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Abstract: Being able to precisely characterize the mechanical properties of soft microparticles
is essential for numerous situations, from the understanding of the flow of biological fluids to
the development of soft micro-robots. Here, we present a simple measurement technique for
determining Poisson’s ratio of soft micron-sized hydrogels in the presence of a surrounding liquid.
This method relies on the measurement of the deformation, in two orthogonal directions, of a
rectangular hydrogel slab compressed uni-axially inside a microfluidic channel. Due to the in situ
character of the method, the sample does not need to be dried, allowing for the measurement of the
mechanical properties of swollen hydrogels. Using this method, we determined Poisson’s ratio of
hydrogel particles composed of polyethylene glycol (PEG) and varying solvents fabricated using a
lithography technique. The results demonstrate, with high precision, the dependence of the hydrogel
compressibility on the solvent fraction and character. The method is easy to implement and can be
adapted for the measurement of a variety of soft and biological materials.
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1. Introduction

Soft materials are found in situations as different as the flow of biological fluids, biomedical
devices, micro-fluidic sensors, or soft micro-robotics, in forms such as soft polymeric particles or
different types of protein or cell aggregates. Among soft materials, hydrogels are extremely powerful
materials, allowing particles of controlled shapes to be manufactured at the micron scale. Their
biocompatibility, softness, and easy and rapid fabrication make them perfectly suited for biomedical
applications like drug delivery [1,2] or tissue engineering [3]. They are also useful as building blocks
for the design of soft composite systems that are able to change shape in response to external stimuli,
offering applications in soft robotics, flexible electronics, and biosensor development [4]. Being able to
precisely characterize the mechanical properties of soft microparticles is essential when designing such
applications, but faces specific problems due to their small scale, the dependence of their properties on
the surroundings, and their ability to evolve over time.

The static linear mechanical properties of an isotropic elastic material are fully determined by
two quantities: Young’s modulus (E) and Poisson’s ratio (ν). In a compressive test, Young’s modulus
links stress and strain, whereas Poisson’s ratio quantifies the expansion of a material in directions
perpendicular to the direction of compression. Poisson’s ratio varies, for an isotropic material, from 0.5
(incompressible) to −1. Other quantities such as the bulk modulus (K), the shear modulus (G),
or Lamé’s first coefficient (λ) correspond to different combinations of these two quantities [5].

Different techniques have been developed to measure Poisson’s ratio. The most straightforward
method relies on the measurement of the strain in two orthogonal directions during a compressive
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test. Another method is to measure two different moduli, the bulk modulus K and Young’s modulus E,
and to obtain Poisson’s ratio using their relationship K = E/(3(1 − 2ν)). Classical methods usually
require a macroscopic sample, and thus a significant volume of material, which can be limiting for
microscopic soft particles. Additionally, in these classical methods the sample often needs to be
fixed onto the testing apparatus and thus requires the sample to be dried [6]. For the soft materials
considered here, drying may have a strong impact on the microstructure and thus on the material
properties. In addition, soft hydrogels may have internal timescales due to poroelasticity and/or
viscoelastic effects, which may influence their mechanical responses depending on the frequency or
time scale of the chosen technique.

Some methods have been proposed to overcome these limitations. Wyss et al. [7] developed
a simple method using microfluidics to measure the Poisson ratio of a soft particle relying on the
independent measurement of the bulk and Young’s modulus. However, the experimental errors
of each of these measurements, even more pronounced for soft materials, limit the accuracy of
the determination of Poisson’s ratio, which only varies over a small range. Other techniques,
such as micro-pipette aspiration experiments [8,9] or atomic force microscopy (AFM) [10], provide
high-accuracy measurements of Poisson’s ratio, but only locally probe the surface of the sample and
do not provide bulk measurements. Acoustic waves can also be used to perform dynamic mechanical
tests [11]. Usually the wave frequency varies from 0.5 to 5.0 MHz, and the measured elastic constants
might be dependent on the frequency and differ from a static compression test. Finally, techniques
such as small-angle X-ray scattering [12] also enable the measurement of Poisson’s ratio, but require
costly infrastructures.

