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Abstract: Au-Au surface activated bonding (SAB) using ultrathin Au films is effective for
room-temperature pressureless wafer bonding. This paper reports the effect of the film thickness
(15–500 nm) and surface roughness (0.3–1.6 nm) on room-temperature pressureless wafer bonding
and sealing. The root-mean-square surface roughness and grain size of sputtered Au thin films on
Si and glass wafers increased with the film thickness. The bonded area was more than 85% of the
total wafer area when the film thickness was 100 nm or less and decreased as the thickness increased.
Room-temperature wafer-scale vacuum sealing was achieved when Au thin films with a thickness of
50 nm or less were used. These results suggest that Au-Au SAB using ultrathin Au films is useful in
achieving room-temperature wafer-level hermetic and vacuum packaging of microelectromechanical
systems and optoelectronic devices.

Keywords: heterogeneous integration; wafer bonding; wafer sealing; room-temperature bonding;
Au-Au bonding; surface activated bonding; Au film thickness; surface roughness

1. Introduction

Sealing techniques are essential to protect the sensitive elements of microelectromechanical systems
(MEMS) and optoelectronic devices from the environment [1–3]. An effective way to achieve sealing is
to bond cap wafers to device wafers. Many types of bonding techniques such as anodic bonding [4],
thermocompression bonding [5–7], solder bonding [8,9], and eutectic bonding [10] have been used
as sealing techniques. However, these techniques require high bonding temperature, which causes
problems such as thermally induced mechanical stress due to thermal expansion mismatch. Therefore,
low-temperature bonding using metal intermediate layers is becoming increasingly attractive because
of the high bonding strength and good reliability that can now be achieved. Research on bonding
using Au intermediate layers has been increasing [11–35], because Au has several highly desirable
properties such as high resistance to oxidation and corrosion.

Au-Au surface activated bonding (SAB) [17–35] is a promising technique for low-temperature
bonding. In Au-Au SAB, the Au surfaces are activated by plasma treatment and then brought into
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contact at low temperature (<150 ◦C). Au-Au SAB has also been applied to hermetic sealing, as well as
the integration of different materials [17,24]. An advantage of Au-Au SAB is that the Au films can be
patterned using photolithography before bonding, enabling high transparency to be achieved by using
glass wafers [35]. For example, chip-scale hermetic sealing in air has been achieved at low temperature
(150 ◦C). However, high bonding pressure (300 MPa) was necessary because thick Au films (thickness:
300–500 nm) with rough surfaces (root mean square (RMS) surface roughness: 4.0 nm) were used as
sealing rings [24]. Various methods such as thermal-imprint [25], lift-off [26], and direct-transfer [31]
have been investigated to reduce the bonding pressure required for sealing by using Au-Au SAB.
However, high bonding pressure (>100 MPa) is still required to achieve sealing [28].

Room-temperature pressureless wafer bonding was recently achieved with Au-Au SAB using
ultrathin Au films (thickness <50 nm) with small grains, and thus, smooth surfaces (RMS surface
roughness: <0.5 nm) [30,34]. Furthermore, room-temperature pressureless wafer-scale hermetic sealing
in both air and vacuum was achieved using Au-Au SAB with ultrathin Au films (thickness: 15 nm) [35].
However, the effect of the film thickness on Au-Au bondability and sealing quality has not been
investigated quantitatively.

This paper reports on the use of Au thin films with different film thicknesses in room-temperature
pressureless wafer bonding and vacuum sealing processes. We also investigate the effect of film
thickness and surface roughness on wafer bonding and vacuum sealing quality.

2. Experimental Methods

2.1. Room-Temperature Pressureless Wafer Bonding in Ambient Air

In the first experiment, Au thin films with different thicknesses (15, 50, 100, 300, 500 nm) and Ti thin
films with a thickness of 5 nm as adhesion layers were deposited on 4-inch Si wafers by DC sputtering
(JSP-8000, ULVAC, Inc., Chigasaki, Japan). The sputtering was performed at a chamber pressure of
0.15 Pa and a sputtering power of 200 W for the Ti films and 100 W for the Au films. The surface
roughness of the deposited films was measured with an atomic force microscope (AFM; L-trace,
Hitachi High-Tech Science Corporation, Tokyo, Japan), with a scanning area of 500 nm × 500 nm.
The average grain size of the Au films was calculated from the observed AFM data using the watershed
algorithm [36]. To investigate the stress in the deposited films, we measured the curvature radius of
the wafers before and after film deposition using a thin-film stress measurement system (FLX-2320-S,
TOHO Inc., Nagoya, Japan). The film stress σf was calculated using the Stoney equation [37]:

σ f =
Ests

2

6(1− νs)t f
·(

1
R1
−

1
R0

) (1)

where Es, νs, and ts, are Young’s modulus, Poisson’s ratio, and substrate thickness, respectively, R0 and
R1 are the curvature radii of the wafer before and after film deposition, and tf is the deposited film
thickness. In this work, Si was assumed to be isotropic, and Young’s modulus, Poisson’s ratio, and
substrate thickness were set to 169 GPa, 0.06, and 525 µm, respectively [38,39]. The tf was calculated as
the total thickness of the Au and Ti thin films.

