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Abstract: Physical unclonable function (PUF), a hardware-efficient approach, has drawn a lot of
attention in the security research community for exploiting the inevitable manufacturing variability
of integrated circuits (IC) as the unique fingerprint of each IC. However, analog PUF is not
robust and resistant to environmental conditions. In this paper, we propose a digital PUF-based
secure authentication model using the emergent spin-transfer torque magnetic random-access
memory (STT-MRAM) PUF (called STT-DPSA for short). STT-DPSA is an original secure identity
authentication architecture for Internet of Things (IoT) devices to devise a computationally
lightweight authentication architecture which is not susceptible to environmental conditions.
Considering hardware security level or cell area, we alternatively build matrix multiplication or
stochastic logic operation for our authentication model. To prove the feasibility of our model, the
reliability of our PUF is validated via the working windows between temperature interval (−35 ◦C,
110 ◦C) and Vdd interval [0.95 V, 1.16 V] and STT-DPSA is implemented with parameters n = 32,
i = o = 1024, k = 8, and l = 2 using FPGA design flow. Under this setting of parameters, an attacker
needs to take time complexity O(2256) to compromise STT-DPSA. We also evaluate STT-DPSA using
Synopsys design compiler with TSMC 0.18 um process.

Keywords: physical unclonable function (PUF); spin-transfer torque magnetic random-access
memory (STT-MRAM); identity authentication; hardware security; internet of things

1. Introduction

Presently, the pervasiveness of smart devices with embedded memories is affecting our daily life.
It raises great opportunities for large-scale applications such as smart city, home automation, etc.
In particular, spin-transfer torque magnetic random-access memory (STT-MRAM), an emergent
technical term of embedded memory, is expectantly integrated with the internet of things (IoT). That is,
the ability of STT-MRAM to operate at low supply voltages, small bit-cell footprint, non-volatility, and
high read/write endurance are suitable and attractive for the IoT applications. The IoT physically
connected to the STT-MRAM is a new trend technology/application and a well intersection for the
development of communication and micro-electromechanical techniques.

Although there are several advantages for integrating STT-MRAM with IoT devices, the issue of
security such as device identity authentication for this kind of devices is still an open challenge and
thus has drawn much effort for security research communities. More precisely, an unauthenticated
or illegitimate device may share fake information to disturb decisions of Cyber-Physical Systems.

Micromachines 2020, 11, 502; doi:10.3390/mi11050502 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
http://dx.doi.org/10.3390/mi11050502
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/11/5/502?type=check_update&version=2


Micromachines 2020, 11, 502 2 of 28

If the vulnerability on IoT devices is not handled properly, then these emerging concepts potentially
expose innumerable data into unsafety. Consequently, identity authentication is in the front line of
data protection and can prevent from man-in-the-middle attacks. Unlike the resource-rich server,
the computation capability and memory space in typical IoT devices are constrained. Traditional
symmetric/asymmetric authentication cryptography architectures are not suitable for IoT devices
because they would pose a significant overhead in computation on IoT devices.

Through investigating existed authentication architectures for IoT devices, we classified these
architectures into two categories: software and hardware-aided architecture. The software architecture
aims to exploit the traditional cryptography algorithm but adjust the strength of the algorithm
dynamically to fit the operating requirement of an IoT device. The architectures usually suffers
from heavy computation of the cryptography algorithm and terribly consumes the usage of memory
space. In particular, they are vulnerable to hardware cloning attacks. In contrast, another solution is
hardware-aided architecture, e.g., Physical Unclonable Function (PUF)-based architecture [1]. PUF is
a new technology exploiting the manufacturing variability of Integrated Circuit (IC) as the unique
fingerprint of each IC, in which the input to the PUF is referred as the “challenge” and the output is
referred as the “response”. Therefore, a PUF can be modeled as a set of challenge-response pairs (CRPs).
Briefly, the PUF, a physical entity, can produce output value that is dependent of its physical structure
to make it hard to be cloned. With the PUF, researchers have a chance to develop ultra-fast and efficient
security primitives against side-channel and other common physical attacks [2].

PUF can be classified into two types [3], namely weak PUF and strong PUF. The weak PUF
(resp. the strong PUF) means that the number of CRPs is linearly (resp. exponentially) in accordance
with the number of components whose behavior depends on manufacturing variation. PUF that is a
hardware-aided architecture aims to make the computation efficient can reduce the usage of memory
space and resist hardware cloning attacks. However, the hardware-aided architecture has a fatal
weakness in being susceptible to environmental conditions.

Our main contributions are summarized as follows:

• We propose a digital PUF-based secure authentication model using STT-MRAM PUF as
configuration bits for the network of LUTs.

• We use two digital PUFs that have the same function as the basic building block for IoT
authentication models.

• We present two versions of authentication model for different requirements on cell area: one is
based on matrix multiplication and the other is based on stochastic logic.

• Through a series of attack analyses and hardware resource evaluations, we prove that our method
poses lightweight overhead on participating parties and provides high security for IoT devices.

• We implement STT-DPSA on FPGA to prove the feasibility of our model.

The rest of this paper is organized as follows. Section 2 describes related works. Section 3
introduces our system model and attack model. We then describe the details of proposed methods in
Sections 4 and 5. We give a system analysis including system complexity and security in Section 6,
followed by the experimental results in Section 7. Finally, the conclusion is presented in Section 8.

2. Related Work

To address the essential security problem of identity authentication for low-end IoT devices,
it takes much effort in the research of software-based and hardware-based authentication.

Aiming to software-based authentication, the research community in sensor networks strives to
devise lightweight and practically feasible but computationally less intensive cryptography algorithms
for the resource-limited hardware with lower computation capability, smaller memory size, and limited
energy supply. Some studies based on symmetric-key cryptography, such as SPINS [4], TinySec [5],
LEAP [6] and SER [7], have taken less computation cost and been proven to be feasible on IoT devices.
However, their methods incur a large communication overhead for key distribution. As for public
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key cryptography, TinyECC [8] and TinyPBC [9] have been proposed to tackle the expensive key
computation cost using key size reduction. Although [4–7,10] have taken effort to enhance the security
of IoT devices, they still suffer from a dilemma of computation overhead and security level. The purely
software-based cryptography methods suffer from inefficient computations, dramatically consumption
of memory space, and have the critical vulnerability of hardware cloning attacks under the inherent
resource-constrained environment.

From the perspective of hardware-aided authentication model, PUF is attractive to the research
realm recently. Layman et al. [11] proposed a weak PUF, namely Static Random-Access Memory
(SRAM) PUF, consisting of symmetric and cross-coupled inverters. Once the power of the SRAM PUF
is on, manufacturing variability will be leveraged to push each cell of SRAM PUF toward the logical 1
or 0. Notably, SRAM PUF exploits only one CRP for cryptography key generation rather than device
authentication, in which response is an unknown initial state caused by manufacturing variability.