In this article, we propose a simple and direct method to measure Poisson’s ratio of soft hydrogels
at long times directly inside a microchannel. We use a microfluidic setup where hydrogel particles
are fabricated and subsequently transported in a channel whose width is smaller than the particle
width (see Figure 1). After the full entry of the particle into the narrow channel, the external flow
is stopped and the particle is solely submitted to an uniaxial compression by the lateral walls. This
geometry is well adapted to determine Poisson’s ratio by measuring at equilibrium the deformation
of the particle in the direction of the uniaxial compression as well as in the perpendicular direction.
As this method is performed in situ, no drying steps are required. This ensures that the structure of the
material stays unmodified. Temporal observations of the hydrogel deformation allow for access to
the time dependence of the process and to unequivocally determine the equilibrium state reached at
long timescales. After detailing the method and its limitations we provide accurate measurements of
Poisson’s ratio of polyethylene glycol diacrylate (PEGDA) hydrogels fabricated in different solvents.

Figure 1. In situ fabrication of a particle using a microscope-based projection lithography technique.
UV light is projected into a flat channel through a shutter and a rectangular mask resulting in the
fabrication of a hydrogel particle surrounded by uncured solution. The slab is then pushed into a
constriction by applying an external flow. When the particle has completely entered the narrow region
of the channel the flow is stopped and the particle experiences uni-axial compression.
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2. Materials and Methods

2.1. Channel and Particle Fabrication

PDMS (polydimethylsiloxane, Sylgard 184, DOWSIL) micro-channels were fabricated using
traditional soft lithography techniques. The channels were bound to a glass slide covered with a thin
layer of PDMS in order to have the same material on the four walls of the channel. The channels had a
rectangular cross section and a constant height (either H = 57 ± 3 µm or H = 103 ± 3 µm). They were
composed of three regions: two linear channels with different width (a large channel on the order of
millimeters and a small channel on the order of a few hundreds of micrometers) were connected by a
constriction with a small angle (5 to 10 degrees).

Slabs of hydrogel with controlled geometry and position were directly fabricated inside the
micro-channel using microscope-based photolithography [13]. This method has been extensively
detailed in previous works [13–19], and just the essential steps are detailed here and schematically
represented in Figure 1. The channel, filled with an oligomer solution and a photo-initiator, is exposed
to a pulse of UV light of controlled duration. A mask with transparent drawings and black background
is placed on the field-stop position of the microscope. The UV light passes through the mask and forms
its image in the focal plane of the microscope. Thus, only the part of the channel corresponding to
the transparent part of the drawings is illuminated by the UV light. Polymerization of the solution
occurs in this region, allowing for the fabrication of hydrogel particles whose geometry corresponds to
the drawings on the mask. After fabrication, the particles are surrounded by the uncured solution.
The position of the particle only depends on the position of the channel relative to the objective of
the microscope, which can be adjusted by moving the stage. Because the method of fabrication is
based on a 2D projection technique, the 3D geometry of the particle results from the polymerization
of the PEGDA in the height of the channel. The permeability of PDMS to oxygen (which inhibits the
cross-linking reaction) leaves a non-polymerized lubrication layer of constant thickness on the top and
bottom of the particles, allowing particles to be freely transported in the channel.

In this work, we used an inverted microscope (Zeiss Axio Observer) equipped with a UV light
source (Lamp HBO 130 W) and a ×5 Fluar objective. The shutter (Uniblitz, V25)), with 10 ms response
time, was coupled with an external generator (Agilent 33220A) and allowed for a very accurate control
of the exposure time. We fabricated rectangular particles at zero flow rate in the wide region of the
channel. The width w0 and length `0 were determined by the dimensions of the drawings on the mask
corrected with a factor that accounts for the objective magnification. The particle height is h0 = H − 2b
where H is the channel height and b is the inhibition layer thickness (top and bottom), which we
measured to be b = 6± 1.6µm. Due to the dimensions of the microchannel, the height of the fabricated
particle was always smaller than its width and length. The maximal dimensions of a particle are set by
the UV light beam diameter, and was 1.5 mm in our setup. To ensure homogeneous crosslinking of the
hydrogel we chose to limit the maximal dimensions of the particle to 1 mm.

The photosensitive solution was composed of an oligomer, polyethylene glycol diacrylate
(PEGDA, Mn = 700 g/mol, Sigma), a photoinitiator (PI, 2-hydroxy-2-methylpropiophenone, Sigma),
and a solvent. The solvent could be either pure water or a mixture of water and polyethylene glycol
(PEG1000, Mn = 1000 g/mol, Sigma) in a proportion of 1:2. While the proportion of solvent varied,
the proportion of photointiator was kept constant at 10%. The volume fraction of water varied from
0% to 50%. Above 50% the solution became biphasic and no particle could be fabricated. The maximal
dilution with the PEG1000:water mixture was 70%. Table 1 shows the composition of the different
solutions used in this study.
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Table 1. Volume fraction of each component of the different photosensitive solutions used in this study.

