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Abstract: Energy-autonomous bistable threshold sensor switches have the potential to reduce
costs because they do not need any electrical energy supply for monitoring physical quantities,
such as relative humidity. In previous work, a bistable beam-like sensor switch with switching
hysteresis was manufactured from sheet metal and a partially coated water vapor-sensitive hydrogel
(poly(vinyl alcohol)/poly(acryl acid)). Based on the beam theory, a corresponding mechanical model
was developed. However, bending plates should be used instead of bending beams to separate
the humidity to be measured from the electrical contacts. For this reason, this work deals with
the development and realization of a mechanical model based on the plate theory to describe
the deflection of a silicon bimorph bending plate partially coated with hydrogel that swells with
increasing humidity. For implementing a switching hysteresis a plasma-enhanced chemical vapor
deposition silicon dioxide (SiO2) layer is used, which was deposited and structured on top of
the silicon plate. The hydrogel layer itself is patterned on the surface of the bending plate using
a stamp technique. To validate the mechanical model, the switching hysteresis of the miniaturized
sensor switch was measured optically by a camera measurement device.

Keywords: sensor switch; switching hysteresis; threshold sensor; bistable sensor; plate theory;
bimorph effect; relative humidity sensing

1. Introduction

The demand on sensors and sensor systems that combine data acquisition and signal processing
increases in several fields, like industrial production, building automation, and automobile technology.
For inline process observation and control, the most important quantities are temperature and humidity.
Numerous sensors and sensor systems can be used for humidity sensing [1,2]. In building monitoring,
ca. 90% of all sensors are used as threshold switches and, in process control, some 70% [3]. A novel
approach for a non-powered humidity threshold switch based on the binary zero-power sensor
principle (BIZEPS) was proposed in Reference [4–10]. With this principle, the energy for the switching
process is taken directly from the measured variable. The basic part is a humidity-dependent polymer
film in which swelling has both a sensory effect and an actuator function that causes switching.

Figure 1 shows the general set-up and working principle of a hydrogel-based humidity threshold
switch. The silicon-based bending plate is located in the middle of a silicon die. The surface of
the electrical contacts for the switch have to be level and flat. For this reason, a rigid center in the middle
of the bending plate, a so-called boss structure, is used. The rigid center of the bending plate is
deflected by the humidity-dependent swelling behavior of the hydrogel deposited on the silicon plate.
The water vapor uptake, and hence the swelling state, depend on the humidity of the surrounding
air. When swelling, the hydrogel provides the mechanical energy to deflect the bending plate without
any electrical energy supply. This sensor shows a high sensitivity with regard to small changes and
a corresponding closing (when swelling) or opening (when deswelling) of the microcontact [7].
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microcontact [7].  

 

  

Figure 1. Basic operational principle of a humidity threshold sensor switch, consisting of a bimorph 
bending plate with patterned hydrogel layer and micro-contacts, (a) open and (b) closed (adapted 
from Reference [7]). 

2. Previous Work 

In Reference [11,12] a hydrogel-based piezoresistive chemical sensor for pH measurement and 
in Reference [13] a hydrogel based biochemical sensor were introduced. To increase the applicability 
of the hydrogel-based sensors, the hydrogels were modified via γ–irradiation for biochemical 
applications [14] and also used for the detection of heavy metal ions [15]. For polymer modifications, 
nanocomposites were realized in Reference [16], and the influence of ion-implementation was 
investigated in Reference [17]. 

The nonlinear effects resulting from the swelling behavior of the hydrogel were modeled for pH-
sensors [18] and biochemical sensors [19].  

In Reference [20], the swelling behavior of a swellable hydrogel was used for flow control in 
microfluidic systems and, in Reference [21,22], as a sensor-actor system for monitoring and control 
of physical values (temperature).  

Due to the wide range of applications of hydrogel based sensor-actuator systems, there is a great 
demand on the development of a simple mechanical model for calculation of the actuator behavior 
or for the derivation of guidelines for the design of such sensor-actuator systems. Hydrogel-based 
sensor-actuator systems consist of a bending plate and a hydrogel manufactured for the respective 
application. From this, the plate theory can be used to develop a mechanical model to calculate the 
bending plate deflection in dependence of the hydrogel swelling. 

In Reference [23], a beam-like structure was considered comprising a sheet metal-based double-
sided clamped beam and a partial coating with hydrogel. For the calculation of the deflection of the 
bending beam as a function of the hydrogel coating, a model was developed by means of the beam 
theory and lumped mechanical models for the bending beam, where the maximum deflection occurs 
at a coverage ratio of ca. 50%. 

To avoid both damages due to electrical arcing and oscillations at humidity values near the 
threshold, the humidity-deflection relationship should show an S-shaped hysteresis. Such a 
hysteresis—in conjunction with a corresponding pre-deflection of the bending beam—can easily be 
achieved by an appropriate axial compressive force. In Reference [23], the lumped model was 
extended by additional axial forces, acting from the two clamping points. It could be shown that the 
switching hysteresis (threshold value and hysteresis width) is adjustable via variation of the 
geometry parameters, like thickness and length of the bending plate.  

In addition to the requirements considered so far, other objectives should be taken into account 
for future solutions:  

• To separate the electrical contacts from the measured humidity a bimorph bending plate 
should be used instead of a bending beam considered in Reference [23]. 

• Future sensors should be low-cost and miniaturized. For that reason, MEMS 
technologies should be preferred.  

The latter can be easily realized by using silicon bending plates with boss structures in the center 
that provide the level and flat contact areas (see Figure 1). As already proposed in Reference [24], 
both a pre-deflection and an axial compressive force can be achieved by a silicon dioxide (SiO2) layer 
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Figure 1. Basic operational principle of a humidity threshold sensor switch, consisting of a bimorph
bending plate with patterned hydrogel layer and micro-contacts, (a) open and (b) closed (adapted from
Reference [7]).

2. Previous Work

In Reference [11,12] a hydrogel-based piezoresistive chemical sensor for pH measurement and
in Reference [13] a hydrogel based biochemical sensor were introduced. To increase the applicability
of the hydrogel-based sensors, the hydrogels were modified via γ–irradiation for biochemical
applications [14] and also used for the detection of heavy metal ions [15]. For polymer modifications,
nanocomposites were realized in Reference [16], and the influence of ion-implementation was
investigated in Reference [17].

The nonlinear effects resulting from the swelling behavior of the hydrogel were modeled for
pH-sensors [18] and biochemical sensors [19].

