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Abstract: With the increased application of ultrasonic motors, it is necessary to put forward higher
demand for the adaptability to environment. Impact, as a type of extreme environment, is widespread
in weapon systems, machinery and aerospace. However, there are few reports about the influence
of impact on an ultrasonic motor. This article aimed to study the reasons for the performance
degradation and failure mechanism of an ultrasonic motor in a shock environment. First, a finite
element model is established to observe the dynamic response of ultrasonic motor in a shock
environment. Meanwhile, the reasons of the performance degradation in the motor are discussed.
An impact experiment is carried out to test the influence of impact on an ultrasonic motor, including
the influence on the mechanical characteristic of an ultrasonic motor and the vibration characteristic of
a stator. In addition, the protection effect of rubber on an ultrasonic motor in a shock environment is
verified via an experimental method. This article reveals the failure mechanism of ultrasonic motors
in a shock environment and provides a basis for the improvement of the anti-impact property of
ultrasonic motors.
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1. Introduction

Over the past few decades, ultrasonic motors (USMs) based on the piezoelectric effect have
been developed well. There are many industrial applications, including micro-machine, information
technology, surgery devices, ecological/energy areas, absolute gravimeter and nano-positioning
stages [1–5]. There are numerous merits of USMs over electromagnetic motors, including low speed
with high torque, a quick response, a wide velocity range and a high power/weight ratio [2–4,6].
The unique properties of USMs make it have a bright application prospect in extreme environments,
such as space exploration [7,8]. A lot of research reports, mainly focusing on the application of USMs
with ambient temperature changes and under vacuum, have been released [9–16].

In order to expand the application range of ultrasonic motors, some researchers start to turn
their sights onto weapon systems, such as smart wings in airplanes [4], driving and anti-stealth
technology [17] and a smart fuse safety system [18,19]. Impact, widespread in ammunition system,
is an unavoidable destructive factor that needs to be considered. Many scholars have carried out
a lot of research about various devices in a shock environment, such as the reliability of MEMS
devices [20–22] and data recorders used in ammunition [23,24]. However, there are only a few research
reports about the characteristic of an ultrasonic motor in a shock environment. Ren et al. tested the
mechanical characteristic of ultrasonic motor after impact test, but there is a lack of analysis about
the failure mechanism [25]. Our previous research established a model about the dynamic response
of an ultrasonic motor in a shock environment based on the rigid plasticity model [26]. The model
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reflects the dynamic process to a certain extent, but more accurate results are needed to analyze the
characteristic of an ultrasonic motor in a shock environment.

This article aimed to study the reasons for the performance degradation and failure mechanism of
an ultrasonic motor in a shock environment. A finite element model, which takes into account material
nonlinearity, is established. The dynamic response of an ultrasonic motor in a shock environment
can be observed through transient solution. Meanwhile, the relationship between structural plastic
deformation and preload is obtained to explain the performance degradation. The mechanical
characteristic of an ultrasonic motor after impact is tested. Moreover, the compensation gaskets are
applied to recover the performance of an ultrasonic motor. Meanwhile, the distortion of the vibration
characteristic of a stator after impact is discussed. Finally, the protection effect of rubber for an
ultrasonic motor in a shock environment is verified by experiment.