PEGDA PI Water PEG1000:water NameRatio 2:1 in Volume

90% 10% 0% 0% pure PEGDA
80% 10% 10% 0% PW10
70% 10% 20% 0% PW20
60% 10% 30% 0% PW30
50% 10% 40% 0% PW40
40% 10% 50% 0% PW50
80% 10% 0% 10% PP10
70% 10% 0% 20% PP20
60% 10% 0% 30% PP30
50% 10% 0% 40% PP40
40% 10% 0% 50% PP50
30% 10% 0% 60% PP60
20% 10% 0% 70% PP70

2.2. Experimental Protocol

The inlet of the micro-channel was connected to a reservoir, and a pressure controller (LineUP
Series, Fluigent) was used to control the flow in the channel. Once the channel was filled with the
photosensitive solution, the flow was stopped and a particle was fabricated. A picture of the particle
was taken using a Hamamatsu Orca-flash 4.0 camera, which gave a precise measure of the dimensions
before deformation (see Figure 2a). Then, the particle was pushed through the constriction into the
narrow channel by imposing a flow through a pressure difference along the channel varying from a few
hundred millibars to two bars. Once the particle had entirely entered the narrow region, the flow was
turned off. There, the particle experienced uniaxial compression from the channel’s lateral walls and
we monitored its shape evolution with a frame rate of one image per second. Using standard image
treatment procedures (with ImageJ [20] and MatLab), we extracted the shape of the particle before
and during deformation and measured the particle width and length (see Figure 2c,d). The length
of the compressed particles decreased from its initial value to an equilibrium value (see Figure 2e).
In all our experiments we made sure to wait long enough (∼1200 s) to measure the length `1 of the
particle when this equilibrium was reached. At the end of the experiment, the particle was ejected from
the narrow channel by again imposing a pressure-driven flow. We repeated this procedure at least
10 times for each condition. In some cases, at the end of the experiment, the particle was transported
back into the wide channel where the particle shape was measured after the flow was stopped. We
observed no residual deformation, confirming the reversibility of the deformation and ruling out any
permanent deformations.

We varied the particle height (h0 = 45± 3µm and h0 = 91± 3µm) and width (w0 = 205− 470µm)
and the narrow channel width (W = 175 − 370µm). We kept the length of the particle constant and
equal to `0 = 960 ± 8µm. As can be seen in Figure 2b, the narrow channel was slightly deformed by
the presence of the particle. We thus chose not to consider the width of the deformed particle to be
equal to the width of the narrow channel but rather to measure w1 for each experiment. The particle
width w1 differed only slightly from the channel width W and the importance of the difference between
the two measures is given by the ratio of the Young modulus of the PDMS (EPDMS ∼ 2 MPa [21]) and
the hydrogel [18]. Particle deformation in the y-direction will thus in the following be determined as
w0/w1 instead of w0/W.
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Figure 2. Pictures of the slab in the wide (a,c) and in the narrow (b,d) part of the channel. (a,b)
correspond to raw images of the undeformed and deformed particle, respectively.In (b) the dark
region around the particle corresponds to the channel walls. (c,d) show the determination of the shape
using MatLab. Scale bars are 200 µm. (e) Temporal evolution of the particle length after the flow
was stopped (t = 0). Length at time t was normalized by subtracting the equilibrium length and
dividing by the difference between the initial length and the final length. Three different hydrogels
are represented: from right to left, PP20 (yellow), PP30 (orange), and PP40 (red). Exponential fits (black
lines) are represented as a guide for the eyes.

2.3. Analysis

After the full entry of the particle into the narrow channel, the external flow was stopped and
the particle was only submitted to an uniaxial compression by the lateral walls. We assumed that the
hydrogel was isotropic and homogeneous and linear elasticity thus gives:

εxx =
1
E
[(1 + ν)σxx − ν(σxx + σyy + σzz)], (1)

εyy =
1
E
[(1 + ν)σyy − ν(σxx + σyy + σzz)], (2)

εzz =
1
E
[(1 + ν)σzz − ν(σxx + σyy + σzz)], (3)

with σ and ε respectively being the stress and strain tensors of the particle. Equations (1) to (3) give
the expression of the diagonal terms of σ and ε. E is the Young modulus of the hydrogel and ν is its
Poisson ratio.