In Reference [20], the swelling behavior of a swellable hydrogel was used for flow control in
microfluidic systems and, in Reference [21,22], as a sensor-actor system for monitoring and control of
physical values (temperature).

Due to the wide range of applications of hydrogel based sensor-actuator systems, there is a great
demand on the development of a simple mechanical model for calculation of the actuator behavior
or for the derivation of guidelines for the design of such sensor-actuator systems. Hydrogel-based
sensor-actuator systems consist of a bending plate and a hydrogel manufactured for the respective
application. From this, the plate theory can be used to develop a mechanical model to calculate
the bending plate deflection in dependence of the hydrogel swelling.

In Reference [23], a beam-like structure was considered comprising a sheet metal-based
double-sided clamped beam and a partial coating with hydrogel. For the calculation of the deflection of
the bending beam as a function of the hydrogel coating, a model was developed by means of the beam
theory and lumped mechanical models for the bending beam, where the maximum deflection occurs
at a coverage ratio of ca. 50%.

To avoid both damages due to electrical arcing and oscillations at humidity values near
the threshold, the humidity-deflection relationship should show an S-shaped hysteresis. Such
a hysteresis—in conjunction with a corresponding pre-deflection of the bending beam—can easily be
achieved by an appropriate axial compressive force. In Reference [23], the lumped model was extended
by additional axial forces, acting from the two clamping points. It could be shown that the switching
hysteresis (threshold value and hysteresis width) is adjustable via variation of the geometry parameters,
like thickness and length of the bending plate.

In addition to the requirements considered so far, other objectives should be taken into account
for future solutions:

• To separate the electrical contacts from the measured humidity a bimorph bending plate should
be used instead of a bending beam considered in Reference [23].

• Future sensors should be low-cost and miniaturized. For that reason, MEMS technologies should
be preferred.

The latter can be easily realized by using silicon bending plates with boss structures in the center
that provide the level and flat contact areas (see Figure 1). As already proposed in Reference [24],
both a pre-deflection and an axial compressive force can be achieved by a silicon dioxide (SiO2) layer
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deposited also partially on the bending plate. Since SiO2 has a much lower coefficient of thermal
expansion than silicon and is deposited at temperatures of several 100 ◦C, cooling down to room
temperature leads to a larger expansion of the SiO2 thin film than of the silicon (Si) plate [8]. To
model the mechanical switching behavior of the rectangular bimorph bending plates, more advanced
models have to be applied in comparison with the simplified lumped models for bending beams,
like in Reference [24–26]. The goal of the following considerations is to derive analytical models for
the description of rectangular bimorph plates with patterned layers that undergo a volume expansion
(swelling) due to humidity as similar to the thermal expansion of any materials.

The paper is organized in the following manner. First, we will consider a homogenous, rectangular,
shear-rigid-bending plate with respect to its general deflection equation and the occurring cutting
moments and forces. In a second step, when a part of the plate is subjected to forces in the normal
direction, this leads to internal bending moments around the neutral fiber of the plate. This corresponds
to the effect of a bimorph element with one of the layers swelling under the influence of humidity.
This analogy can easily be used to model the bimorph structure. It will be shown that analytical
approaches, known from load-bearing shell structures, can be applied to derive analytical expressions
of the deflection-load and deflection-humidity relationship.

In a third part, the fabrication of a silicon-based MEMS threshold sensor is described, where
the pre-deflection, as well as the axial compression pre-stress, is provided by a silicon oxide island
in the middle of the bending plate. Experiments with such sensor specimens have shown that
the patterned SiO2 layers on top of the silicon sensor chips are suitable to achieve such a targeted
S-shaped hysteresis course.

3. Plate Equations for Thin Rectangular Bimorph Plates

To derive an analytical equation for a bimorph bending plate with hysteretic behavior due to
an applied compression axial force, the following procedure is used. First, the plate is considered
as thin plate, which allows several simplifications (Section 3.1). In a second step, the equilibrium
equations for the forces and moments are considered (Section 3.2) and—by including the laws of matter
(Section 3.3)—the plate Equations are derived (Section 3.4). Using the analogy between the occurrence
of an internal bending moment due to a bimorph plate structure and due to a locally applied area force,
an analytical relationship for the deflection of a partially as bimorph acting structure can be derived
(Section 3.5). In a last step, the influence of an additionally applied in-plane force is introduced to
consider the hysteretic behavior (Section 3.6) as targeted in this application.

3.1. Assumptions

To describe the deflection of a rectangular bending plate partly covered with hydrogel, several
assumptions have been taken into account (Figure 2):

• Small deflections w in comparison to the plate thickness h: w/h < 0.2.
• The plate is thin, i.e., its thickness h be significantly smaller than the sizes l1 and l2 of its edges:

h/l1,2 < 0.1.
• Hooke’s law should apply.
• The plate is considered to have a large bending stiffness, i.e., it is flexurally rigid.
• The plate material is isotropic and homogeneous.
• The strain ε33 in x3-direction is negligibly small, so that the plate can be considered rigid along

the thickness: ε33 = 0.
• The normal to the undeformed surface remains normal to the surface when the plate is deformed

(Figure 2c). This property is similar to the assumption of a thin plate.
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Figure 2. Rectangular thin plate with high bending stiffness (a); (b,c) Thickness-dependent stress 
and strain distributions and plate element with internal moments due to the stress distribution 
along the thickness h; (d) Undeflected and deflected plate element, (adapted from Reference [27]). To derive a simplified mechanical model from the plate theory, only small curvatures of the 

plate center surface, are considered (Figure 3). It follows: 

• The shear strains γଵଷ and γଶଷ are neglectable.
• Bernoulli’s hypothesis applies saying that the course of the stresses σଵଵ and σଶଶ, as

well as of the strains εଵଵ and εଶଶ, change linearly along the thickness, whereas the
shear stresses τଵଷ and τଶଷ show a parabolic course along ℎ (Figure 2d) [27] (pp. 10–
17).
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Figure 2. Rectangular thin plate with high bending stiffness (a); (b,c) Thickness-dependent stress
and strain distributions and plate element with internal moments due to the stress distribution along
the thickness h; (d) Undeflected and deflected plate element, (adapted from Reference [27]).

To derive a simplified mechanical model from the plate theory, only small curvatures of the plate
center surface, are considered (Figure 3). It follows:

• The shear strains γ13 and γ23 are neglectable.
• Bernoulli’s hypothesis applies saying that the course of the stresses σ11 and σ22, as well as of

the strains ε11 and ε22, change linearly along the thickness, whereas the shear stresses τ13 and τ23

show a parabolic course along h (Figure 2d) [27] (pp. 10–17).
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Figure 3. (a) Plate with thickness h and cut-out plate element, deformed and undeformed state in (b1)
x1- and (b2) x2-direction (adapted from Reference [27]).