Gassend et al. [2] proposed a type of strong PUF, namely Arbiter PUF, to generate several ideal
identical delay paths and apply multiplexers to switch between these paths. To create ideal identical
delay paths, Arbiter PUF is designed in the layout level. Moreover, the challenge to the Arbiter PUF is
the control signal of multiplexers. With implementing the Arbiter PUF, two ideal identical paths are
fed into an arbiter [12]. When the input of the Arbiter PUF changes, the signal is propagated through
two different ideal identical delay paths. Because manufacturing variability of different hardware,
the arrival time of these two input signals in an arbiter will be various. As a result, the arbiter can
generate a response depended on which signal arrives first. This type of PUF can generate several CRPs
and be used for lightweight authentication model on IoT devices. The typical deployment of strong
PUF for identity authentication model is shown in Figure 1 and described as follows.

The client side equipped with a PUF is manufactured with several CRPs. Moreover, the verifier
side has a database of the client’s CRPs. When the client needs to be authenticated, the verifier
randomly selects one CRP from the database. Then, the verifier sends a selected challenge to the client
and reserves the corresponding response b on his/her hand. Once the client receives the challenge,
the challenge is fed into a PUF for generating a corresponding response b′. Subsequently, the client sends
the b′ to the verifier. Finally, the verifier determines that if b = b′, the client is legitimate; otherwise,
the client fails to be authenticated.

However, a strong PUF has exponentially growth numbers of CRPs with respect to components
whose behaviors are depended on manufacturing variation. This makes the verifier cannot allocate
sufficient memory space for entire CRPs of the strong PUF. Additionally, if a CRP is used repeatedly
in an authentication model, an attacker can easily crack the authentication model by sending the
used response to the verifier. As for computationally efficiency, Matched Public PUF (PPUF) [13] was
proposed in leveraging the circuit aging model to produce an identical PUF. Nevertheless, it needs
high implementation requirement in terms of measurement accuracy and environmental stability.

Figure 1. Typical strong PUF-based authentication model.
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Xu et al. [14] first proposed digital PUF architecture to resolve the problem of environmental
susceptibility in [2,11,13]. They developed Digital Bimodal Function (DBF) by using a randomly
generated Boolean function as the large-scale network of lookup tables (LUTs) and exploiting the
irreversibility of decomposition of Boolean function to represent the same Boolean function in two
forms, namely compact form and complex form. The method in [14] was implemented on FPGA
and aimed to exploit the huge gap of computation time and hardware resource between these two
forms. However, when configuration bits of LUTs are compromised, the DBF is easily cloned.
Therefore, Xu et al. [15] further proposed an advanced model by using Arbiter PUF to generate
configuration bits for the network of LUTs. Because the variation of environmental conditions,
only stable CRPs can be used to configure the network of LUTs. To provide a practical usage,
the Arbiter PUF must take additional effort to obtain stable CRPs under different environment
conditions. Some hardware-aided architectures, such as [16–20], also have a fatal weakness in being
susceptible to environmental conditions.

In 2015, Xu et al. [21] proposed a digital PUF approach by observing intentional faults that
change the function of IC dramatically. Subsequently, Miao et al. [22] proposed a digital PUF approach
by using variation of lithography. The digital PUF proposed in [21] was hard to be applied in
real-world applications because the intentional faults not only affect the function of IC, but also affect
the operating region of transistors. The digital PUF [21] might cause much power consumption
and put Complementary Metal-Oxide-Semiconductor (CMOS). gates into an uncertain operating
region. In contrast to [21], the digital PUF proposed in [22] was only implemented in simulation stage.
The digital PUF in [21] and [22] were difficultly duplicate in both client and verifier sides to drive
identity authentication while the digital PUF proposed in [14] can be applied easily. Worse, a typical
strong PUF-based authentication model will consume unacceptable memory usages for the verifier.

To solve the drawback of unacceptable memory usages, an emerging method called Public PUF
(PPUF) was proposed by [23]. As for the PPUF-based model, compared to the need for the internal
secret storage of CRPs, the PPUF model has no secret information. In other words, the authentication
information is stored publicly instead of being stored in the verifier side. As a result, this type of PUF
does not consume a large amount of memory.

Park et al. [24] proposed a PPUF-based authentication model, namely PUFSec, exploiting the gap
of response generation time in the PPUF model and PPUF hardware. The PPUF hardware can compute
the response in a measurably faster time compared to PPUF model. That is, the PPUF-based method
exploits a huge computation gap between simulation and execution, and computation gap of challenge
between verifier and attacker. However, the computation complexity of the participating parties
in PUFSec would growth exponentially with respect to the size of PUF hardware area. Moreover,
selecting an appropriate T′ which is the threshold time in the PPUF-based model is an open challenge
in computationally efficiency for the distinction of an attacker and a legitimate device.

A new low-cost PUF-based temperature sensor for secure remote temperature sensing was
proposed by Cao et al. [25]. Cao et al. exploited the approximately linear positive temperature
coefficient of CMOS inverter in super-threshold operation to calibrate the running frequency of ring
oscillator in a reconfigurable ring oscillator PUF at different temperature. The ring oscillator frequency
corresponding to the sensed temperature is fed into a randomizer seeded by the input challenge to
select new ring oscillator pairs for comparison to generate a random, unique and physically unclonable
digital tag, which is valid for a selected input challenge to a target device at a particular temperature.
In 2018, Gu et al. [26] proposed the first IoT secure communication framework for BLE-based networks
that guards against device spoofing via fingerprinting-based device authentication. These designs are
orthogonal to our STT-MRAM-based PUF.

In this paper, we propose a digital PUF-based authentication model using STT-MRAM PUF for
IoT devices. To address the problems of exponential initialization time and dramatically memory
consumption caused in [14,15], we use two identical digital PUF for our authentication model.
Moreover, we provide the configuration bits of LUTs using STT-MRAM PUF. Because the hardware area
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of STT-MRAM PUF is significantly lower than others PUF such as Arbiter PUF and SRAM PUF [27],
we use STT-MRAM PUF to configure the network of LUTs. The advantages of our digital PUF-based
authentication model include efficient computation, efficient memory usages, and unclonable hardware
using stable CRPs of STT-MRAM PUF regardless of operational and environmental conditions.
The computation overhead of participating parties in our protocol is lightweight while our model still
exploits the huge gap between execution and simulation, so that an attacker needs to take much effort
in terms of execution time and computational complexity for compromising our architecture.

To the best of our knowledge, we first propose a method using two digital PUFs with the cell of
STT-MRAM PUF, which have the same function as the basic building block for the IoT authentication
architecture. Table 1 presents comparisons of our model with previous studies in terms of the
computational complexity, susceptibility, initialization time, and the resource complexity. Our method
outperforms the well-known methods in terms of the computational and resource complexity but not
susceptible to environmental conditions.

Table 1. Comparisons.

Methods Computationa Complexity Computational Complexity Susceptibility Initialization Time Resource Complexity(Verifier Side) (Client Side)

PUFSec [24] Exponential Exponential Yes Linear Exponential

Matched PPUF [13] Linear Linear Yes No Constant

DBF [14] Polynomial Linear No Exponential Exponential

DBF with Arbiter PUF [15] Polynomial Linear Exponential Yes Exponential

STT-DPSA (our method) Linear Linear No Linear Polynomial

3. System and Attack Models

In this section, we describe the system model and attack model for our proposed architecture.