For the particle being submitted to a uniaxial compression in the y-direction, one can write
σyy = −Pwall and σxx = 0. Assuming that the deformed particle does not touch the top and bottom
walls (i.e., h1 < H) there is no stress in the z-direction and σzz = 0. This last assumption has to be
verified a posteriori by evaluating the strain in the z-direction.

Equations (1)–(3) then become :

εxx = − ν

E
σyy, εyy =

1
E

σyy, and εzz = − ν

E
σyy. (4)

The strains εxx and εyy are related to the changes of particle length and width

εyy = ln
(

w1

w0

)
, εxx = ln

(
`1

`0

)
, (5)

and Poisson’s ratio is directly given by their ratio:

ν = − εxx

εyy
= − ln (`1/`0)

ln (w1/w0)
. (6)
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3. Results and Discussion

3.1. Validation of the Method

When the particle was compressed by the channel walls its length increased, as can be seen in
Figure 2a–d, as expected for an elastic material. Figure 3 summarizes experiments where particles
were created in a PW30 solution and compressed into a channel of constant width W = 175± 0.7µm.
The initial particle width w0 was varied to apply varying confinements w0/W . To extract Poisson’s
ratio we computed the ratio−εxx/εyy according to Equations (6) taking into account that the width of
the deformed particles was slightly different from the width W of the channel as a consequence of the
deformation of the lateral channel walls (bottom of Figure 3a). Figure 3b summarizes our measurements
of ν for different values of the confinement w0/W . Each data point (blue circles) corresponds to one
compressed particle and the average values and corresponding error bars are represented in dark
blue. Larger w0/W induces stronger deformation and thus larger stresses applied by the walls on the
particle. In Figure 3b, Poisson’s ratio is independent of w0/W in the range [1 1.53] corresponding to
the applied strain varying from −6.2% to −17.7%, validating our technique to measure a material
property which is expected to be independent of the geometry, the applied stress, and the resulting
strain. For very small ratios w0/W (w0/W ≤ 1.2, light gray region) particle deformation was small
and large scatter of the data points was observed. For the widest particle (w0 = 300 µm), the stress
was large enough to induce buckling (see the images in Figure 4a,b leading to a saturation of `1 and
preventing any measurement of Poisson’s ratio.

(b)(a)

Figure 3. Direct measurements of particle length and width and the derivation of Poisson’s ratio.
Results are shown for the hydrogel PW30 in a channel of width W = 175± 0.7µm and height
H = 103± 3µm. The initial particle length was kept constant l0 = 960± 8µm while the confinement
w0/W was increased. (a) Length (top) and width (bottom) of the deformed particle at equilibrium as
a function of the confinement w0/W . (b) Evolution of Poisson’s ratio as a function of w0/W . In (a,b)
the light (dark) gray regions correspond to particle widths that are too small (large) to ensure good
precision of the determination of Poisson’s ratio. The vertical dotted line corresponds to the buckling
threshold (see text). In (b) each light-blue circle corresponds to a single experimental measurement,
and dark blue markers correspond to their average and standard deviation σ normalized by

√
n with

n = 15 independent measurements. The horizontal black lines correspond to the average (solid line)
and standard deviation (dashed line) of all points except from the dark gray region (w0/w1 ≥ 1.53).
Poisson’s ratio was found to be ν30% = 0.302± 0.007 for the photosensitive solution PW30.

3.2. Limitations

Limitations are inherent to every technique and it is essential to take them into consideration
when developing a new method. In the following section, we discuss the range of validity for our
microfluidic technique. First, our analysis relies on the assumption that the compressive stress was
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solely applied in the y-direction by the lateral walls of the narrow channel and thus the only stress
component that was non-zero was σyy. For this to be true deformation in the vertical direction needs
to be small enough so that the particle does not touch the channel top and bottom walls, which would
lead to an additional compressive stress σzz in the z-direction. This can be verified by comparing
the height of the compressed particle to the channel height. The height of the deformed particle is
h1 = h0 exp(εzz) ∼ h0(1− νεyy) and the condition σzz = 0 is verified as long as −h0νεyy < 2b.
As a consequence the assumption is more likely to be verified for particles of small height h0 and
for small deformations. In all our experiments we verified a posteriori that the deformed particle
height remained smaller than the channel height and thus that the assumption σzz = 0 was valid.
We disregarded experiments where this was not the case. Note also that the condition σxx = 0 was
not strictly verified close to the edges of the hydrogel particle due to the slight deformation of the
PDMS channel (see Figure 2b,d). This effect is more important for particles of large elastic modulus
and strong compression εyy, but is considered to be a small correction for our experiments.

