

Supplementary Materials: Omnidirectional Triboelectric Nanogenerator Operated by Weak Wind Towards a Self-Powered Anemoscope

Nay Yee Win Zaw¹, Hyeonhee Roh¹, Inkyum Kim¹, Tae Sik Goh^{2,*} and Daewon Kim^{1,*}

- ¹ Department of Electronic Engineering, Institute for Wearable Convergence Electronics, Kyung Hee University, Yongin 17104, Korea
- ² Department of Orthopaedic Surgery and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea
- * Correspondence: daewon@khu.ac.kr (D.K.); taesikgoh@gmail.com (T.S.G.)

Received: 29 February 2020; Accepted: 11 April 2020; Published: date

Figure S1. (**A**) Schematic diagram of the wind-TENG with SEM image showing the surface of bare Al electrode without WAO process. (**B**) Open-Circuit voltage and (C) Short-Circuit current of wind-TENG comprising bare Al and PTFE at the minimum operating wind pressure of 0.05 MPa.

Figure S2. Working mechanism of the wind-TENG with the bulk PTFE under weak wind.

Figure S3. Optical images of PTFE films displaying (**A**) Length of PTFE strips and (**B**) Width of PTFE strips.

Figure S4. (A) Load resistance dependency of the output voltage and current at wind pressure of 0.2 MPa. (B) Load resistance dependency of the output power at wind pressure of 0.2 MPa.

Figure S5. Open-circuit voltages when the wind is injected into (**A**) Side 1 (**B**) Side 2 (**C**) Side 3 and (**D**) Side 4 of the integrated TENG.