3.1. System Model

Our system model is shown in Figure 2. The PUF circuit used in STT-DPSA is a digital model and
a type of strong PUF. STT-DPSA has numerous CRPs with the ideal performance of statistic metrics, i.e.,
inter-Hamming distance being equal to 0 and uniformity of response being equal to 0.5 [28]. For easy
representation, the design of PUF in a digital model for STT-DPSA and the design of STT-MRAM PUF
are represented as PD and PS, respectively.

Figure 2. System model.
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In addition, we assume that there are two roles in our model, namely verifier and client.
The verifier, a moderator in an IoT network, is a trusted part for authenticating clients via PD.
The client, an IoT device, intents to join a dominated network for communicating with other
legitimate members.

3.2. Attack Model

We assume that attackers can eavesdrop the information transmitted between the verifier and
client, but attackers cannot retrieve any information stored in both of them. In other words, attackers
can perform man-in-the-middle attacks through recording the information exchanged between the
verifier and client, and try to impersonate the legitimate client in the next round of authentication
based on these records.

4. Design of a Strong Digital Physical Unclonable Function (PUF) Based on Spin-Transfer Torque
Magnetic Random-Access Memory (STT-MRAM) PUF

The structure of PD is shown in Figure 3, which composes of several LUTs that are configured by
PS to mitigate environmental susceptibility.

A cell of STT-MRAM and PS used in our method are shown in Figures 4 and 5, in which the MTJ is
a component consisting of two ferromagnetic layers separated by a thin insulator and is implemented
by two states using simple resistor model: anti-parallel (AP) and parallel (P). The resistance of the
MTJ in the P state is comparably lower than the resistance of the MTJ in the AP state. In theory, if the
two MTJs have the same state and all their physical parameters are the same, then they should have
the same resistance value. In fact, they have manufacturing variations led to the inevitable difference
between the two ideal identical resistance values. As a result, the PS exploits the resistance difference
caused by the manufacturing variability of the MTJs in the same state. The dual in-line package of our
MTJs is shown in Figure 6. Through wire bonding, two adjacent MTJs are selected to use.

PS uses two cross-coupled inverters to amplify the difference between the resistances of the MTJs
in the same state. Figure 5 exhibits the design of PS, in which output signal BIT is a response of the PS.
The generation process of response for the PS is as follows.

In the beginning, MTJ A and MTJ B are configured to the same state. Active-low signal RCLK is set
to high voltage while the two NMOS transistors controlled by RCLK is ‘on’ and the top PMOS transistor
connected to Vdd is ‘off’. Moreover, BIT and BITB are short to the digital ground. After switching
RCLK to low voltage, the top PMOS transistor is ‘on’ and the two NMOS transistors controlled by
RCLK become ‘off’. BIT and BITB are pre-charged and activate the other transistors. Since the two
cross-coupled inverters are activated, BIT and BITB are amplified to opposite digital levels in the
regeneration behavior by the resistance difference between MTJ A and MTJ B. At the end, the output
signal BIT is a response of the PS and BITB is the inverse of BIT.

Figure 3. Structure of PD.
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Figure 4. A cell of STT-MRAM.

Figure 5. Design of PS.

Figure 6. Dual in-line package of our MTJs.

Notably, the PS is used as a key of LUTs. That is, we exploit the PS to generate configuration bits
of LUTs. Therefore, we just use the response of a PS once. The validation of unpredictability for a PS



Micromachines 2020, 11, 502 8 of 28

under different environmental conditions is demonstrated in Section 7. With the composition of our
PS and LUTs, we can model the PD in our authentication architecture.

We decompose PD into multiple stages, in which one stage consists of several LUTs. Let the
number of primary input be i and the number of primary output be o. In our design, we let i = o;
let the number of stages be l; let the number of LUTs be equal to i in each stage of the PD. As shown in
Figure 3, PD

0 (0 : i− 1) is a bus consisting i primary inputs and is the input for the first stage of the LUT
network when the output for the first stage is PD

1 (0 : i− 1). Each stage of PD follows the same rule.
Finally, PD

l (0 : i− 1) will be the bus that consists of i primary outputs. Each LUT is programmed using
verilog code in the structure of 4-inputs LUT, as exhibited in the following verilog code of module LUT
(in, value), in which the signal in (3:0) is the input of LUT module consists of 4 bits while the signal
value is the output bit of a LUT module.

Notably, the configuration bits in the always statement of the verilog code must be provided in an
unpredictable manner. The response signal from BIT of a PS is used to configure the LUT. For example,
16 cells of PS are used to configure a 4-input LUT, in which the response signals (i.e., BITs) are
1110000100000001. Next, we describe our authentication model based on the design of PD using PS as
configuration bits.

5. Authentication Model

In this section, we present two authentication models. One is based on matrix multiplication and
the other is based on stochastic logic, in which both of them exploit PD as a common building block.

5.1. Authentication Model Based on Matrix Multiplication

To develop an efficient and a feasible PUF-based authentication model in terms of computational
time and memory space regardless of operational and environmental conditions, we do not directly
exchange CRPs generated by PD between the client and verifier for identity authentication. Instead,
we propose a strong digital PUF-based authentication model through exchanging the CRPs of matrix
A that will be updated in each authentication round using the response of PD between the verifier and
client. Our authentication model based on matrix multiplication is shown in Figure 7.

Before authentication, we must deploy the matrix A and PD to the verifier and client initially.
Using the deployed matrix A and PD, behaviors of the verifier and client are as follows.

Step 1: The verifier (resp. the client) generates a random numberNv (resp.Nc) using pseudo-random
number generator (PRNG) [12] and exchanges the random number with the client (resp.
the verifier).

Step 2: Both of the verifier and client form a string C by concatenating Nc with Nv.
Step 3: Both of the verifier and client use the string C as a challenge of his/her PD and obtain a

corresponding response (called R for short) in a matrix form.
Step 4: Both of the verifier and client compute the matrix multiplication AR and replace matrix A

with AR. If the resulted matrix A is a zero matrix, then we must re-initialize the matrix A
and go back to step 1. That is because a zero matrix used in step 5 will lead to a result of zero
vector that can be easily predicted by an attacker.

Step 5: The verifier selects a column vector x generated by PRNG as a challenge and sends x to the
client. Subsequently, the verifier (resp. the client) computes Ax as b (resp. b′). Next, the client
sends b′ to the verifier. If b = b′, then the verifier authorizes the client as a legitimate device.
Otherwise, the client fails to be authorized and viewed as an illegitimate one. We show
behaviors of the verifier and client in Algorithms 1 and 2, respectively.
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Figure 7. Steps of authentication model.

Algorithm 1: The verifier Side

Input: PD, A, Nc, and b′

Output: Whether the authentication process succeeds

// Flow chart of authentication model based on matrix multiplication for the
verifier side is as shown in the left side of Figure 8.