Second, for too-small confinements w0/W particle deformation was small and the experimental
accuracy of ν was limited by the resolution of the deformed particle dimensions. The resolution could
be improved either by applying stronger confinement (increasing the ratio w0/W) or by upscaling
the experiment, increasing both w0 and W . However, we will see below that this can favor buckling
instabilities and is thus not a favorable option in all cases.

Third, when the slab is too wide buckling may occur, preventing the measurement of
Poisson’s ratio. The critical stress to induce buckling in a thick elastic plate is given by σcrit

yy =

απ2 E
12(1−ν2)

(
h0
w0

)2
[22,23]. The correction factor α depends on the ratio w0/h0 and takes into account

the shear deformation in the height. According to [23], α = 2.11 for w0/h0 = 2 and α = 1.03 for
w0/h0 = 10. This critical stress is compared to the stress exerted by the lateral walls assuming linear
deformation, σyy = εyyE, via the dimensionless number

N =
12(1− ν2)

απ2

(
w0

h0

)2
εyy. (7)

If N > 1 the particle buckles and, on the contrary, if N < 1 the particle deforms linearly. The black
vertical dotted line in Figure 3 corresponds to N = 1 and good agreement between the theoretically
predicted buckling threshold and the experimental observations was obtained. Buckling of the
hydrogel particle was visible by direct observation (see Figure 4a,b) but also from the saturation of `1

at strong confinement (see Figure 3a) associated to the non-physical decrease of ν seen in Figure 3b.
Since the buckling threshold N depends on Poisson’s ratio as 1− ν2, variations of ν between 0 and
0.5 induce only very small modifications of N. Thus, the buckling threshold is mainly given by the
geometry of the particle (via the particle aspect ratio w0/h0) and the geometry of the channel (the
strain εyy being proportional to w0/W). In conclusion, to avoid buckling, small εyy ∝ w0/W and small
aspect ratios (w0/h0) are favorable.
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(a)

(b)

(c)

Figure 4. Limitations of the method. Results correspond to experiments performed with hydrogel
particles created with the PW30 photosensitive solution in a channel of width W = 370± 1µm and
height H = 57± 3µm. (a,b) show two pictures of buckled particles, at least two wavelengths are visible
in (a) and three in (b). They correspond respectively to w0/W = 1.23 and w0/W = 1.36. (c) Evolution
of the ratio−εxx/εyy as a function of w0/W . Open circles represent the results of single experiments
and dark red markers represent average values of the different experiments. The light/dark gray
regions of Figure 3b overlap for this example. Note that here also the measured ratio−εxx/εyy is lower
than Poisson’s ratio when the particle buckles.

To illustrate these findings, in Figure 4c both the channel width and height were modified
compared to Figure 3 while keeping the same photosensitive solution. The channel width W was
increased to have a better resolution and the limit of the light grey region was indeed pushed to a
lower value of w0/W (≈ 1.1 to be compared to≈ 1.2 in Figure 3b). The channel width on the other
side was increased and the particles were thus more prone to buckle. The limit of the dark grey region
was shifted to smaller values of w0/W (≈ 1.01 compared to≈ 1.53 in Figure 3b). As can be seen in the
figure, despite the better resolution, the two grey regions overlap, meaning that this channel geometry
does not allow for Poisson’s ratio measurements.

The comparison of Figures 3b and 4c illustrates the compromise that has to be made between
increasing the resolution on the particle deformation and avoiding particle buckling. A decrease of w0,
keeping h0 constant, increases the range of deformation before buckling but at the same time decreases
the resolution. On the other hand, an increase of h0 alone is favorable to avoid buckling but should be
limited to prevent the deformed particle from touching the top and bottom walls. While designing
channels for such measurements, one has to keep these two opposite effects in mind and to choose the
best geometry varying the channel width and height accordingly.

Finally, for very soft particles and thus weakly crosslinked hydrogel particles (PP60 and PP70 [18]),
we observed a dependency of the equilibrium length (`1) on the velocity at which a particle enters into
the constriction. A possible reason for this observation can be found in the viscoelastic properties of
the gel and/or the complex friction between the hydrogel and the lateral channel walls [24]. In such
situations we consider that the measurement of Poisson’s ratio cannot been achieved properly.

