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Abstract: Large-displacement microelectromechanical system (MEMS) scanners are in high demand
for a wide variety of optical applications. Kirigami, a traditional Japanese art of paper cutting and
folding, is a promising engineering method for creating out-of-plane structures. This paper explores
the feasibility and potential of a kirigami-inspired electrothermal MEMS scanner, which achieves
large vertical displacement by out-of-plane film actuation. The proposed scanner is composed of
film materials suitable for electrothermal self-reconfigurable folding and unfolding, and microscale
film cuttings are strategically placed to generate large displacement. The freestanding electrothermal
kirigami film with a 2 mm diameter and high fill factor is completely fabricated by careful stress
control in the MEMS process. A 200 µm vertical displacement with 131 mW and a 20 Hz responsive
frequency is experimentally demonstrated as a unique function of electrothermal kirigami film. The
proposed design, fabrication process, and experimental test validate the proposed scanner’s feasibility
and potential for large-displacement scanning with a high fill factor.

Keywords: electrothermal scanner; kirigami film; large displacement; microelectromechanical
system (MEMS)

1. Introduction

Microelectromechanical system (MEMS) scanners with large vertical actuation of both the
micromirror and microlens have a wide range of applications, including optical pickup [1],
multiphoton microscopy [2], Fourier transform spectrometry [3,4], confocal microscopy [5], optical
coherence tomography [6], and micro optical diffusion sensing [7–9]. MEMS scanners based on
electrostatic [2,7,10,11], piezoelectrical [12], and electromagnetic [13] actuation mechanisms can achieve
high-speed scanning. For example, Oda et al. [11] reported an electrostatic comb-drive MEMS mirror
with a sensing function, which achieved a vertical displacement of 3 µm with approximately 40 V.
Chen et al. [12] demonstrated 145 µm out-of-plane actuation with a 2 kHz resonant frequency using
symmetrical eight piezoelectric unimorph driving. Compared with electrostatic, piezoelectrical, and
electromagnetic actuations, an electrothermal MEMS scanner can achieve large displacement (several
hundred micrometers) without resonant operation. To date, various novel designs for electrothermal
MEMS scanners with vertical out-of-plane actuation have been proposed [3–6,8,14–16]. For example,
Zhang et al. [14] presented a lateral shift-free actuator design using three bimorph hinges and
two multimorph segments to compensate for the lateral shift. Their actuator achieved a vertical
displacement of 320 µm. Zhou et al. [15] recently reported an electrothermal MEMS mirror with a
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high reliability and 114 µm scanning using an inverted-series-connected structure, which survived
significant long-term operation with little characteristic change.

Kirigami, a variation of origami, is a promising design method for building out-of-plane structures
by paper cutting and folding. The design concepts of kirigami and origami have been introduced in
the engineering of a large variety of nano-, micro-, and macroscale functional films, such as mechanical
materials [17–23], photonic materials [24–27], biomedical devices [28–30], biomimetic robotics [31], and
electronic devices [32,33]. Mechanically-actuated devices particularly require the ability to control the
transition between folded and unfolded states. A planer stretchable film is kinematically manipulated
with external stretching tethers [20,24]. The responsive film materials provide self-reconfigurable
folding and unfolding when exposed to a change in environmental temperature [34–36], the addition of
a solvent [37,38], or irradiation by lasers [39]. For example, Tolley et al. [35] demonstrated self-folding
origami shapes composed of shape memory polymer, which is activated by uniform heating in
an oven for less than 4 min. Jamal et al. [37] reported that a differential photo-crosslinked epoxy
polymer, SU-8, was reversibly folded and unfolded by de-solvation and re-solvation to develop
microfluidic devices that flatten out and curl up. However, these folding and unfolding mechanisms
are not applicable to the fast-scanning MEMS actuator that is necessary for electrical control on
a microscale. Moreover, electrically responsive film materials compatible with the fabrication of
microscale architecture are required.