The bonding was performed by placing two wafers with the Au sides facing each other in ambient
air and squeezing their centers together with tweezers once with an estimated applied force of <10 N.
Before bonding, Ar plasma treatment (RF power: 200 W, operating pressure: 60 Pa, treatment time:
60 s) was performed for surface activation using the plasma equipment installed in the bonding system
(WAP-1000, Bondtech Co., Ltd., Kyoto, Japan). The treatment time (60 s) was short enough not to
affect the surface roughness of the Au surfaces [34]. The bonded area was observed with a surface
acoustic microscope (SAM; SAM 300, PVA TePla Analytical Systems, Westhausen, Germany), and the
percentage of the bonded area was calculated using ImageJ software [40]. The bonding strength was
evaluated using the razor blade test, which is also known as the crack opening method [41]. The crack
length caused by inserting a blade was observed with the SAM.
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2.2. Room-Temperature Wafer Sealing in Vacuum

In the second experiment, Au thin films with different film thicknesses (15, 50, 100, 300 nm) and Ti
thin films with a thickness of 5 nm as adhesion layers were deposited on Si wafers (4-inch diameter)
with cavities and on alkali-free ultrathin glass wafers (80 mm square and 50 µm thick, G-Leaf, Nippon
Electric Glass Co., Ltd., Otsu, Japan) by DC sputtering. More than 100 cavities with lateral dimensions
of 2 mm × 2 mm, a depth of 100 µm, and a pitch of 3 mm were fabricated in the middle of the wafers by
wet chemical etching. A schematic of a bonded wafer pair is shown in Figure 1a, and a cross-sectional
schematic of a vacuum-sealed sample is shown in Figure 1b. The surface roughness of each wafer was
measured with the AFM, and the average grain size was calculated using the watershed algorithm.
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Figure 1. Schematics of bonded wafer pair and bonded structure: (a) Wafer pair (thin glass wafer and
Si wafer with cavities) deposited with Au thin films (b) Cross-sectional schematic of vacuum-sealed
sample. Glass substrate exhibited deflection due to pressure difference between sealed vacuum cavity
and ambient atmosphere.

Room-temperature vacuum sealing was performed using the bonding system (WAP-1000,
Bondtech Co., Ltd.). Two wafers were bonded in a vacuum chamber (~10−2 Pa) at room temperature
and a contact load of 2000 N. Before bonding, the Au surfaces were activated by Ar plasma (RF power:
200 W, operating pressure: 60 Pa, treatment time: 60 s). The applied contact load (2000 N) corresponded
to less than 1.6 MPa for the bonded samples.

The sealing quality of the vacuum-sealed samples was evaluated by visually checking the number
of cavities with cap deflection. Since the glass wafers were thin (thickness: 50 µm), the glass caps
on the vacuum-sealed cavities exhibited deflection after bonding due to the pressure difference
between the sealed vacuum cavities and the ambient atmosphere, as shown in Figure 1b. Furthermore,
microstructure observation of the bonded interface was performed with a transmission electron
microscope (TEM; H-9500, Hitachi High-Tech Science Co., Tokyo, Japan).
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3. Results

3.1. Room-Temperature Pressureless Wafer Bonding in Ambient Air

A measured AFM image of a Si wafer before Au thin film deposition is shown in Figure 2a, and
the images of Au thin films with thicknesses of 15, 50, 100, 300, and 500 nm deposited on Si wafers are
shown in Figure 2b–f, respectively. Before film deposition, the RMS surface roughness was 0.3 nm.
The grain geometry of each Au thin film (Figure 3) was determined using the watershed algorithm.
The effect of the film thickness on the surface roughness and average grain size deposited on the Si
wafers is illustrated in Figure 4. Both increased exponentially with the thickness, which is consistent
with the results of previous studies [42].
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Figure 4. Effect of thickness of Au films deposited on Si wafers on surface roughness and average
grain size.