2. Structure of an Ultrasonic Motor

The typical structure of a travelling-wave ultrasonic motor is shown in Figure 1a [27]. The ring-
shaped stator with many teeth to enlarge the vibration amplitude is fixed on the base. The piezoelectric
wafer is affixed to the bottom surface of the stator. A rotor is on the top of stator. The cover is
fixed on the base. The bearing is used to improve the work efficiency by reducing friction while
operating. There is preload between the stator and rotor by applying a gasket between rotor and
bearing. By applying electric signal with a frequency close to the resonance frequency of the stator,
there is a continuous elliptical motion in the top of the stator. This motion is converted to the movement
of the rotor through the friction between the stator and rotor [28].
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The operating mechanism of an ultrasonic motor consists of two energy conversion processes:
One is the conversion of electrical energy into mechanical energy of high-frequency and micro-amplitude
vibration in stator through the inverse piezoelectric effect of piezoelectric materials. The other converts
the micro-vibration of the stator into the macroscopic motion of the rotor through the friction between
them. After impact, the damage to the piezoelectric wafer or stator, including the fracture of the
piezoelectric wafer and the plastic deformation of the stator, may lead to the incomplete vibration mode
of the stator, so that the input power cannot be converted into high-frequency and micro-amplitude
vibration of the stator efficiently. On the other hand, the plastic deformation of the rotor or stator will
lead to a decrease in preload. The analysis of the two convention processes in a shock environment can
be considered as the analysis of deformation of the structure and anti-impact property of the stator and
piezoelectric wafer.

Model Establishment

As a complex electromechanical coupling system, transient analysis is necessary to observe
the dynamic response of an ultrasonic motor in a shock environment. The model is established in
Workbench 14.0. The key components that cannot be ignored are the stator, piezoelectric wafer and
rotor. Instead, the base and cover can be ignored because their strength is large enough to withstand
impact damage. The cover will limit the upward movement of the rotor in a shock environment.
In order to show this phenomenon accurately, a limit gasket is set on the top of the rotor to limit
the upward movement of the rotor, as shown in Figure 2. To reduce the amount of calculation and
computational complexity, the mass of the shaft in the simulation was equivalent to a combination of a
bearing and output shaft.
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Figure 2. Finite element model.

Ultrasonic motor TRUM60, which means the diameter of the stator is 60 mm, is selected. The key
dimensions of the stator (Figure 1b) and rotor (Figure 1c) are listed in Table 1. Moreover, it is
significant to know the weight of the shaft, because it might increase the risk of rotor damage in a
shock environment.

Table 1. Key parameters of a travelling-wave ultrasonic motor (unit: mm).

Parameter Value Parameter Value

rs1 9 rs2 16.5
rs3 22 rs4 30
hs1 2 hs2 2.5
hp 0.5 rc1 4
rc2 11 rc3 27.5
rc4 29 hc1 4.5
hc2 2 weight of shaft 23g
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There are several kinds of materials, including phosphor bronze for the stator, aluminum for the
rotor, PZT-4 for the piezoelectric wafer, and structure steel for the shaft. Structural deformation is what
we are concerned about during the analysis process, especially in the stator and rotor. The bilinear
isotropic hardening model, as a classic elasto-plastic mechanics model, is widely used in engineering
research. The mechanical property of the material model is shown in Figure 3. Assume that the
material models of the rotor and stator are bilinear isotropic hardening materials. Assume structural
steel to be an isotropic material, because the output shaft is strong enough to withstand impact damage.
A piezoelectric wafer is a kind of anisotropic material. Compared to the whole USM, the volume and
mass of a piezoelectric wafer can be neglected, so it has an extremely low impact on the dynamic
characteristics of a USM in shock environment. Therefore, to reduce the amount of calculation and
computational complexity, the piezoelectric ceramic is simplified into an isotropic material. Adhesive
and friction material are not taken into consideration here. The key material parameters are shown
in Table 2.
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Table 2. Material parameters.

Material Density
(kg/m3)

Young’s
Modules (Pa) Poisson’s Ratio Yield

Strength (Pa)
Tangent

Modulus (Pa)

aluminum 2770 7.1 × 1010 0.33 2.8 × 108 5 × 108

phosphor bronze 8760 1.12 × 1011 0.33 4.4 × 108 1.15 × 109

Piezoelectric wafer 7650 3.5 × 1010 0.31 * *
Structural steel 7850 2 × 1011 0.3 * *

Besides, there are some contact and boundary conditions that need to be set. The grid of the
contact area is made to be high quality. The output shaft and rotor are bonded together to replace
the threaded connection. The displacement of the inner boundary of the stator is constrained to zero
at all degrees of freedom. Assume that the structure has experienced a half sine shock acceleration,
which can be expressed as:

a(t) =
{

a0 sin(πτ t), 0 ≤ t ≤ τ
0, t > τ

(1)

where a0 represents the amplitude of shock acceleration and τ represents the pulse width of
shock acceleration.