1 Generate a random number Nv and send it to the client;
2 Receive a random number Nc from the client and concatenate it with the Nv to form a string C;
3 Generate the response of PD R: R = PD(C);
4 Compute A = AR;
5 if A is a zero matrix then
6 Re-initialize the matrix A;
7 Go to step 1;
8 else
9 Randomly select a vector x as a challenge and sends it to client;

10 end
11 Compute Ax = b;
12 Receive the response b′ from the client;
13 Compare b and b′. If they are the same, then the authentication process succeeds; otherwise,

the authentication process fails;
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Algorithm 2: The client Side

Input: PD, A, Nv, and x
Output: b′

// Flow chart of authentication model based on matrix multiplication for the
client side is as shown in the right side of Figure 8.

1 Generate Nc and send it to the verifier;
2 Receive Nv from the verifier and concatenate it with the Nc to form a string C;
3 Generate the response of PD R: R = PD(C);
4 Compute A = AR;
5 if A is a zero matrix then
6 Re-initialize matrix A;
7 Go to step 1;
8 else
9 receive the challenge vector x from the verifier;

10 end
11 Compute Ax = b′ and send it to the verifier;

Figure 8. Flow chart of authentication model based on matrix multiplication.

Notably, we exchange the vector x and the vector b between the verifier and client. These two
vectors are the information regarding to the matrix A. More precisely, the vector x is an input of A.
After operating a matrix multiplication, the vector b becomes an output of A. Therefore, we call the
exchanged vectors as CRPs of A. For easy presentation, the CRPs of A is known as CRPA. Because
we refresh the A at each round of authentication using the response of PD, it is difficult to predict the
next round of CRPA based on the used one. Therefore, PD can satisfy the requirement of designing a
strong PUF-based authentication model [3].

5.2. Authentication Model Based on Stochastic Logic

Before introducing the authentication model based on stochastic logic, we present the preliminary
knowledge of stochastic logic used to construct our authentication model. Unlike the traditional binary
encoding used to treat data in binary number, stochastic logic is applied to encode the data in the form
of a bitstream using probability model [29,30], in which the probability for a bitstream with r 1’s and



Micromachines 2020, 11, 502 11 of 28

N − r 0’s denotes r/N. With operating stochastic logic, addition and multiplication are candidates
that can be processed using only one logic component.

Using the stochastic adder, the two inputs of adder are bitstreams xb and yb, and the output is
the bitstream zb while a random input s generates 0 or 1 with fair probability. The vectors x and y
are encoded as the probability of the specific bit when the bitstreams xb and yb are equal to 1. In one
clock cycle, the probability of the specific bit when zb = 1 is 1

2 × x + 1
2 × y. Consequently, if the length

of bitstreams xb and yb is N, then the expected number of bit 1 in zb is x+y
2 . This is a scaled adder of

two values implemented by one multiplexer. Using a multiplier with two inputs implemented by one
AND gate, the two inputs of AND gate are bitstreams xb and yb, and the outputs are the bitstreams
zb. The vectors x and y are encoded as the probability of the specific bit in bitstream xb being 1.
Assumed that the encoding bitstreams xb and yb are independent. In one clock cycle, the probability
of the specific bit when zb = 1 is x× y. Consequently, if the length of bitstreams xb and yb is N, then
the expected number of bit 1 in zb is x× y. Generally, the cell area for designing stochastic logic is
significantly small. Therefore, we synthesize stochastic logic adder and multiplier to reduce the cell
area of our model. Subsequently, we will present our authentication model based on stochastic logic.

The authentication model based on stochastic logic is shown in Figure 9, in which PD is used as a
building block. Unlike authentication model based on matrix multiplication, stochastic logic version
does not need to initialize the matrix A in both verifier and client. Using the deployed PD, behaviors
of the verifier and client are as follows.

Step 1: The verifier (resp. the client) generates a random number Nv (resp. Nc) using PRNG and
exchanges the random number with the client (resp. the verifier).

Step 2: The verifier and client form a string C1 by concatenating Nc with Nv.
Step 3: The verifier and client use the string C1 as a challenge of his/her PD and obtain a

corresponding response (called R1 for short).
Step 4: The verifier and client repeat steps 1− 3 and obtain a corresponding response (called R2 for

short).
Step 5: The verifier and client treat R1 and R2 as bitstreams and take these two bitstreams as inputs

to a stochastic logic adder for obtaining a corresponding calculation result value and value
′
.

Step 6: The client sends value
′

to the verifier. Finally, if value = value
′
, then the verifier authorizes

the client as a legitimate device. Otherwise, the client fails to be authorized and viewed as
an illegitimate one. We show the behaviors of the verifier and client in Algorithms 3 and 4,
respectively.

Algorithm 3: Verifier Side

Input: PD, Nc, value, and value′

Output: Whether the authentication process succeeds

// Flow chart of the authentication model based on stochastic logic for the
verifier side is as shown in the left side of Figure 10.

1 Generate a random number Nv and send it to the client;
2 Receive a random number Nc from the client and concatenate it with the Nv to form a string

C1;
3 Generate the response of PD R1: R1 = PD(C1);
4 Repeat steps 1–3 and obtain R2 = PD(C2);
5 Treat R1 and R2 as bitstreams and compute value = (R1 + R2)/2 using stochastic logic adder;
6 Receive the value′ from the client;
7 Compare value with value′. If value = value′, then the authentication process succeeds;

otherwise, the authentication process fails;
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Algorithm 4: Client Side

Input: PD, and Nv

Output: value′

// Flow chart of the authentication model based on stochastic logic for the
client side is as shown in the right side of Figure 10.

1 Generate a random number Nc and send it to the verifier;
2 Receive a random number Nv from the verifier and concatenate it with the Nc to form a string

C1;
3 Generate the response of PD R1: R1 = PD(C1);
4 Repeat steps 1–3 and obtain R2 = PD(C2);
5 Treat R1 and R2 as bitstreams and compute value′ = (R1 + R2)/2 using stochastic logic adder;
6 Send the value′ to the verifier;

Notably, in the step 5 of authentication model, the selected input of stochastic logic multiplexer is
provided by the same random source deployed in the verifier and client. With this assumption, value
is equal to value′ if they are transmitted over the air without being destroyed by an attacker. In the
next section, we will analyze our proposed model in system complexity and security.

Figure 9. Steps of stochastic logic-based authentication model.
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Figure 10. Flow chart of the authentication model based on stochastic logic (SC).

6. System Analysis

Because our proposed model is implemented in digital circuit, two major issues need to be
discussed. First, the cell area of digital circuit affects the cost of manufacturing. Second, the delay of
critical path affects the upper bound of operating frequency. Therefore, we analyze the cell area and
the delay of critical path of proposed model based on ASIC cell-based design flow and prove that our
method can resist against man-in-the-middle attacks in the following sections.

6.1. System Complexity

The dimension of the matrix A is n× n, in which each element in A is represented by k bits. Let
the length of input bits of PD be i and let the length of output bits of PD be o, where i = o. Moreover,
a 4-input LUT is used as a basic block for PD. We also let the length of PD be l. Subsequently, we will
discuss the effects of parameters n, k, and l on the cell area and the delay of critical path for our
authentication model.