In a previous study [43], the effect of surface roughness on spontaneous bonding was discussed
in terms of elastic deformation and energy gain due to bond formation. If bonding is to be achieved,
the elastic energy must be smaller than the work of adhesion, WA, i.e., the energy gain due to bond
formation at the interface. If the surface profile is assumed to be a sinusoidal curve, the surface
is assumed to be elastic, and wavelength λ is assumed to correspond to the average grain size,
the necessary surface roughness for pressureless bonding can be estimated using

Rrms
2

λ
<

2
(
1− ν2

)
πE

·WA (2)

where Rrms and λ are the RMS surface roughness and wavelength of the bonding surface. E and ν
are Young’s modulus and Poisson’s ratio. The relationship between average grain size and surface
roughness calculated with this formula is shown in Figure 5. The measured average grain size and
surface roughness of Au thin films with different thicknesses are also plotted. A thickness of 100 nm or
less satisfied the above assumptions, and pressureless bonding should thus be achieved.
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The measured film stress is plotted in Figure 6. Previous studies reported that the residual stress
strongly depended on the sputtering parameters, especially the chamber pressure [44–46]. In this
experiment, the film stress was compressive for all film thicknesses, and the compressive residual
stress decreased to −20 MPa when the film thickness was increased to 500 nm. Moreover, the change
in the wafer bow after film deposition was less than 1 µm. This means that film stress and wafer bow
due to residual stress in Au thin films should not affect bonding.
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Figure 6. Residual stress in Au thin films as a function of film thickness.

The bonded area of the room-temperature pressureless bonded wafers was observed with the
SAM. Typical SAM measurement results are shown in Figure 7. Most of the wafer, except for the
particles, was bonded successfully when Au thin films with a thickness of 100 nm or less were used.
As shown in Figure 8, the bonded area was inversely proportional to the Au film thickness. When the
film thickness was 15, 50, 100, or 300 nm, there was a sufficient bonding area for a razor blade test.
Sufficient bonding strength over the surface energy of bulk Si (2.5 J/m2) [47] was obtained using Au
thin films with a thickness of less than or equal to 300 nm although the entire wafer was not bonded
when the thickness was 300 nm.
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3.2. Room-Temperature Wafer Sealing in Vacuum

Measured AFM images of Au thin films with thicknesses of 15, 50, 100, 300 nm deposited on Si
wafers with cavities and glass wafers are shown in Figures 9 and 10. The RMS surface roughness of the
Si and glass wafers before film deposition was 0.2 nm. The AFM measurement results showed that
the change in surface roughness due to wet chemical etching was small, and thus, had little effect on
bonding. The grain geometry of each Au thin film was determined using the watershed algorithm.
AFM images of Au thin films deposited on Si wafers with cavities with the grains segmented are shown
in Figures 11 and 12. The relationships between Au film thickness, surface roughness, and average
grain size are plotted in Figure 13. The surface roughness and grain size increased exponentially as the



Micromachines 2020, 11, 454 8 of 14

film thickness was increased, which was consistent with the results when Au thin films were deposited
on Si wafers (Figure 4).
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on Si wafers with cavities; (b) films deposited on glass wafers.

The success or failure of the vacuum sealing was determined by observing the deflection of the
glass caps caused by the differential pressure between the vacuum-sealed cavities and the ambient
atmosphere. The measurement results are plotted in Figure 14. When the Au thin films were 100 nm
thick or more, the deflection was observed only in the center region of the wafer immediately after
bonding, and the deflection disappeared as the bonded wafer pairs were exposed to air. When the
films were 50 nm thick or less, the deflection did not change even after 150 days of air exposure. These
results indicated that Au thin films with a thickness of 50 nm or less could be used effectively for wafer
bonding, especially for vacuum sealing.
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Moreover, the air leakage of samples vacuum sealed using Au thin films with a thickness of
15 nm measured by the time dependence of the deflection of the thin glass caps was less than
1.3 × 10−14 Pa m3/s [35]. This satisfied the reject limit defined by MIL-STD-883 K, method 1014
(5.0 × 10−9 Pa m3/s).

Cross-sectional TEM observation of the Au-Au bonded interface with 15-nm-thick Au films
was performed to investigate its microstructure. The example TEM image in Figure 15 shows that
bonding was achieved at the atomic level and that Au atoms diffused around the grain boundaries.
This indicated that good sealing could be obtained using 15-nm-thick Au films.
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4. Conclusions

We investigated the effect of Au film thickness (15–500 nm) and surface roughness on
room-temperature pressureless wafer bonding and sealing by Au-Au surface activated bonding.
The RMS surface roughness and grain size of Au thin films sputtered on Si wafers, Si wafers with
cavities, and glass wafers increased with the film thickness. When the film thickness was 100 nm or
less, most of the wafer was bonded; the bonded area decreased as the Au film thickness was increased.
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Room-temperature wafer-scale vacuum sealing was achieved using Au thin films with a thickness of
50 nm or less. These results suggest that Au-Au surface activated bonding using ultrathin Au films
is useful in achieving room-temperature wafer-level hermetic and vacuum packaging of MEMS and
optoelectronic devices.
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