3. Dynamic Responses of an Ultrasonic Motor

3.1. Modal Analysis

The finite element modal analysis of the whole structure is carried out. The results are shown
in Figure 4. Because the direction of impact follows the Y axis, the mode shapes in the Y direction
are selected. The frequency of first modal (Figure 4a) and sixth modal (Figure 4b) is 860.47 Hz and
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3349.4 Hz, respectively. The output shaft cannot remain still in a shock environment considering
the structure of an ultrasonic motor. The first modal with a frequency of 860.47 HZ is more easily
stimulated in a shock environment.
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3.2. Dynamic Response of an Ultrasonic Motor

By applying a half sine acceleration pulse with an amplitude of 2000 g and a pulse width of
1.0 ms, transient simulation has been done. The dynamic responses at different times are listed in
Figure 5. The shaft moves down to the maximum, as shown in Figure 5a. Due to the elastic effect
of the structure, the rotor rebounds and then collides with the limit gasket, as shown in Figure 5b.
Then, the whole structure turns into a complex transient vibration state. Multiple collisions between
rotor, stator and limit gasket result in structural instability, especially in the rotor. The rotor exhibits an
unstable vibration state, as shown in Figure 5c. The maximum stress in the stator is 380 MPa at a time of
0.8 ms during the whole process, as shown in Figure 5d, which is smaller than the yield stress. It means
that there is no plastic deformation in the stator. Actually, the anti-impact property of the stator is far
greater than the rotor because of the structure difference. Figure 6 shows the displacement-time curves
of the rotor and stator. Curves “max in rotor” and “min in rotor” refer to the relative displacement
between the upper surface of the inner ring and the bottom surface of the outer ring in the rotor.
Obviously, there is irreversible plastic deformation in the rotor. Because the inner boundary of the
stator is constrained, the curves “max in stator” and “min in stator” refer to the displacement of the
outer edge of the bottom surface in the stator. The dynamic response of the structure can be divided
into two parts: Period 1, the outer ring of rotor maintains a stable ring, and the center part moves up
and down with the shaft; Period 2, the outer ring of the rotor is no longer stable, which leads to the
result that “max in rotor” and “min in rotor” gradually separate. The peak value of the displacement
has a time delay of 0.3 ms with the peak value of the impact, as shown Figure 6.
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3.3. Dynamic Response of an Ultrasonic Motor in a Shock Environment with a Different Amplitude and
Pulse Width

Dynamic responses do not only depend on the amplitude of shock acceleration but also the
pulse width. Compared with the stator, the rotor with lower strength is easier to distort. Hence,
the dynamic response of the rotor is what concerns us. Figure 7a shows the results of the maximum
relative displacement–time curves of the rotor under an impact of 1000 g, 1500 g, 2000 g, 2500 g, 3000 g,
and 3250 g with a pulse width of 1 ms. Apparently, the deformation increases with the increase in the
amplitude. While the impact exceeds 3000 g, the center part of the rotor collides with the stator and
bounces back. It will result in an earlier rebound time and a shorter pulse width. Figure 7b shows the
results of displacement–time curves of the rotor under an impact of 2000 g with a pulse width of 0.25,
0.5, 1, 2, and 4 ms. Impact with a pulse width of 0.5 ms and 1 ms will cause maximum displacement in
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the rotor. Pulse widths of 0.5 and 1 ms correspond to the frequencies 1000 and 500 Hz, which are closest
to the first modal frequency of 860.47 Hz among all the pulse widths listed above. This phenomenon is
consistent with the results of the modal analysis.Micromachines 2020, 11, x FOR PEER REVIEW 7 of 13 
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and duration.