In the first three steps of matrix multiplication process (as shown in Figure 7), Nv and Nc are
generated using a PRNG and exchanged between the client and verifier to produce a challengep C.
Next, C is used as an input for PD to produce a (n× n)-matrix response R which will be multiplied by
the matrix A. Finally, the client and verifier execute matrix multiplications to do identity authentication.
For estimating the cell area of the proposed model, we evaluate the effect of matrix multiplications
and the execution of PD. Because the cell area of matrix multiplication for two n × n matrices is
significantly larger than that of matrix multiplication for one n× n matrix by one n× 1 matrix, we only
evaluate the cell area of matrix multiplication for two n× n matrices. In addition, the cell area of
PRNG is smaller than the cell area of matrix multiplication. As for the delay of critical path, it is mainly
incurred by matrix multiplications and the execution of PD. The delay of matrix multiplication for
two n× n matrices is higher than the matrix multiplication for one n× n matrix by one n× 1 matrix.
In terms of PRNG, LFSR is implemented as a PRNG. When the clock edge is triggered, the PRNG is
ready to be used. For simplicity of analysis, we put the execution of PD and the matrix multiplication
of two n × n matrices in the same clock cycle. Operations of other parts in proposed model are
put in other clock cycles. By this approach, we make sure that the execution of PD and the matrix
multiplication of two n× n matrices are the critical paths.

As shown in Figure 9, the first three steps are as the same as matrix multiplication. The step 4 is
just the repeat of steps 1–3. To compute value and value′, we only need one multiplexer to compute.
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Consequently, the cell area and the delay of critical path for one multiplexer are significantly lower
than that for matrix multiplication. We assume that the delay of critical path and cell area of stochastic
logic version for authentication model mainly come from PD. In the following, we analyze the cell area
and the delay of critical path in the verifier and client for matrix multiplication version and stochastic
logic version.

Theorem 1. When authentication model is based on matrix multiplication, the cell area at the verifier/client
side is formulated as:

Ac = i · l · LUTc + n3 · k · Aam + R, (1)

where i, l, LUTc, n, k, Aam, and R denote the number of bits input to PD, the length of PD, the average cell
area of a 4-input LUT, the dimension of the matrix A, the bits of each element in the matrix A, the average cell
area of 1-bit adder and multiplier, and the others, respectively.

Proof. The two main factors affecting the cell area at the verifier/client side are the execution of PD

and matrix multiplication, in which the number of LUTs in the PD is i · l. As a result, the cell area of
PD is i · l · LUTc, where LUTc is the average cell area of a 4-input LUT. For the matrix multiplication,
each element of new matrix generated by the multiplication of two n× n matrices is the result of inner
product of two n× 1 vectors, where inner product operation of two n× 1 vectors needs n adders and n
multipliers. A new matrix generated by two n× n matrices has n2 elements. Therefore, multiplication
of two n× n matrices needs n · n · n adders and multipliers. As for the parameter k, the number of bits
used to encode one element of A has linear effect on the cell area of the adder and multiplier. Taking
operation of addition of two 3-bit values as an example, addition of two 3-bit values will need 15 gates
in a typical case. When we change the number of bits to encode one element of A, it has linear effect
on the cell area of an adder. The operation of a multiplication is the same as that of an adder. As a
result, the cell area of matrix multiplication is n3 · k · Aam, where Aam is the average cell area of 1-bit
adder and 1-bit multiplier. Finally, we represent the area of the remaining part of proposed model (i.e.,
PRNG) as R. Therefore, the cell area at the verifier/client side is i · l · LUTc + n3 · k · Aam + R.

Theorem 2. When authentication model is based on matrix multiplication, the delay of critical path at the
verifier/client side is formulated as:

Dcp = l · LUTd + n · k · ADD, (2)

where n, k, ADD, l, and LUTd denote the dimension of the matrix A, the bits of each element in the matrix A,
the average delay of a 1-bit adder, the length of PD, and the average delay of a 4-input LUT, respectively.

Proof. The Dcp for the verifier/client side is incurred by the execution of PD and the matrix
multiplication AR. From the primary input of PD to the output of PD, as shown in Figure 3, the
parallel network of LUTs is with l levels of 4-input LUTs. Therefore, Dcp is proportional to the length
of PD and represents as l × LUTd. Additionally, to analyze the execution of matrix multiplication,
multiplication of two n× n matrices will generate a new matrix with n2 elements, where each element
is the result of inner product of two n× 1 vectors. Moreover, Dcp is affected by the delay of executing
an adder while processing inner product for these two matrices to result in n2 elements. These
resulted elements can be computed completely within the delay time of executing n adders. As for the
parameter k, it has the linearly effect on the delay of matrix multiplication. Taking an operation for
adding two 3-bit values, the computation time for the addition of these two values is in 3-adder delay.
When we change the number of bits to encode one element of the matrix A, the number of bits used to
encode one element of the matrix A has linearly effect on the delay of matrix multiplication. That is,
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the delay of matrix multiplication can be formulated as n× k× ADD. Therefore, the delay of critical
path at the verifier/client side is l · LUTd + n · k · ADD.

Theorem 3. When authentication model is based on stochastic logic, the cell area at the verifier/client side is
formulated as:

Ac = i · l · LUTc + R, (3)

where i, l, LUTc, and R denote the number of bits input to PD, the length of PD, the average cell area of a
4-input LUT, and the others, respectively.

Proof. The main factor affecting the cell area in the verifier/client side are the execution of PD, in
which the number of LUTs in PD is i · l. As a result, the cell area of PD is i · l · LUTc, where LUTc is
the average cell area of a 4-input LUT. Finally, we represent the cell area of the remaining part (i.e.,
PRNG) as R. Therefore, the cell area in the verifier/client side is i · l · LUTc + R. Obviously, the cell
area in using stochastic logic for authentication model is smaller than the cell area in using matrix
multiplication for authentication model.

Theorem 4. When authentication model is based on stochastic logic, the delay of critical path at the verifier/client
side is formulated as:

Dcp = l · LUTd, (4)

where l and LUTd denote the length of PD and the average delay of a 4-input LUT, respectively.

Proof. Dcp for the verifier/client side is incurred by the execution of PD. From the primary input of
PD to the output of PD, as shown in Figure 3, the parallel network of LUTs is with l levels of a 4-input
LUT. Because Dcp is proportional to the length of PD and represents as l × LUTd, the delay of critical
path at the verifier/client side is l · LUTd. Obviously, the delay of critical path in using stochastic logic
is smaller than that using matrix multiplication for authentication model.

In summary, our proposed model in matrix multiplication and stochastic logic poses linearly
growth on delay of critical path and poses polynomial growth on cell area when changing our system
parameters. More importantly, our model is not affected by environmental condition because it is
implemented using digital circuit.