In this study, we explore the feasibility and potential of a kirigami-inspired electrothermal MEMS
scanner that enables large vertical actuation with a high fill factor. Based on the concept of a thermal
bimorph being folded and unfolded by the thermal expansion difference induced by Joule heating and
natural cooling, the freestanding kirigami film on which bimorphs are placed is electrothermally folded
into an out-of-plane structure. In this design, the film material combinations suitable for electrothermal
self-reconfigurable folding and unfolding are determined, and the kirigami cuttings and thermal
bimorphs are aligned to generate vertical displacement with a high area efficiency. To fabricate the
freestanding electrothermal kirigami film with a 2 mm diameter and high fill factor, spontaneous film
folding due to residual stress, which determines the initial position, is controlled. Finally, the potential
of fast, large-displacement scanning with a high fill factor is experimentally examined.

2. Kirigami-Inspired Electrothermal MEMS Scanner

2.1. Design

Figure 1 shows a 3D paper model of the proposed scanner. Inspired by the kirigami concept
in which a plane paper is transformed into out-of-plane architecture by cutting and folding, the
freestanding film was electrothermally folded into an out-of-plane structure. When switching the
voltage on or off, the platform for the microlens and micromirror was vertically lifted or lowered.
Figure 2 illustrates the design schematic for the electrothermal kirigami MEMS scanner. As Figure 2a
shows, the freestanding SiN film on which the spiral-curved cuttings were strategically placed was
formed on a Si substrate. The SiN film (1.0 µm thickness) was 2 mm in diameter, and the platform
for the micromirror and microlens was 1.3 mm in diameter. The fill factor (i.e., the ratio of the area of
the platform to the area of the freestanding kirigami film) was 42%. The extra Si substrate could be
removed by the fabrication process to make a small circular chip. As Figure 1b shows, NiCr patterns
(0.5 µm thickness) and W patterns (0.2 µm) were deposited on the backside of the SiN film. Figure 2c
shows the details of the thermal bimorph beam. The platform was connected to the bimorph with a
serpentine-shaped mechanical spring. To suppress heat leakage from the bimorph, the NiCr guard
heater was introduced to the bottom area. To suppress the temperature increase at the spring, W
patterns, which have a higher electrical conductivity, were deposited on the spring. When voltage was
applied to the one-stroke electrical circuit composed of NiCr and W patterns, the all-spiral curved
NiCr/SiN bimorph area bent and folded in the vertical direction by Joule heating.
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The material properties of the kirigami film are important for reconfigurable electrothermal
actuation with large displacement. Film materials with large coefficient of thermal expansion (CTE)
differences must be folded so as not to exceed the metal yield strength or fracture strength. Table 1
compares the properties of common materials used in MEMS actuators. SiN was selected as a rigid,
freestanding film material with a higher Young’s modulus and yield stress than SiO2 or Poly-Si. NiCr
and SiN were chosen as the thermal bimorphs. According to Table 1, the yield stress of NiCr is several
times higher than that of Cu and Al, while the CTEs of Al and Cu are slightly higher than the CTE of
NiCr. The thicknesses of SiN and NiCr are 1 and 0.5 µm, respectively, and were determined by the
calculation of cantilever displacement.
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Table 1. Material selection of the electrothermal kirigami scanner [40–45].

Material Coefficient of Thermal
Expansion [10−6/K]

Young’s Modulus [GPa] Yield Strength/Fracture
Strength [GPa]

SiN 1.6 252 5.8
Poly-Si 3.0 179 1.1

SiO2 0.4 70 0.8
Al 23.6 70 0.2
Cu 16.9 120 0.3

NiCr 14.2 220 2.2

2.2. Simulation Analysis

To verify the out-of-plane actuation, 3D models were built, and electro-thermo-mechanical
analyses were performed using the CoventorWare© finite element modeling (FEM) tool (Coventor,
Inc., Fremont, CA, USA). The thermal conductivity of the freestanding SiN film was particularly
considered. In general, the thermal conductivity of the nanoscale thin film was lower than that of the
bulk state due to phonon scattering at the interface grain. Figure 3 shows the temperature distribution
and vertical actuation using the film value [46]. A selective temperature rise in the bimorph area was
observed, and NiCr thermal guard heaters suppressed the temperature decrease in the bimorph bottom
area. As seen in Figure 4b, the proposed electrothermal actuator could achieve approximately 0.2 mm
displacement in the vertical direction. The resonant vibration modes were simulated, and Figure 4
shows the results. The first mode was piston, and the second mode was tilting. The frequencies were
1.4 and 1.8 kHz, respectively.
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3. Fabrication