3.4. Relationship between Plastic Deformation in Rotor and Preload

The micro-vibration of the stator can be transferred into the macroscopic motion of the rotor
through the friction between them. The preload between stator and rotor is produced through a gasket
between the rotor and bearing. Based on finite element calculation, the preload is 229.71N while
the thickness of gasket is 0.3 mm. Many theoretical and experimental results have proved that the
preload is significant to the performance of motor [29,30]. Obviously, the plastic deformation of the
rotor will lead to a decrease in preload. Assume that sinkage in the center of rotor is dc after impact,
as shown in Figure 8a. By applying a static acceleration that will result in plastic deformation in
the rotor, the relationship between deformation dc and preload under the premise of a gasket with a
constant thickness of 0.3 mm is obtained, as shown in Figure 8b. Obviously, there is a relationship
between dc and the preload. The polynomial fitted formula is:

ypreload = 229.60− 813.92dc + 163.93d2
c (2)

where ypreload is the preload, dc is the deformation of the rotor. It is necessary to recover the preload via
adding the thickness of the gasket to restore the performance of the motor. The thickness that ensures
the preload recover to the initial value is called “compensation”, and the relationship between dc and
compensation is calculated by the finite element method, as shown in Figure 8b. The polynomial fitting
formula is:

ycompensation = 1.76× 10−4 + 1.08dc − 0.234d2
c (3)

where ycompensation is the thickness of the compensation gasket and dc is the deformation of the rotor.
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4. Experiments

Three substantially identical ultrasonic motors (TRUM60) are chosen to test the performance
change after impact test. Ultrasonic motors are fixed on the fixture. The fixture is fixed on a Machete
hammer to carry out the impact test. The half-sine acceleration pulse induced by the Machete hammer
is obtained by free falling on the cushion, and the half-sine accelerations with a different amplitude
can be obtained by adjusting the height of the hammer and the thickness of the cushion. The whole
USM is fixed on the hammer through the clamp device, and the shock acceleration is applied to the
whole USM. The schematic diagram of the shock experiment is shown in Figure 9a. A data acquisition
system is adopted to capture the acceleration data. The impact test platform is shown in Figure 9b.
A mechanical characteristic test platform is set up to test the performance of the ultrasonic motor after
impact, as shown in Figure 9c. The speed of motors is measured under different loads utilizing a
non-contact laser velocity meter.
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Figure 9. Experiment test platform.

4.1. Mechanical Characteristic Test and Result Analysis

Different acceleration amplitudes of 1630, 1865 and 2320g are applied to three motors numbering
1 to 3, respectively. The original mechanical characteristic of the motors is shown in Figure 10.
After impact, ultrasonic motor 1 can work normally, but the output performance degrades. Performance
degradation in motor 2 is more apparent and there is noise “sha-sha” while operating. Motor 3 cannot
work while powered. The output shaft can rotate freely, which means that the preload disappears and
the motor has no self-locking ability. The mechanical characteristic of motors after impact is shown
in Figure 10.
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Obviously, the central part of the rotor is sunken, and the depth of sinking is measured and
listed in Table 3. The theoretical preload after impact based on Equation (2) is listed in Table 3.
The compensation is carried out to restore preload. The theoretical compensation thickness is based
on Equation (3), and the actual thickness of the compensation gaskets is listed in Table 3. The actual
compensation thicknesses are obtained through debugging when ultrasonic motors are at optimal
performance levels. There is a difference between theoretical and actual compensation. Different
thickness gaskets are used in debugging. The voids between gaskets lead to the increase in total
thickness, which means the decrease in actual thickness.
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Table 3. Deformation dc of a rotor and compensation thickness.