Micromachines 2020, 11, 569 5 of 22

For the given assumptions, the curvatures κ11 and κ22 of the central surface for the x1,x3- and
x2,x3-planes can be linearized for small angles (Figure 3) [26,27]:

κ11 =
−w,11[

1 + (w,1)
2
] 3

2

≈ −
d2w
dx2

1

≈ −w,11, (1)

κ22 =
−w,22[

1 + (w,2)
2
] 3

2

≈ −
d2w
dx2

2

≈ −w,22. (2)

To derive the plate equation, the kinematic equations, the equilibrium conditions, and the law of
matter are to be formulated with respect to the pre-introduced assumptions.

Three types of forces can act on the plate:

• forces perpendicular to the plate surface (out-of-plane),
• in-plane forces caused from the bimorph effect due to a coating of the plate, and
• in-plane forces caused by in-plane loads from the clamping.

For small deflections according to Figure 3, it yields:

cosϕ1 ≈ ϕ1 ≈ 1, (3)

sinϕ1 ≈ ϕ1 ≈ tanϕ1 = w,1, (4)

sinϕ2 ≈ ϕ2 ≈ tanϕ2 = w,2. (5)

The displacements u1 in x1-direction and u2 in x2-direction depend on ϕ1 and ϕ2 and, hence, on
w,1 and w,2:

u1(x1, x2, x3) = −x3w,1(x1, x2), (6)

u2(x1, x2, x3) = −x3w,2(x1, x2), (7)

w(x1, x2, x3) = w(x1, x2). (8)

This leads to the strain-displacement equations:

ε11 = u1,1 = −x3w,11 = x3κ11, (9)

ε22 = u2,2 = −x3w,22 = x3κ22, (10)

γ12 = u1,2 + u2,1 = −2x3w,12 = 2x3κ12, (11)

γ21 = u2,1 + u1,2 = −2x3w,21 = 2x3κ21. (12)

Since the functions for the normal strains ε11, ε22 and shear strains γ12 = γ21 are linear, they can
be represented by the derivative of the deflection w(x1, x2) in x3-direction [27].

3.2. Equilibrium Conditions

Since so far no axial forces occur in the plate, the normal stresses n11, n22, and n33 arise from
the stresses σ11, σ22, and σ33, corresponding to the three axes of the coordinate system:

n11 =

∫ h/2

−h/2
σ11dz = 0, n22 =

∫ h/2

−h/2
σ22dz = 0, n33 =

∫ h/2

−h/2
σ33dz = 0. (13)

Figure 4 and Table 1 show the acting length-related forces and moments at a differential part of
the bending plate. Here, q and m are the length-related out-of-plate forces and moments, respectively, at
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an area ∆A = dx1dx2. To derive the bending moments, the torsional moments and the transverse forces,
the corresponding quantity is integrated via the corresponding mechanical stress along the thickness h.
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Figure 4. Moments and forces acting at a plate part with dA = dx1dx2 (adapted from Reference [27]).

Table 1. Bending moments, torsional moments, transverse forces, and the corresponding
boundary conditions.

Length-Related Quantities Equation Unit At Location

Bending moments m11(x1, x2) =
∫ h

2

−
h
2

σ11x3dz [N] x1 = const. (14a)

m22(x1, x2 =
∫ h/2
−h/2 σ22x3dz [N] x2 = const. (14b)

Torsion moment m12(x1, x2) =
∫ h/2
−h/2 σ12x3dz [N] x1 = const. (14c)

m21(x1, x2) =
∫ h/2
−h/2 σ21x3dz [N] x2 = const. (14d)

Transverse force q1(x1, x2) =
∫ h/2
−h/2 σ13dz [N/m] x1 = const. (14e)

q2(x1, x2) =
∫ h/2
−h/2 σ23dz [N/m] x2 = const. (14f)

In the equilibrium state, the following equations apply for the forces and moments:

− q1dx2 + (q1 + q1,1dx1)dx2 − q2dx1 + (q2 + q2,2dx2)dx1 + qdx1dx2 = 0, (15)

m22dx1− (m22 + m22,2dx2)dx1 +m12dx2− (m12 + m12,2dx1)dx2 + q2dx1
dx2

2
+(q2 + q2,2dx2)dx1

dx2

2
= 0,

(16)

m11dx2− (m11 + m11,1dx1)dx2 +m21dx1− (m21 + m21,2dx2)dx1 + q1dx2
dx1

2
+(q1 + q1,1dx1)dx2

dx1

2
= 0.

(17)
Neglecting terms of higher order (dx1dx2dx2, dx1dx1dx2) for small deflections, one obtains:

q1,1 + q2,2 + q = 0, (18)

q2 = m12,1 + m22,2, (19)

q1 = m11,1 + m21,2. (20)

q results from the second derivatives of both the bending and torsion moments [27]:

m11,11 + 2m12,12 + m22,22 = −q. (21)

3.2.1. Law of Matter

As assumed in Section 3.1, the material of the plate behaves elastically, i.e., Hooke‘s law applies
(Table 2).
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Table 2. Stress-strain relations for fully elastic material behavior (E Young’s modulus, ν Poisson’s ratio).

Quantity Strains 1 Stresses 2

Normal
components ε11 = 1

E (σ11 − νσ22) (22a) σ11 = E
1−ν2 (ε11 + νε22). (22b)

ε22 = 1
E (σ22 − νσ11) (23a) σ22 = E

1−ν2 (ε22 + νε11). (23b)
Shear components γ12 =

2(1+ν)
E σ12 (24a) σ12 = E

2(1−ν )
γ12 (24b)

1 unitless, 2 unit (N/mm2).

