeling approaches and EM data at test
sample x = [3.36 4.38 4.00 3.36 3.02]T (mm) for the four-order bandpass filter example. (a) Re(S11) and
(b) Im(S11).

It is observed from Figures 9 and 10 that the neuro-TF model using the proposed decomposition
method can achieve better model accuracy for different geometrical samples which are never used
in training.
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Table 5. Comparisons of different rational-based neuro-TF modeling approaches for the four-order
bandpass filter example.

Modeling Methods
No. of
Sub-

Models

Ne f f
or
Ni

No. of
Hidden
Neurons

Average
Training
Error

Average
Testing
Error

Case 1
(Narrower

Range)

Existing
Rational
Neuro-TF
Method

1 6
NN for Numerator 10

4.448 % 4.674 %
NN for Denominator 10

1 6
NN for Numerator 40

2.562 % 9.121 %
NN for Denominator 40

Proposed
Rational
Neuro-TF
Method

2 3
3

NN for Numerator 10
1.487 % 1.672 %

NN for Denominator 10

3
2
2
2

NN for Numerator 10
0.876 % 1.015 %

NN for Denominator 10

Case 2
(Wider
Range)

Existing
Rational
Neuro-TF
Method

1 6
NN for Numerator 10

6.809 % 8.382 %
NN for Denominator 10

1 6
NN for Numerator 40

4.791 % 32.23%
NN for Denominator 40

Proposed
Rational
Neuro-TF
Method

2 3
3

NN for Numerator 10
2.252 % 4.397 %

NN for Denominator 10

2 3
3

NN for Numerator 40
1.877 % 16.21 %

NN for Denominator 40

3
2
2
2

NN for Numerator 10
1.624 % 1.982 %

NN for Denominator 10

5. Conclusions

This paper has proposed a novel decomposition technique for rational-based neuro-TF modeling
method. The proposed technique has decomposed the single neuro-TF model with high order into
multiple sub-neuro-TF models with the much lower order and reformulated the overall neuro-TF
model as the combination of the sub-neuro-TF models. New formulations have been derived for the
determination of the number of sub-neuro-TF models and the order of each sub-neuro-TF model.
Since the high order of the overall neuro-TF model has been decomposed into multiple lower orders
of the sub-neuro-TF models, the proposed technique has decreased the sensitivities of the overall
model response with respect to the coefficients of the transfer function. By decreasing the sensitivities
using the proposed decomposition technique, the accuracy of the overall neuro-TF model has been
improved. In this paper, the proposed decomposition technique has been applied to two microwave
filter applications. The potential use of the proposed technique for other EM applications, such as
diplexers and antennas, could be an interesting future extension of this work.
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