Figure 5 represents the fabrication process flow of the kirigami-film actuator. To fabricate the
freestanding SiN film on which NiCr patterns were deposited with a high area efficiency, it was
necessary to control the residual stress of both SiN and NiCr. First, an SiO2 film with low residual stress
was deposited on a single-side polished Si wafer with a 300 µm thickness and 100 mm diameter, as
shown in Figure 5a. To prevent the SiN film from shrinking after removal of the SiO2 film underneath,
the SiO2 film with low residual stress, estimated to have a 30 MPa compressive strength, was grown
by plasma-enhanced chemical vapor deposition (PECVD) using TEOS. This functioned as an etch
stop layer during two processes: (1) SiN film reactive-ion etching to align the kirigami cuttings on
the SiN film and (2) Si deep reactive-ion etching (DRIE) to form the freestanding SiN/SiO2 film. A
low-residual SiN (1.0 µm) film was then deposited by PECVD. To produce a low-stress SiN film, which
is composed of alternating tensile and compressive layers, low and high radio frequency (RF) mix
fabrication was used [47]. The residual stress of the SiN film was adjusted to a 25 MPa compressive
strength, approximately equal to the residual stress of the SiO2 film, to further prevent film shrinkage
by different residual stresses on the SiO2 film. Next, the W pattern was deposited (0.2 µm) by RF
magnetron sputtering and a lift-off process, as shown in Figure 5b. NiCr alloy (80% Ni–20% Cr)
patterns (0.5 µm) were deposited by RF sputtering and wet etching, as shown in Figure 5c. The residual
stress of the NiCr patterns caused the initial curling of the bimorphs, resulting in the initial elevation of
the platform. Moreover, the compressive/tensile state determined the direction of the initial elevation.
The residual stress of NiCr patterns was controlled by adjusting the sputtering gas pressure. Figure 6
shows the residual stresses of NiCr films (0.5 µm) versus process pressure using fixed sputtering
power. The residual stresses were estimated from the curvature of the film-coated substrates using
Stoney’s formula [48]. As the sputtering Ar pressure was increased, the sputtered film transitioned
from a compressive state to tensile state. After reaching a maximum tensile strength, the stress was
decreased with a further increase in the pressure. This tendency, which has also been reported in W
films [49] and Ta films [50], can be attributed to the change of the film qualities caused by mean free
paths of Ar and NiCr atoms. The NiCr film with 180 MPa in a tensile state was deposited because the
tensile stress caused the opposite direction to actuate, which did not result in displacement reduction.
After photoresist (PR) masking pattern-inverse kirigami-cutting geometry, the SiN film was etched by
reactive-ion etching (RIE) and stopped at the SiO2 layer, as shown in Figure 5d. After backside Cr
mask patterning by sputtering and wet etching followed by frontside PR removal, the Si substrate was
etched by the backside DRIE to form the SiO2/SiN film, as shown in Figure 5e. To prevent erosion of
the frontside metal pattern by backside Cr etchant, the PR was removed by acetone immersion and O2