3.2.2. Plate equations

The deflections are determined by the strains and both the forces and moments by the stresses
(Section 3.2). Both are connected by the Hooke’s law (Table 2). This allows the calculation of the plate
deflection as function of the acting forces and moments. To calculate the normal stress, Equations
(10)–(13) are inserted into Equations (22b), (23b) and (24b):

σ11(x1, x2, x3) = −
Ex3

1− ν2
(w,11 + νw,22), (25)

σ22(x1, x2, x3) = −
Ex3

1− ν2
(w,22 + νw,11), (26)

σ12(x1, x2, x3) = −
Ex3

(1 + ν )
w,12, (27)

The normal stresses depend linearly on the plate thickness h. By inserting Equations (25–27) into
Equations (14a), (14b) and (14c), one achieves for the moments:

m11(x1, x2) = −
Eh3

12(1− ν2)
(w,11 + νw,22) = −K(w,11 + νw,22), (28)

m22(x1, x2) = −
Eh3

12(1− ν2)
(w,22 + νw,11) = −K(w,22 + νw,11), (29)

m12(x1, x2) = −(1− ν)
Eh3

12(1− ν2)
w,12 = −K(1− ν)w,12. (30)

For simplification, the bending stiffness K = Eh3

12(1−ν2)
is introduced. The shear forces have to be

calculated from the equilibrium conditions from Equations (17) and (18):

q1(x1, x2) = m11,1 + m21,2 = −
d

dx1
[K(w,11 + νw,22)] −

d
dx2

[K(1− ν)w,12], (31)

q2(x1, x2) = m22,2 + m12,2 = −
d

dx2
[K(w,22 + νw,11)] −

d
dx1

[K(1− ν)w,12]. (32)

with this, the curvatures for each point of the bending surface can be expressed by the moments:

κ11 = (m11 − νm22)/K̃, κ22 = (m22 − νm11)/K̃, κ12 = (1ν)m12/K̃, (33)

with
K̃ =

(
1− ν2

)
K = Eh3/12. (34)

By inserting the relations from Equations (28)–(30) into Equation (19), the general plate equation
for a plate with small deflections can be derived:

d2

dx2
1

[K(w,11 + νw,22)] + 2
d2

dx1dx2
[K(1− ν)w,12] +

d2

dx2
2

[K(w,22 + νw,11)] = q. (35)
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with ∆ = d2

dx2
1
+ d2

dx2
2
, Equation (35) simplifies to:

∆∆w(x1, x2) =
q(x1, x2)

K
. (36)

The moments and transverse forces are:

m11(x1, x2) = −K(w,11(x1, x2) + νw,22(x1, x2)), (37)

m22(x1, x2) = −K(w,22(x1, x2) + νw,11(x1, x2)), (38)

m12(x1, x2) = −K(1− ν)w,12(x1, x2), (39)

q1(x1, x2) = −K
d

dx1
(∆w), (40)

q2(x1, x2) = −K
d

dx2
(∆w). (41)

The deflection w of a plate can now be calculated by integrating Equation (36) four times, whereby
the integration constants result from the specifically given boundary conditions [27].

3.3. Deflection of a Bending Plate due to an Out-of-Plane Force

To calculate the deflection of the bending plate in dependence of an out-of-plane force, i.e., a force
acting perpendicular to the plate surface, the general plate Equation (28) must be solved with respect
to the relevant boundary conditions (Figure 5). In order to calculate the forces acting on a defined area
of the plate, analytical problems can be solved using a simple Fourier integral. For the development of
such functions f (x1) and f (x2), they should be periodic corresponding to f (x) = f (x± nλ), with λ
the period and m, n = 1.
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Figure 5. Entirely clamped rectangular plate (grey) with area-related out-of-plane force p(x,y) acting on
the middle of the plate (blue area). The center of this area is located at u = a/2 and v = b/2, and its size is
2σ × 2ς (adapted from Reference [27]).

From Reference [27] (pp. 437–442), a sinus approach with the periodical length k = a in
x1-direction and λ = b in x2-direction is used to calculate the transverse force, where q(x1, x2) is used.
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m and n again correspond to the number of periods (m, n = 1). When the force p(x, y) is acting, a shear
force, q(x1, x2), occurs:

q(x1, x2) =
4p
ab

∫ u+ς
u−ς

∫ v+σ

v−σ sin
(
mπ k

a

)
sin

(
nπλb

)
dkdλ

=
p

mnπ2

[
cos

(
mπκa

)]u+ς

u−ς

[
cos

(
nπλb

)]v+σ

v−σ

=
4p

mnπ2

[
cos

(
mπu+ς

a

)
− cos

(
mπu−ς

a

)][
cos

(
nπv+σ

b

)
− cos

(
nπv+σ

b

)]
.

(42)

Using
cos(α±β) = [cos(α) cos(β)] ∓ [cos(α) cos(β)], (43)

sin(α±β) = [sin(α) cos(β)] ± [cos(α) sin(β)], (44)

the shear force becomes

q(x1, x2) =
16p
π2mn

sin
(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ

b

)
. (45)

By inserting m, n =1 into Equation (45), q(x1, x2) corresponds to one period of the force acting onto
the plate. For the analytical solution of the plate equation under load, a sinus approach is used with
the period length, which is periodical length k = a in x1-direction and λ = b in x2-direction. m and n
correspond to the number of periods in this case m, n = 1. To calculate the plate deflection w(x1, x2)

from q(x1, x2), the boundary conditions for an all-side-clamped plate must be taken into account:

w(0, 0) = 0 w(a/2, b/2) , 0

w′(0, 0) = 0 w′(a/2, b/2) = 0.
(46)

As shown in Reference [28] (pp. 91–95), the solution of the plate equation is only governed
by the particulate solution. For that, a trigonometric solution approach was used to solve the plate
Equation (36):

w(x1, x2) =
a2b2q(x1, x2)

K
sin

(
n
π

a
x
)

sin
(
m
π

b
y
)
. (47)

The deflection of the center of the bending plate under load is:

w(a/2, b/2) =
16
K

a2b2p
mnπ2 sin

(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ

b

)
(48)

and depends on the material parameters, the geometrical dimensions of the plate, and the force p(x1, x2).
The moments mxx, mxy, myy result from double derivation:

mxx =
d2w
dx2 =

1 + ν
K

p(x1, x2)a2 sin
(
mπ

x
a

)
sin

(
nπ

y
a

)
, (49)

myy =
d2w
dy2 =

1 + ν
K

p(x1, x2)a2 sin
(
mπ

x
a

)
sin

(
nπ

y
a

)
, (50)

mxy =
d2w

dxdy
= −

1− ν
K

p(x1, x2)a2 cos
(
mπ

x
a

)
cos

(
nπ

y
a

)
. (51)

For a square plate shape with a = b, it follows [29,30]

d2w
dx2 =

d2w
dy2 = mxx = myy. (52)
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3.4. Deflection of a Bending Plate due to the Bimorph Effect

To calculate an approximate solution for the deflection of a bending plate under the influence of
an in-plane force, some considerations have to be made:

• As shown in Reference [31], the effect of a bimorph bending element can be considered as
a conventional monomorph bending element with an additionally acting internal moment
source (affecting the bending behavior), as well as an internally generated in-plane force, due to
the effective thermal length expansion.