6.2. System Security

In this section, we prove that our system can resist against man-in-the-middle attacks, in which
an attacker may try to break our system by eavesdropping information exchanged between the verifier
and client. The attacker would drive the following attacks: (1) PD modeling attacks, (2) modeling
attack to the matrix A of matrix multiplication authentication model, (3) brute-force attacks to PD,
(4) brute-force attacks to the matrix A of matrix multiplication authentication model, (5) brute-force
attacks to the response of the matrix A of matrix multiplication authentication model, (6) value modeling
attacks to stochastic logic authentication model, and (7) resistance against machine-learning attacks.

6.2.1. PD Modeling Attacks

The PD modeling attack is a machine-learning type of attacks [31], which aims to predict the
behaviors ofPD by observing some CRPs ofPD. In fact, we do not reveal any parameter of CRPD in our
authentication model. As a result, our authentication model is resilient against PD modeling attacks.
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6.2.2. Modeling Attack to the Matrix A of Matrix Multiplication Authentication Model

An attacker may intent to eavesdrop the information transmitted over the air and try to model
the matrix A to compute the privacy parameter b.

Lemma 1. If the same matrix A exists in different authentication rounds, then the matrix A can be easily
obtained by solving the linear equation with the known CRPs.

Proof. Let the dimension of the matrix A be n× n. In our authentication model, we resolve the same
linear system Ax = b between the verifier and client, where the dimensions of x and b are n × 1.
During the process of authentication, the model will reveal a pair (x, b). For example, if a legitimate
client successfully gets the authentication from the verifier three times, then an attacker can resolve the
matrix A by using the pairs (x1, b1), (x2, b2), and (x3, b3). The attacker can form a new linear system
A′x = b, where the dimension of A′ is (3 ∗ n)× n2 and the dimensions of x and b are n2× 1. Expanding
this concept, if the client successfully gets the authentication from the verifier j times, then the attacker
can form a new linear system A′x = b, where the dimension of A′ is (j ∗ n)× n2 and the dimension of
x and b are n2 × 1. In this linear system, it satisfies: rank(A′) ≤ n2 < (j ∗ n). If we randomly select
challenges in the model with increasing authentication rounds, then the rank of A′ constructed by an
attacker will increase. Finally, the rank of A′ will be the upper-bound value n2. The solutions of this
linear system include the general solution of A′x = 0 and a particular solution of A′x = b. If the matrix
A′ is full column rank, then the number of solution will be zero or one solution. Moreover, we know
that there must be a solution that is exactly the matrix A in the linear system. The attacker can rule out
the case of no solution and solve the linear system. As a result, the attacker can solve the matrix A
easily after several rounds of authentication.

In the authentication model based on matrix multiplication, we refresh the matrix A in every
rounds of authentication. For an attacker, he/she needs to obtain A at one specific time by observing
one CRPA. However, to obtain the matrix A by observing one CRPA results in a linear system of
infinitely many solutions.

Lemma 2. If we refresh the matrix A for every authentication rounds, then A will be infinitely many solutions
for the linear system constructed by an attacker.

Proof. Because we refresh the matrix A for every rounds of authentication, the linear system
constructed by the attacker actually results different matrices in every rounds of authentication.
Moreover, these matrices are mutually independent, so the attacker can only resolve the matrix A
at ending of one specific round by constructing the linear system using one CRP. Suppose that the
number of elements in the matrix Â is n× n2. Holding rank(Â) ≤ n < n2, the number of elements
in null space of the matrix Â is n2 − rank(Â) > 0. The solutions of linear system are the general
solution of Âx = 0 and one particular solution of Âx = b̂. This linear system must have one solution
that is exactly the matrix A, thus, the attacker can rule out the scenario of no solution. Consequently,
the linear system Âx = b̂ constructed by the attacker has infinitely many solutions.

Briefly, it is hard to model the matrix A or PD using the recorded information. However, an
attacker may try to use brute-force attacks against the matrix A or the PD. Therefore, we analyze
brute-force attacks to the PD and the matrix A in the following sections.

6.2.3. Brute-Force Attacks to PD

As proven in Section 6.2.1, an attacker cannot model the PD effectively using the recorded
information. However, the attacker can blindly guess the configuration bits of the PD. In other words,
the attacker can try to duplicate the PD using brute-force methods. Given l · i LUTs in the PD, we
need to use 16 · l · i bits to model the PD in the initialize phase of proposed model. As a result, the
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attacker will take exponentially time complexity O(216·l·i) to compromise the PD. In contrast, Dcp of
our model only costs linear time complexity when the PD and the matrix A are known in system.

We can easily create huge computational gap between our proposed model and the knowledge of
an attacker using brute-force attacks to model PD. Even if the attacker can duplicate the PD, he/she
still needs to compromise the matrix A to break our model. Therefore, we analyze the system security
when an attacker exploits brute-force attacks to compromise the matrix A in the next section.

6.2.4. Brute-Force Attacks to the Matrix A of Matrix Multiplication Authentication Model

With performing man-in-the-meddle attacks, an attacker needs to find one solution among
infinitely many solutions of a linear system to model the matrix A. However, the attacker can only
blindly guess elements in the matrix A. In other words, the attacker can only try to duplicate the
matrix A using brute-force methods.

Let the number of elements in the matrix A be n× n and each element in the matrix A be k bits.
The computational complexity to model the matrix A is exponential complexity O(2k·n2

). In contrast,
the complexity of Dcp is linear with n · k · ADD + l · LUTd.

After discussing the brute-force attacks against PD and the matrix A, an attacker can also focus
on breaching the response of the matrix A. Consequently, we analyze brute-force attacks to the response
of the matrix A in the next section.

6.2.5. Brute-Force Attacks to the Response of the Matrix A of Matrix Multiplication
Authentication Model

Let the number of elements for the response of A be n× 1 and each element in a vector be k bits.
To blindly retrieve the correct response, an attacker needs to take exponentially time complexity O(2k·n).

Subsequently, we analyze the value modeling attacks to stochastic logic authentication model.

6.2.6. The Value Modeling Attacks to Stochastic Logic Authentication Model

With the assumption of the strong PUF described in Section 3, the two responses generated in
the model are mutually independent. Moreover, within one response, all individual bits are mutually
independent. As a result, an attacker can model the value calculated in step 5 of stochastic logic
authentication model as a random variable, which is the transformation of i independent binomial
trials with probability of success equals to 0.5, where the transformation is the sum of these independent
binomial trials. After transformation, value is a random variable with binomial distribution (i, 0.5).
The probability mass function (PMF) of binomial distribution is ( i

k) · 0.5k · 0.5i−k, where k is the number
of success, namely the value. The mean of value is 0.5i and for binomial distribution, the P(value = 0.5i)
has the largest probability compared to other possible points. For an attacker, he/she will always guess
the value with largest probability. In other words, the attacker should always guess the value to be 0.5i.
For instance, given i = 210, P(value = 29) = (210

29 ) · 0.529 · 0.529 ≈ 0.0249. Obviously, it is relatively easy
for an attacker to break the authentication system with probability 0.025. When the size of PD arises,
P(value = 0.5i) will decrease. When i is large, it is hard to compute the PMF of binomial distribution.
However, we can approach to value by using normal distribution, in which the mean is 0.5i and
variance is 0.25i. Given i = 108, we can approach to value using a random variable with N( 108