Number Deformation
dc (mm)

Theoretical Preload
after Impact(N)

Theoretical
Compensation (mm)

Actual
Compensation (mm)

1 0.1 149.8 0.106 0.1
2 0.2 73.4 0.207 0.15
3 0.55 0 0.523 0.45

Moreover, the performance of motors after compensation is tested, as shown in Figure 10. It is
obvious that the mechanical characteristic will be restored with the application of the compensation
gasket. However, the performance will never be restored to original state. It will always degrade
irreversibly. The reasons behind this need more analysis.

4.2. Anti-Impact Property of Stator

In order to test the anti-impact property of stators, motors 1 and 2 are subjected to a higher impact
load of 9718.3 and 3582.6 g, respectively. Obviously, the two motors cannot operate normally. There is
no obvious damage in the stators. The vibration characteristic of the stators after impact is measured by
a laser Doppler vibrometer system (PSV-300F-B). The vibration shapes of stator 1 and 2 are relatively
complete, as shown in Figures 11 and 12. However, the vibration shape of stator 2 is far better than that
of stator 1. The crest heights in these two stators are both inconsistent, but the inconsistence is more
apparent in stator 1. Besides that, there is a wave discontinuity in stator 1. The inconsistent crests show
that the stator presents a state of twisted vibration, which means that the stator is no longer a stable
ring. This will lead to inhomogeneous contact between the stator and rotor; thus, the output torque
and speed of the USM are severely weakened. The small distortions in the vibration characteristic of
stators are part of the reasons behind the performance degradation after the compensation described
in previous section.
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In order to ensure the performance of ultrasonic motor in shock environment, the protection
device is necessary. Rubber, which can effectively reduce the impact amplitude and increase the impact
pulse width, is widely used in vibration and impact buffering devices because of its excellent property
and its cheap price. A shock experiment is carried out with the protection of rubber. The impact loads
are 3090, 3035, and 2980 g. The ultrasonic motors used in the experiment are the three motors that
have been adjusted after the previous experiment. The rubber used during the experiment is shown
in Figure 13. The mechanical characteristic of the ultrasonic motor is tested after impact with the
protection of rubber. The experiment results show that the performance of the ultrasonic motor drops
slightly compared with that has no protection method, as shown in Figure 14. Obviously, rubber can
protect the motors in a shock environment to some extent.
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5. Conclusions

In this article, a typical structure of a travelling-wave ultrasonic motor is proposed and the influence
of shock acceleration on an ultrasonic motor is investigated. A theoretical model is established to
observe the dynamic response of an ultrasonic motor in a shock environment based on the finite element
method. Meanwhile, a relationship between plastic deformation in the rotor and preload is obtained.
After that, an impact experiment is carried out to test the influence of a shock environment on an
ultrasonic motor, including the influence on the mechanical characteristic of motors and the vibration
characteristic of stators. Moreover, the compensation gasket is applied to recover the performance
of motors. Finally, the protection effect of rubber on an ultrasonic motor in a shock environment is
verified by experiments. The meaningful results are summarized in the following.

The deformation of structure does not only depend on the amplitude of shock acceleration but
also the pulse width. The distortion of the rotor is smaller while the shock frequency is far away from
the resonant frequency. This means that the influence of shock acceleration on an ultrasonic motor can
be reduced by changing the impact pulse width besides reducing impact amplitude.

The preload decreases while the deformation of the rotor increases. It will result in the performance
degradation of the motor. The preload can be recovered by adding an extra gasket. The relationships
between the deformation of the rotor and preload as well as compensation thickness are obtained,
respectively. The experiment results also show that the mechanical characteristic can be recovered by
applying an extra gasket.

A shock environment will lead to the small distortion of the vibration characteristic of a stator,
including the inconsistent crest heights and wave discontinuity. This is part of the reason that leads
to irreversible damage to the ultrasonic motors. As a typical cushioning material, rubber can protect
an ultrasonic motor in a shock environment efficiently. A protection device is necessary when an
ultrasonic motor is applied in a shock environment.
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