• This in-plane force is comparable to the force q1(x1, x2) and q2(x1, x2) from Equations (14e)–(14f)
for the case of the plate from Figure 5. For that reason, the resulting deflection of a thin rectangular
plate with a bimorph element in the center should follow the same function as of Equation (47).

• The latter applies only when the mentioned internally generated in-plane force is used. Therefore,
this force has to be considered afterwards in a next step.

• In our application, the bimorph comprises the rectangular silicon plate and the humidity-sensitive
hydrogel in the middle. Because the Young’s modulus of hydrogel is several orders of magnitude
lower than that of silicon, its influence on both the bending and the axial stiffness is neglectable.
Therefore, the bimorph bending plate can still be considered to be homogeneous and with
a constant thickness.

As illustrated in Figure 2d, the deflection of the bimorph bending plate can now be calculated in
dependence on the transverse forces q(x1) and q(x2). Due to the plate symmetry, it can be assumed
that q(x1) = q(x2).

As given in Figure 6, the (silicon) plate has a thickness of h1 and a Young´s modulus E1, whereas
the patterned (hydrogel) layer is characterized by h2 and E2. According to Reference [31], the neutral
axis is located at

xs =
1
2

E1h2
1 − E2h2

2

E1h1 + E2h2
. (53)
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the bimorph is located in the plate center.

The integral force F1 in x1-direction results approximately from:

F1 = −lB

∫ xs+h2

xs−h2

σ13dx3 = −lB(α1E1h1 + α2E2h2)Λ. (54)

Here, α1 and α2 are the expansion coefficients from the plate and the patterned layer with respect
to a length expansion quantity Λ (e.g., swelling due to humidity or temperature).

The transverse force F1 depends on the bimorph length lB = ς, the thickness h, the Young’s
modulus E, the expansion coefficientα, and the influence quantity Λ. The indices 1 and 2 are assigned to
the respective material (Figure 6). The material with index 1 (silicon) does not undergo any elongation
due to humidity (α1 = 0) by Λ, thus simplifying Equation (55) to:

F1 = lB
(
α2E2h2

)
Λ. (55)
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The length-related shear force of a plate is calculated according to Equation (14e):

q1 =
F1

l
=

lB
l

(
α2E2h2

)
Λ, (56)

with the total length a = l = lB + lP (Figure 6). The shear force thus depends exclusively on the properties
of the patterned film and the coverage ratio lB/l. According to the derivation of the deflection of
the plate in Section 3.4, Equations (42)–(48), it now yields for the bimorph plate:

q(x1, x2) = 4p
∫ u+ς

u−ς

∫ v+σ

v−σ
sin

(
mπ

k
a

)
sin

(
nπ
λ
b

)
dkdλ. (57)

The deflection in the center is given for x1 = a/2 and x1 = b/2:

w(a/2, b/2) =
16
K

a2b2p
mnπ2 sin

(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ

b

)
. (58)

To calculate the deflection of the bending plate depending of the ratio lB/l (the coating degree),
the shear force must be adapted to the plate. The length lB is variable. Since the structure is symmetrical,
the shear force q2 parallel to the x2-axis is equal to q1 parallel to the x1-axis:

q1 = q2 =
lB
l

(
α2E2h2

)
Λ. (59)

Since the shear force affects a part of the plate surface, the force is calculated by interpolation in
x2-direction. Using the integral limits from Figure 4, the shear force in x1- and x2-direction for a plate is:

q(x1, x2) =
2lB(α2E2h2)Λ

ab

∫ u+ς
u−ς

∫ v+σ

v−σ sin
(
mπκ

a

)
sin

(
nπλ

b

)
dκdλ

=
2lB(α2E2h2)Λ

mnπ2

[
cos

(
mπκ

a

)]u+ς

u−ς

[
cos

(
nπλ

b

)]v+σ

v−σ
,

(60)

w(x1, x2) =
16
K

lBa4
(
α2E2h2

)
Λ

mnπ2 sin
(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ
b

)
sin

(
mπ

x
a

)
sin

(
nπ

y
a

)
. (61)

For the calculation of the deflection at the center of the plate, Equation (47) is used with x1 = a/2,
x2 = b/2 and with Equation (61), as follows:

w(a/2, b/2) =
16
K

a4lB
(
α2E2h2

)
Λ

mnπ2 sin
(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ
b

)
. (62)

The moments follow by double derivation:

mxx =
d2w
dx2 =

1 + ν
K

q(x1, x2)a2 sin
(
mπ

x
a

)
sin

(
nπ

y
a

)
, (63)

myy =
d2w
dy2 =

1 + ν
K

q(x1, x2)a2 sin
(
mπ

x
a

)
sin

(
nπ

y
a

)
, (64)

mxy =
d2w

dxdy
= −

1− ν
K

q(x1, x2)a2 cos
(
mπ

x
a

)
cos

(
nπ

y
a

)
. (65)

If, instead of the center of the plate, the outer part of the rectangular plate is covered (Figure 7),
the corresponding integration limits in Equation (60) have to be changed:

q(x1, x2) =
2·lB

(
α2E2h2

)
Λ

ab

∫ u+ς

u−ς

∫ v+σ

v−σ
sin

(
mπ

k
a

)
sin

(
nπ
λ
b

)
dkdλ, (66)
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and the plate equation results in:

w(x1, x2) =
16
K

a4lB
(
α2E2h2

)
Λ

π2 sin
(
π

u
a

)
sin

(
π
ς
a

)
sin

(
π

v
b

)
sin

(
π
σ
b

)
sin

(
π

x1

a

)
sin

(
π

x2

b

)
. (67)
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Figure 7. All-side-clamped rectangular bending plate (grey) with edge lengths a and b, with the outer
side covered with a swellable layer.

By inserting x1 = a/2 and x2 = b/2 into Equation (67), the deflection of the center of the plate
results in:

w(a/2, b/2) =
16
K

a4lB
(
α2E2h2

)
Λ

π2 sin
(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ

b

)
·1·1. (68)

Again, the strong influence of the coverage ratio ς/a and lB/l, respectively, can be seen.
Figure 8 compares this influence for the both cases (Figures 5 and 7), where a silicon plate is

covered by a patterned hydrogel layer in the middle and at the outer part at the clamping of the plate.
For reasons of simplification, a square shape was considered (a = b, ς = σ). The calculations are based
on Equations (48) and (62), and use the material and geometrical parameters from Table 3. Figure 8
shows that a maximum deflection occurs for a coverage ratio ς/(a/2) of ca. 0.55. This confirms our
results from Reference [4] for a simplified lumped model of a bimorph bending plate.