2 , 108

4 ).
Using continuity correction, P(value = 0.5i) = P(value = 108

2 ) ≈ P(49999999.5 < X < 50000000.5),
where X is a random variable with N( 108

2 , 108

4 ). After standardization, P(value = 0.5i) = P(value =
108

2 ) ≈ P(−0.0001 < Z < 0.0001) = 0.00008, where Z is a random variable with N(0, 1).
As the aforementioned descriptions, the cell area of matrix multiplication authentication model

entails polynomial growth with respect to the size of PD. In contrast, when i increases, authentication
model based on stochastic logic poses slightly increasing on the size of cell area.
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6.2.7. Resistance against Machine-Learning Attacks

The resistance against machine-learning attacks is a characteristic of a PUF representing the
difficulty to predict its CRPs using machine-learning techniques [16]. Our approach STT-DPSA used
the strong STT-MRAM PUF, which means that the number of CRPs is exponentially in accordance with
the number of components whose behavior depends on manufacturing variation of MTJs. The variation
of MTJs has been proven by [32,33], in which response cannot be predicted better than random guesses;
that is, inter-Hamming distance being equal to 0 and uniformity of response being equal to 0.5. As a
result, STT-DPSA can resist against machine-learning attacks.

7. Evaluation

To prove the uniqueness of PS, we demonstrated the simulation results of PS under different
temperatures. In addition, we demonstrated synthetic results of delay of critical path and cell area
with different parameters of STT-DPSA based on ASIC cell-based design flow.

The standard cell library used to synthesize the verilog code of proposed model is NanGate
FreePDK45 open cell library [34]. Each authentication round in our model STT-DPSA takes 5 clock
cycles. In addition, we implemented LFSR [12] as a PRNG in STT-DPSA.

7.1. Unpredictability Validation of PS

Our STT-MRAM PUF PS circuit was implemented in SPICE model [35] via Monte Carlo
simulation with three-dimensional variation of the MTJ shape. The simulation results are shown
in Figure 11. The upper sub-figure is the waveform of signal RCLK and the others are waveforms of
signal BIT under temperatures in unit of Celsius: 0, 50, and 80 from top to down. Initially, both MTJ A
and MTJ B are in the P state. We set signal RCLK to Vdd so that BIT is 0. Then we switch signal RCLK
to 0, followed by BIT will be pre-charged to the undetermined level. Finally, BIT changes to 0/1 with
the corresponding MTJ resistance difference between MTJ A and MTJ B. In Figure 11, the simulation
results of signal BIT diverging at different time slots demonstrate that our PS is unpredictable under
different temperatures.

As exhibited in Figure 11, response bits of PS can be generated within around 30 nanoseconds
(ns). Using these response bits, the construction of PD can be completed by executing ASIC design
flow within limited amount of time. Therefore, with the designs of PD and PS, we can realize the
initialization phase of STT-DPSA with constant time complexity rather than the traditional PUF-based
models that need unrealistic amount of time to generate CRPs of a strong PUF.

7.2. Reliability Validation of PS

To demonstrate the reliability of PS, we validated whether our PS was unchangeable under
variations of temperature and Vdd. In Figure 12, the results revealed that the working windows
between temperature interval (−35 ◦C, 110 ◦C) and Vdd interval (0.95 V, 1.16 V) for PS are reliable.

7.3. Effect of the Parameter l

We varied the length l of PD when fixed the length i = 64 of input bits to the PD and let k be
equal to 8. Figures 13 and 14 demonstrated the delay of critical path and the cell area, respectively,
in which l posed linear growth on the delay of critical path and the cell area. Obviously, the delay of
critical path and the cell area are about 8 ns and 2.17 um*um, respectively, for both of practical and
theoretical evaluations at l = 4.
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Figure 11. The uniqueness validation of PS.
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(a) Temperatures range from −40 ◦C to 125 ◦C, the expected result is BIT = 1
(Vdd = 1.1 V), while it fails at −40 ◦C (blue line), 115 ◦C (orange line), 120 ◦C
(green line), and 125 ◦C (red line).
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(b) Vdds range from 0.9V to 1.2V at 25 ◦C, the expected result is BIT = 1 (Vdd), while
it fails when Vdd > 1.16 V (four lines BIT = 0), and it cannot reach BIT = 1 on time
when Vdd < 0.95 V because RCLK pulse ends at 25 ns.

Figure 12. Reliability validation of PS under two MTJs with a bit resistance-area product (RA)
difference, MTJ A: 5 Ω-µm2 and MTJ B: 5.2 Ω-µm2.
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Figure 13. Effect of the parameter l with respect to the delay of critical path.
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Figure 14. Effect of the parameter l with respect to the cell area.

7.4. Effect of the Parameter n

We exhibited the effect of the parameter n on the delay of critical path and the cell area as l = 2
and k = 8 in Figures 15 and 16. Because we suppose that the analysis presented in Theorem 2 is the
naivest hardware architecture, different hardware architectures in practice would affect the evaluated
results. In our hardware platform, the evaluated delay of critical path and cell area are lower than the
theoretical estimation. Moreover, Figures 15 and 16 indicated that our model posed linearly growth
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overhead on delay of critical path and posed polynomially growth overhead on cell area while varying
the parameter n.
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Figure 15. Effect of the parameter n with respect to the delay of critical path.
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Figure 16. Effect of the parameter n with respect to the cell area.

7.5. Effect of the Parameter k

In this section, effects of the parameter k on the delay of critical path and the cell area as l = 2 are
shown in Figures 17 and 18. Observing from Figures 17 and 18, the parameter k posed linearly growth
on the delay of critical path and the cell area. At k = 16, the evaluated delay of critical path and cell
area are about 8.5 ns and 3.5 um*um, respectively.
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Figure 17. Effect of the parameter k with respect to the delay of critical path.
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Figure 18. Effect of the parameter k with respect to the cell area.

7.6. Execution Time of Authentication

We evaluated the execution time of authenticating a client in our proposed model compared to
a brute-force method launched by an attacker while varying the parameters k and n. The evaluated
results are shown in Figures 19 and 20. As previous discussions, the most effective attack against
our proposed model is to blindly guess the response of the matrix A. Consequently, the security of
proposed authentication model is O(2k·n). As a result, we can create giant time execution gap between
the brute-force method and our model. For instance, the attacker will take about computational
complexity O(2256) to compromise STT-DPSA under the settings of n = 32, k = 8, i = o = 1024.
This security level is equivalent to the AES-256 cryptography system.
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Figure 19. Execution time of an attacker and STT-DPSA to do authentication under n = 8 and l = 2
while varying the parameter k.

Figure 20. Execution time of an attacker and STT-DPSA to do authentication under k = 8 and l = 2
while varying the parameter n.
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7.7. Evaluation of Stochastic Logic Authentication Model

In this section, we set the size of PD to i = o = 64 and indicated the parameters n, k, and l to
8, 8, and 2, respectively. Under this assumption, we used theoretical equation derived in Section 1
to estimate the cell area and the delay of critical path for matrix multiplication and stochastic logic
authentication models. Table 2 demonstrated the comparison results. Considering hardware security
level or cell area, we alternatively build matrix multiplication or stochastic logic operation for our
authentication model. In other words, if we would like to reserve high security for authentication,
matrix multiplication model can be used while sacrificing area overhead and delay of critical path;
otherwise, stochastic logic model can be used to improve performance of cell area and delay of critical
path for STT-DPSA.