ashing after Cr pattering. Finally, the SiO2 film was removed by vapor hydrofluoric acid (HF) release,
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and the freestanding kirigami film on which NiCr and W were patterned was formed, as shown in
Figure 5f.
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an approximately 30 MPa compressive strength was deposited by plasma-enhanced chemical vapor
deposition (PECVD). (b) W patterns were deposited by lift-off processes. (c) NiCr films with 180 MPa
tensile residual stress were deposited by sputtering and patterned by wet etching. (d) After PR
patterning, microscale kirigami cuttings were placed on SiN film by reactive-ion etching (RIE). (e) After
Cr mask patterning and PR removal, the Si substrate was etched by the backside DRIE to form the
SiO2/SiN film. (f) Freestanding SiN kirigami film on which NiCr and W patterns were deposited was
formed by SiO2 removal with vapor hydrofluoric acid (HF) etching.
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Figure 7 shows the scanning electron microscope (SEM) images of an electrothermal kirigami
MEMS scanner. The freestanding SiN film on which the spiral-curved cuttings were strategically
placed was formed on the Si substrate, as shown in Figure 7a. No destruction was observed in the
bimorph area, including the guard heater and serpentine spring (Figure 7b,d). Initial displacement of
the platform was 20 µm above the substrate level. Platform tilting was estimated to be approximately
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0.6◦ by microscope focusing. The one-stroke electrical circuit composed of NiCr and W patterns was
successfully deposited on the SiN film (Figure 7c). The measured resistance of the scanners was 4.6 kΩ
at room temperature.Micromachines 2020, 10, x 7 of 12 
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4. Experimental Tests

4.1. Static Response

The direct current (DC) responses of the proposed scanners were characterized. Through contact
of the electrical probe and the W electrode patterned on the Si frame, the voltage was applied to the
one-stroke circuit composed of W and NiCr patterns that was deposited on the SiN film. The power
supplied to the scanner was calculated from the input voltage and the measured current. The vertical
displacement was precisely measured by microscope focusing of a selected point on the platform.
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Figure 8 shows the vertical displacements of the platform versus the applied voltage and power. A
vertical displacement of 200 µm was achieved at only 131 mW, as shown in Figure 8b. The temperature
rise at the NiCr/SiN bimorph was measured using infrared thermography (TVS-8500, Nippon Avionics,
Tokyo, Japan, measurement accuracy of ± 2 ◦C at T ≤ 373 K). Figure 9 shows the temperature change
with respect to the applied electrical power of the single bimorph. The applied power was calculated
by dividing the total power by the number of bimorphs. The measurement point was set to the
center point of the thermal bimorph. A temperature rise of approximately 90 K was obtained at
200 µm displacement.
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Figure 9. Measured temperature change versus applied electrical power for each bimorph. The
temperature rise at the NiCr/SiN bimorph was measured using infrared thermography. The power
applied to one bimorph was estimated from the total power.
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4.2. Dynamic Response

The dynamic responses in the low-frequency range of the MEMS scanner were characterized.
Figure 10 shows the measured frequency response when applying a sinusoidal wave voltage to
the single electrical circuit. The frequency response of the vertical actuation was measured by spot
displacement of the beam reflected by the platform. The displacement of the beam spot was measured
using a position sensitive detector. The applied voltage was (Vo + Vosin(2πft), Vo = 7 V), corresponding
to the maximum 85 µm displacement of DC operation, because of the spatial restriction of the optical
path for the experiment on the frequency responsivity check. The low-frequency band was mainly
determined by the thermal response of the scanner, and the 3 dB cutoff frequency was approximately
20 Hz. The mechanical resonant frequency of the piston mode was estimated to be 1.4 kHz. Therefore,
no resonant peak was observed in the low-frequency range.
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5. Conclusions

Kirigami, a traditional Japanese art of paper cutting and folding, is a promising engineering
method for creating out-of-plane structures. This paper proposes a kirigami-inspired electrothermal
MEMS scanner that obtains large vertical displacement by out-of-plane film actuation. Film material
combinations suitable for electrothermal self-reconfigurable folding and unfolding were selected,
and microscale cuttings were strategically placed to generate a large displacement. The freestanding
electrothermal kirigami film with a 2 mm diameter and high fill factor was completely fabricated by
careful stress control in the microfabrication process. A 200 µm vertical displacement with 131 mW and
a 20 Hz responsive frequency was experimentally demonstrated as a unique function of electrothermal
kirigami film. The proposed design, fabrication process, and experimental tests validate the proposed
scanner’s feasibility and potential for large-displacement scanning with a high fill factor.
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