Table 3. Material and geometrical parameters of a silicon bending plate covered with hydrogel [7,25].

Parameter Silicon Plate Hydrogel Layer

Length a [mm] 4 variable
Width b [mm] 4 variable
Thickness h1,2 [µm] 18 20
Young´s modulus E1,2 [N/mm2] 131000 500 at 90%R.H.
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)
with a = b of a square plate calculated with Equation
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parameters as in Table 3.

3.5. Deflection of a Plate with Axial In-Plae Compresion Force

As mentioned in Section 2, sensor switches as considered in this work should show an S-shaped
hysteresis. This can be achieved—in conjunction with a corresponding pre-deflection of the bending
plate—by applying an axial compressive force (Figure 9). For instance, the deposition of a silicon
oxide layer on the top surface at the silicon bending plate could create such a compressive stress, since
SiO2 is deposited at temperatures much above room temperature (RT). Due to the smaller coefficient
of thermal expansion of SiO2 in comparison with Si (αSiO2 = 5.6 × 10−7 K−1 < αSi = 2.3 × 10−6 K−1),
cooling down to RT leads to this targeted compressive force [23,29]. The axial compression then leads
to a pre-deflection of the bending plate (Figure 9).
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Figure 9. Fully clamped rectangular bending plate (grey) with structured silicon dioxide (SiO2) layer
(light grey).

From the boundary conditions, the pre-deflection of a plate can be expressed by a bending plate
that is all-side-axially clamped and axially compressed by a length-related force n. This leads to
a buckling of the plate. For this case, the plate equation for an axially compressed plate shall be
developed. All assumptions from Section 3.2 regarding the plate are still valid. Only the equilibrium
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conditions from Equation (13) for the transverse line forces n11 and n22, which act perpendicular to
the plate cross-section area, are now different from zero [27]:

n11 =

∫ h
2

−
h
2

σ11dz , 0, (69a)

n22 =

∫ h
2

−
h
2

σ22dz , 0, (69b)

n33 =

∫ h
2

−
h
2

σ33dz = 0. (69c)

The plate Equation (36) then yields:

K∆∆w + n11
d2w
dx2

1

+ n22
d2w
dx2

2

= 0. (70)

The line forces n11 and n22 arise from the normal stresses σ11 and σ22, corresponding to the two
axes of the coordinate system.

The general solution approach for Equation (70) is:

w = C· sin
(
n
π
a

x1

)
sin

(
m
π
b

x2

)
, (71)

And, with α = nπ/a and β = mπ/b, it follows:

w = C· sin(αx1) sin(βx2). (72)

By inserting Equation (72) into Equation (70), it follows:[
K
(
α2 + β2

)2
− n11α

2
− n22β

2
]
· sin(αx1) sin(βx2) = 0, (73)

and, after rewriting:

n11 = K

(
α2 + β2

)2

α2 + β2 . (74a)

A symmetrically clamped plate and homogeneous axial loads lead to the ratio n22/n11 = 1.
The critical force that leads to a pre-deflection of the bending plate depends from the edge lengths of
the plate.

The still valid boundary conditions from Equation (4) are also fulfilled for this solution. Thus,
with α = β = 1, i.e., for a square plate, it yields:

n11 =
2π2K

a2 . (74b)

Here, the transverse force n11 corresponds to the axial force from Figure 9.
Figure 10 shows the pre-deflection of a plate as a function of the axial force. For n/K < 1,

no deflection occurs, whereas, for n/K > 1, a deflection can be seen [29]. This corresponds to
the buckling load well-known from buckling bars. For small pre-deflections of a bending plate,
the resulting pre-deflection can be approximately described via a linear term ϕ0 of the pre-deflection
angle (Figure 10):

n
K
≈ ϕ0 (75)
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3.6. Deflection of a Bimorph Bending Plate with Axial In-Plane Compression Force

Taking into account the assumptions for q(x1, x2) from Equation (74), n11 and n22 are added to
Equation (36) to calculate the deflection w of a bimorph plate with both axial load and in-plane force.
Thus, the plate equation is rewritten to:

K∆∆w + ∆w = q(x1, x2) (76)

and is equal to

K∆∆w(x1, x2) + n11
d2w
dx2

1

+ n22
d2w
dx2

2

= q(x1, x2). (77)

with the general solution,

w = C· sin
(
n
π

a
x
)

sin
(
m
π

b
y
)
, (78)

It follows, according to Equation (67):

w(a/2, b/2) =
16
K

a4lBE2h2α2Λ

mnπ2(1− n/K)
sin

(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ
b

)
. (79)

The solution of this plate equation includes the ratio n/K with n the normal force perpendicular
to the plate cross-section and the plate stiffness K [30]. To illustrate this ratio, the denominator of
Equation (78) is extended by (2π2

−n/K) and leads to:

w(a/2, b/2) =
16
K

a4lBE2h2α2Λ·(1− n/K)

mnπ2
(
1− n

K

)2 sin
(
mπ

u
a

)
sin

(
mπ

ς
a

)
sin

(
nπ

v
b

)
sin

(
nπ
σ
b

)
. (80)

The strain ε = α2Λ of the hydrogel is caused by the relative humidity R.H. = Λ, α2 denotes
the corresponding length extension coefficient due to swelling. ε was measured via a tensile testing
machine [7]. The hydrogel swelling provides the mechanical energy to deflect the bending plate by
the deflection w. w itself is directly proportional to the deflection angle ϕ. Therefore, ϕ in Figure 11 is
directly related to w and, hence, to the relative humidity and the related strain, respectively.
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Figure 11. Strain ε in the hydrogel as a function of the relative humidity and the deflection w with
a linear and cubical term of the angle ϕ3 (adapted from Reference [7]).