Table 2. Comparison results between stochastic logic version and matrix multiplication version.

Cell Area (µm*µm) Delay of Critical Path (ns)

Matrix Multiplication Version 20,349 31.45

Stochastic Logic Version 4953 17.25

7.8. Comparisons

STT-DPSA was compared with DBF [14], DBF plus Arbiter [15], PUFSec [24], and Matched
PUF [13] in driving device authentication, as shown in Table 3. In our evaluations, STT-DPSA
and Matched PUF used pure hardware approach while DBF, DBF plus Arbiter, and PUFSec used
hardware-software co-design methodology. For fairly comparison, we set the security level at O(264)

for each method and compared them in terms of the cell area, execution time to finish one authentication
round, and memory usages. Notably, our evaluation was under the ASIC cell-based design flow using
NanGate FreePDK45 open cell library [34].

STT-DPSA outperforms DBF, DBF plus Arbiter and PUFSec in terms of execution time and
memory usage while sacrificing cell area. STT-DPSA only spent 31.45 ns for performing one round
of authentication while DBF, DBF plus Arbiter and PUFSec cost 0.03, 0.03 and 5.15× 10−10 in terms
of seconds, respectively. For the memory usage, DBF and DBF plus Arbiter and PUFSec all cost
unrealistic memory usage while STT-DPSA did not consume memory usages due to its pure hardware
implementation. Comparing STT-DPSA with Matched PUF, Matched PUF outperforms STT-DPSA in
terms of cell area, execution time but it is extremely susceptible to environment condition.

Table 3. Comparison results.

Method Cell Area (µm*µm) Execution Time (s) Memory Usage (bits)

STT-DPSA 20,349 31.45× 10−9 0

DBF [14] 835 0.03 264

DBF with Arbiter PUF [15] 930 0.03 264

PUFSec [24] 2245 5.15× 10−10 256

Matched PUF [13] 5376 5× 10−9 0

7.9. Implementation of STT-DPSA

Finally, STT-DPSA was implemented with parameters n = 32, i = o = 1024, k = 8, and l = 2
using FPGA design flow. The FPGA device that we used is EP4CE115F29C7, which belongs to Cyclone
IV E FPGA family of Intel. Under this setting of parameters, an attacker needs to take time complexity
O(2256) to compromise STT-DPSA. We also evaluated STT-DPSA using Synopsys design compiler
with TSMC 0.18 um process. Table 4 is the statistics of STT-DPSA implemented on the FPGA device
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and Table 5 is the specification of the TSMC 0.18 um process implementation for STT-DPSA. They
demonstrated the feasibility of STT-DPSA.

Table 4. Statistics of the FPGA implementation.

Parameter Settings n = 32, i = o = 1024, k = 8, and l = 2

FPGA Device Intel Cyclone IV E EP4CE115F29C7

Total Logic Elements 68108/114480 (59%)

Total Registers 3080

Clock Frequency 107 Hz

Table 5. Specification of the TSMC 0.18 um process implementation for STT-DPSA.

Supply Voltage (V) Cell Area (um2) Power @ 50 MHz (mW)

1.8 20,349 1.2278

8. Conclusions

We presented a novel authentication model based on a strong digital PUF for IoT devices. In our
implementation, we generated a strong digital PUF using STT-MRAM PUF to configure LUTs in
the strong digital PUF. By deploying the strong digital PUF configured by STT-MRAM PUF on
the client and verifier, the execution time of doing one authentication round and the cell area is
efficient. At the same time, our proposed authentication model can resilient against a series of
man-in-the-middle attacks and brute-force attacks. The security of STT-DPSA was analyzed in the
theoretical estimation. Moreover, we validated the cell area, the delay of critical path, and the execution
time of one authentication round in experiments. Finally, we realized our proposed model using FPGA
design flow to prove the feasibility of STT-DPSA.

Author Contributions: Conceptualization, W.-C.C., Y.-C.C., and Y.-T.T.; methodology, W.-C.C., Y.-C.C., and
Y.-T.T.; validation, W.-C.C. and Y.-C.C.; formal analysis, Y.-C.C. and Y.-T.T.; investigation, W.-C.C., Y.-C.C., and
Y.-T.T.; writing—original draft preparation, W.-C.C. and Y.-C.C.; writing—review and editing, Y.-T.T., S.-Y.K., and
C.-R.C. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Ministry of Science and Technology, Taiwan, under Grant No. MOST
107-2221-E-035-020-MY3 and No. MOST 106-2622-8-002-011-TA.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Suh, G.E.; Devadas, S. Physical Unclonable Functions for Device Authentication and Secret Key Generation.
In Proceedings of the 44th ACM/IEEE Design Automation Conference, San Diego, CA, USA, 4–8 June 2007;
pp. 9–14.

2. Gassend, B.; Clarke, D.; van Dijk, M.; Devadas, S. Silicon Physical Random Functions. In Proceedings of
the 9th ACM Conference Computer and Communication Security, Washington, DC, USA, 18–22 November
2002; pp. 148–160.

3. Herder, C.; Yu, M.; Koushanfar, F.; Devadas, S. Physical Unclonable Functions and Applications: A Tutorial.
Proc. IEEE 2014, 102, 1126–1141. [CrossRef]

4. Perrig, A.; Szewczyk, R.; Tygar, J.D.; Wen, V.; Culler, D.E. SPINS: Security Protocols for Sensor Networks.
Wirel. Netw. 2002, 8, 521–534. [CrossRef]

5. Karlof, C.; Sastry, N.; Wagner, D. TinySec: A Link Layer Security Architecture for Wireless Sensor Networks.
In Proceedings of the ACM 2nd International Conference on Embedded Networked Sensor Systems,
Baltimore, MD, USA, 3–5 November 2004; pp. 162–175.

6. Zhu, S.; Setia, S.; Jajodia, S. LEAP+: Efficient Security Mechanisms for Large-Scale Distributed Sensor
Networks. ACM Trans. Sens. Netw. 2006, 2, 500–528. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2014.2320516
http://dx.doi.org/10.1023/A:1016598314198
http://dx.doi.org/10.1145/1218556.1218559


Micromachines 2020, 11, 502 27 of 28

7. Tsou, Y.-T.; Lu, C.-S.; Kuo, S.-Y. SER: Secure and Efficient Retrieval for Anonymous Range Query in Wireless
Sensor Networks. Comput. Commun. 2017, 108, 1–16. [CrossRef]

8. Liu, A.; Ning, P. TinyECC: A Configurable Library for Elliptic Curve Cryptography in Wireless Sensor
Networks. In Proceedings of the ACM/IEEE International Conference on Information Processing in Sensor
Networks, St. Louis, MO, USA, 22–24 April 2008; pp. 245–256.
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