For small deflections of the bending plate, the deflection angle is linearly proportional to ϕ, where
for larger deflections a cubical relationship ϕ3 can be seen:

ε = (α2Λ) ≈
(
0.045Λ +

(1
6

)
(0.045Λ)3

)
≈

(
ϕ+

(1
6

)
ϕ3

)
. (81)

This again confirms the nonlinear relationship derived in Reference [8] for a bending beam.
Inserting Equation (81) into Equation (80) leads to the deflection of the center of the square bending
plate (a/2 = b/2):

w(a/2, b/2) =
16
K

a4lB
(
E2h2

)(
ϕ+ ϕ3

)
·(1−ϕ0)

mnπ2
(
1− n

K

)2 =
16
K

a4lB
(
E2h2

)
(ϕ+

(
1
6

)
ϕ3
−ϕϕ0 −ϕ3ϕ0)

mnπ2
(
1− n

K

)2 . (82)

Figure 12 shows the calculated curve progression in dependence of the pre-deflection n/K and ϕ0.
For increasing values of ϕ0, the width of the S-shaped curve increases steadily. For ϕ0 < 1, no S-shaped
curve progression can be recognized, and, for ϕ0 > 1, a deflection with an S-curve progression can
be recognized.
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Figure 12. Calculated deflection w of a rectangular bending plate in dependence of the deflection angle
ϕ from Equation (81): (a) with the pre-deflection angle ϕ0 = 0 and variable f; (b) with the variable
pre-deflection angle ϕ0 and f = 1.5.
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4. Fabrication of a Si-Based Sensor Switch with Switching Hysteresis

As described in Sections 2 and 3.6 the targeted switching hysteresis requires both a pre-deflection
and an axial (in-plane) compressive stress. This can be achieved by a second bimorph element in
the center of the plate that leads—in the switched-off state—to the required open contact.

4.1. Set-Up

In the case of silicon plates, both the pre-deflection and the axial pre-stress can be achieved by
depositing an SiO2 layer in the center of the plate. SiO2 has a coefficient of thermal expansion (5.6 ×
10−7 K−1) that is much smaller than that one of Si (2.3 × 10−6 K−1) [31]. After cooling down the structure
from higher temperatures to room temperature, both the targeted pre-deflection and the compressive
stress in the plane are established (Figure 13).Micromachines 2019, 10, x 17 of 21 

 

 

Figure 13. Pre-deformation of the Si bending plate partly covered with an SiO2 layer. The pre-
deflection was measured optically with a 3D-profilometer (µScan; NanoFocus, Oberhausen, 
Germany) along the red line. 

4.2. Pattering of the Hydrogel Layer  

For structuring the hydrogel layer, a silicone stamp is used. It was punched out of a Sylgard-184 
(Sigma-Aldrich, St. Louis, MO, USA) hydrogel layer by using a biopuncher (Harris Uni-Core, Carl 
Roth, Karlsruhe, Germany) with a diameter of 1.5–3.5 mm. The silicone elastomer kit of Sylgard-184 
consists of two liquid components, the base Polydimethylsiloxan (PDMS) and the cross-linking agent. 
Both components were mixed in a 10:1 ratio by weight.  

To ensure adhesion between the hydrogel and the bending plate, a thin adhesion layer was 
coated on the cleaned silicon plate using a 3% 3-aminopropyltriethoxysilane solution (C9H23NO3Si, 
APTES) (Carl Roth, Karlsruhe, Germany) [32]. It was cured and activated at 90 °C for about 10 min. 
Then the silicone stamp was attached in the center of the silicon bending plate. Figure 14 shows the 
structuring process of the hydrogel layer via the stamp technique.  

For the humidity-sensitive hydrogel two polymer powders, 15 wt% poly(vinyl alcohol) (PVA, 
molecular mass Mw = 89,000–98,000) and 7.5 wt% poly(acryl acid) (PAA, Mw = 450,000), were used. 
Both materials were purchased from Sigma-Aldrich (St. Louis, MO, USA). The powders were solved 
in deionized water and mixed for several hours at 80 °C until a homogenous solutions was formed. 
Afterward, both polymer solutions were mixed in a mass ratio of 4:1 (PVA:PAA) [7,23,33].  

The degassed polymer solution was filled with a pipette into the resulting cavity with a height 
of about 370 µm. To produce the hydrogel layer, the cavity is filled up with a polymer solution to the 
upper chip edge. Since the polymer solution has the same polymer concentration and only the coating 
area is varied via the silicone stamp diameter, the layer thickness is reproducible (Figure 14). After 
the solvent water was evaporated, the silicone stamp was removed. Depending on the viscosity of 
the polymer solution, which is mainly influenced by the water content, a layer of about 30 µm in 
thickness was formed. The hydrogel results from the crosslinking of the now dry polymer solution 
at a temperature of 130 °C for 20 min Reference [34–39].  

 

     

   
Figure 14. Patterning of the hydrogel layer atop the silicon bending plate by using a silicone stamp: 
(a) initial state, (b) silicone stamp attached to the bending plate, cavity filled with polymer solution, 

x-direction [µm] 

pr
e-

de
fle

ct
io

n 
[µ

m
] 

silicon plate micro contact 
polymer solution silicone stamp 

a) b) 

c) 
d) 

Figure 13. Pre-deformation of the Si bending plate partly covered with an SiO2 layer. The pre-deflection
was measured optically with a 3D-profilometer (µScan; NanoFocus, Oberhausen, Germany) along
the red line.

The SiO2 layer was deposited on the silicon bending plate using a PE-CVD (plasma-enhanced
chemical vapor deposition) process (Plasmalab80Plus, Oxford Plasma Technology, Yatton, UK).
The deposition temperature amounted to 300 ◦C, the process time was 4 h, and the resulting layer
thickness was 3.5 µm. Since the optimum deposition ratio should be ca. 0.5 of the plate size (Figure 8),
the SiO2 size was chosen as 2 × 2 mm2 for the Si plate. The resulting pre-deflection of the silicon plate
(20 µm thickness, size 3.75 × 3.75 mm2) was determined as 20 µm (Figure 13) [24].

4.2. Pattering of the Hydrogel Layer

For structuring the hydrogel layer, a silicone stamp is used. It was punched out of a Sylgard-184
(Sigma-Aldrich, St. Louis, MO, USA) hydrogel layer by using a biopuncher (Harris Uni-Core, Carl
Roth, Karlsruhe, Germany) with a diameter of 1.5–3.5 mm. The silicone elastomer kit of Sylgard-184
consists of two liquid components, the base Polydimethylsiloxan (PDMS) and the cross-linking agent.
Both components were mixed in a 10:1 ratio by weight.

To ensure adhesion between the hydrogel and the bending plate, a thin adhesion layer was
coated on the cleaned silicon plate using a 3% 3-aminopropyltriethoxysilane solution (C9H23NO3Si,
APTES) (Carl Roth, Karlsruhe, Germany) [32]. It was cured and activated at 90 ◦C for about 10 min.
Then the silicone stamp was attached in the center of the silicon bending plate. Figure 14 shows
the structuring process of the hydrogel layer via the stamp technique.
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Figure 14. Patterning of the hydrogel layer atop the silicon bending plate by using a silicone stamp: (a)
initial state, (b) silicone stamp attached to the bending plate, cavity filled with polymer solution, (c)
after evaporation of the solvent from the polymer, (d) resulting hydrogel layer after the stamp was
removed and the polymer was cross-linked 8 (adapted from Reference [7]).

For the humidity-sensitive hydrogel two polymer powders, 15 wt% poly(vinyl alcohol) (PVA,
molecular mass Mw = 89,000–98,000) and 7.5 wt% poly(acryl acid) (PAA, Mw = 450,000), were used.
Both materials were purchased from Sigma-Aldrich (St. Louis, MO, USA). The powders were solved
in deionized water and mixed for several hours at 80 ◦C until a homogenous solutions was formed.
Afterward, both polymer solutions were mixed in a mass ratio of 4:1 (PVA:PAA) [7,23,33].

The degassed polymer solution was filled with a pipette into the resulting cavity with a height
of about 370 µm. To produce the hydrogel layer, the cavity is filled up with a polymer solution
to the upper chip edge. Since the polymer solution has the same polymer concentration and only
the coating area is varied via the silicone stamp diameter, the layer thickness is reproducible (Figure 14).
After the solvent water was evaporated, the silicone stamp was removed. Depending on the viscosity
of the polymer solution, which is mainly influenced by the water content, a layer of about 30 µm in
thickness was formed. The hydrogel results from the crosslinking of the now dry polymer solution at
a temperature of 130 ◦C for 20 min Reference [34–39].

5. Experimental

5.1. Measerment Set-Up

To prove the switching hysteresis of the hydrogel-covered bending plate, the deflection of
the bimorph bending plate in dependence of the relative humidity was optically examined with
a 3D-profilometer (µScan NanoFocus). The measurement took place in a humidity chamber where
the humidity was generated by a bubble system. For humidity monitoring, a humidity sensor
(HYTELOG USB, B+B sensors) was used (Figure 15).
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The humidity content was varied successively between 20% R.H. and 97% R.H. by 10% R.H. steps.
To ensure the reproducibility of each measurement, the humidity was maintained for 25 min after each
humidity change [4].

5.2. Results

From the mechanical model with axial compression (Equation (82)), the S-shape curve progression
shows an increase in the width of the hysteresis, which depends on the axial compression.
The pre-deflection was successfully achieved due to the structured SiO2 layer onto the Si-plate
surface. From the measured results, the pre-deflected and partly with hydrogel covered Si-plate shows
a snap-through switching behavior. The switching threshold values amounted to 86% R.H. and 53%
R.H., respectively, for increasing and decreasing humidity (Figure 16). Above 86% R.H., the bending
plate abruptly switches from the pre-deflected side to the opposite side. At 53% R.H., by changing
from the humid to the dry environment, the plate switches back to the initial state, demonstrating
successfully the switching hysteresis.
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Figure 16. Measured and calculated deflection of a bending plate partly covered with an SiO2-layer
and a hydrogel layer as a function of the relative humidity, with the pre-deflection angle ϕ0 = 0.00057.

To validate the mechanical model, the deflection of the center of a bending plate was calculated
with Equation (82) and with lB/l = 0.5 and n/K = 1.5. The material and geometrical parameter were
taken from Table 3 and ϕ0 = 0.00057 from Figure 13. Figure 16 shows the calculated deflection.
The deflection angle ε = (α2Λ) ≈

(
ϕ+

(
1
6

)
ϕ3

)
of the bending plate was taken from the measured

results from Figure 16 and inserted in Equation (82):

w(a/2, b/2) =
16
K

a4lB
(
E2h2

)(
ϕ+ ϕ3

)
·(1−ϕ0)

mnπ2
(
1− n

K

)2 =
8
K

a4
(
E2h2

)(
ϕ− 0.00057ϕ+

(
1
6

)
ϕ3

)
π2(1− 1.5)2 . (83)

If the humidity reaches the threshold ϕhigh, then the deflection changes suddenly from a positive
value (open contact) to a negative one (closed contact). This occurs abruptly, leading to a fast switching
of the contact. Vice versa, by decreasing humidity below the lower threshold ϕlow, the contact will
be opened in the same sudden manner. The higher the switching hysteresis ϕhigh–ϕlow is, the less
the switch is prone to oscillations due to small changes around the threshold.



Micromachines 2020, 11, 569 20 of 22

6. Conclusions

This work deals with the miniaturization and development of a rectangular-shaped, silicon-based
sensor switch with switching hysteresis for humidity sensing. The hysteresis is needed for the safe and
reliable switching, i.e., fast opening and closing of the contacts.

Based on the plate theory, an analytical mechanical model was derived to calculate the deflection
w depending on the coating degree, i.e., of the size ratio of the partly hydrogel-coated bending plate
part to the total size of the bending plate. It could be shown that a maximum deflection is achieved at
half cover, i.e., when the stiffness of the hydrogel-coated part and the uncoated part are approximately
equal. The calculated deflection showed a deviation of ca. 10% in comparison to the measured value.
The cause of such a deviation results from the assumptions and approximations, which were taken
into account in particular considering small deflections.

For the implementation of the switching hysteresis, the mechanical model was extended by
an axial compression. From this, it could be shown that the width of the switching hysteresis is
adjustable via geometric and technological parameters influencing the axial compression force. To prove
the mechanical model, a silicon based sensor switch was manufactured, and the switching hysteresis
was successfully demonstrated. Pre-deflection and hysteresis were achieved by the deposition of
an SiO2 layer in the center of the rectangular silicon plate. In comparison to the measured results,
the calculated deflection shows a deviation in the deflection amplitude of ca. 20%.

Experiments used MEMS-based silicon plates, where both the pre-deflection and the axial pre-stress
were achieved by depositing an SiO2 layer in the center of the plate. Because SiO2 has a coefficient
of thermal expansion that is much smaller than that of Si and is deposited at high temperatures and
cooling down to room temperature causes the needed compressive in-plane stress. The SiO2 layer was
deposited using a PE-CVD process. The resulting pre-deflection of the 20 µm thick silicon plate with
a size of 3.75 × 3.75 mm2 amounted to 20 µm.

The axial compression caused the predicted S-shape curve progression with the targeted
snap-through switching behavior. The switching threshold values amounted to 86% R.H. and
53% R.H., respectively, for increasing and decreasing humidity.
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