3.3. Dependence of Poisson’s Ratio on the Solvent Composition

Using our method we measured Poisson’s ratio of hydrogels fabricated from different
compositions of photosensitive solutions with different solvent concentrations and solvent nature.
Figure 5 shows the measured Poisson’s ratio for dilutions of PEGDA Mn = 700 g/mol with water
(blue points) and with a PEG1000:water mixture (2:1 in volume, purple points). In the absence of
solvent the hydrogel was nearly incompressible (ν0% = 0.50± 0.01) which is in agreement with
the literature [25]. In the presence of solvent, the hydrogel became compressible, as shown by the



Micromachines 2020, 11, 318 9 of 12

decrease of Poisson’s ratio. This compressibility results from the flow of solvent molecules leaving
the particle when the hydrogel is compressed and depends on the microstructure of the cross-linked
polymeric chains of PEGDA. Note that the hydrogel particles are incompressible during an isotropic
compression imposed by a static pressure, as a consequence of the incompressibility of water. For larger
dilution of the photosensitive solution, the fraction of solvent increases, leading to a smaller Poisson’s
ratio. In addition, we observed that for the same dilution, Poisson’s ratio was always smaller in
PEG1000:water compared to pure water. In water, the lowest value measured was ν50% = 0.255± 0.009
while in PEG1000:water this value was ν50% = 0.165± 0.002. The decreased value of Poisson’s ratio
reported here is a signature of the modified microstructure of the hydrogels. Further work is however
necessary to fully understand the impact of the presence of chains of PEG in the surrounding medium
on the compressibility of the hydrogels. Several hypotheses can be proposed: first, the presence of
PEG is known to increase the porosity of the hydrogel [26], which is expected to modify its mechanical
properties. The presence of PEG chains probably also impacts the connectivity of the meshwork as
well as the chemical potentials of the different species.

Figure 5. Evolution of the Poisson ratio of hydrogels fabricated from different photosensitive solutions
as a function of the solvent volume fraction. Two different solvents are shown: water (blue markers)
and a solution of PEG Mn = 1000 g/mol:water at a volume ratio of 2:1 (purple markers).

The flow of solvent through the polymeric mesh induced poroelastic effects, explaining the
temporal evolution of the particle length shown in Figure 2e. Poroelasticity describes the flow of
solvent through the mesh of a deformable material and introduces a time-dependent response to
deformation. According to references [27,28] this poroelastic phenomenon is expected to depend
on the porosity of the hydrogel and the viscosity of the solvent. The three different photosensitive
solutions used in Figure 2e, PP20 (yellow), PP30 (orange), and PP40 (red), have comparable viscosities
(µPP20 = 108± 3 mPa·s, µPP30 = 107± 3 mPa·s, and µPP40 = 116± 3 mPa·s). On the contrary,
the mesh size decreased with increasing dilution as the polymer chains were further apart during
crosslinking in the presence of solvent molecules. This is in good agreement with the tendency
shown in Figure 2e in which the characteristic relaxation time decreased when the solvent fraction
increased. Note that as the poroelastic timescale also depends on the dimensions of the hydrogel,
the timescales for micron-scale particles as in the present study are much smaller than for macroscopic
particles [27,28]. Let us state again that all our measurements were performed at equilibrium to prevent
any impact of these temporal effects on our measurement of the hydrogel compressibility.

4. Conclusions

Until now we have considered homogeneous materials and shown that our experimental
technique is well-suited to determine the Poisson ratio of the material they are made of. Figure 6 shows
the extension of our technique to metamaterials in which the geometry of the structure changed the
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mechanical properties. In this example, an auxetic particle was fabricated using a specific design of
the structure [29]. The superposition of the shapes of this particle before (gray) and after (black)
introduction into the narrow channel clearly shows that the particle was slightly shorter when
compressed, which is the signature of a negative Poisson’s ratio.

(a) (b)

(c)

Figure 6. Auxetic metamaterial fabricated from a solution of 90% PEG-DA Mn = 700 g/mol and
10% photo-initiator in volume. (a) Before compression, (b) submitted to an uniaxial compression, (c)
superposition of the undeformed and deformed shapes. The particle width and length decreased when
compressed, which is indicative of a negative Poisson’s ratio.

We presented a new technique for the measurement of Poisson’s ratio of micrometric soft
hydrogels with a very good measurement accuracy. The absolute measurement errors varying
from 0.002 to 0.012 are comparable to what is obtainable using X-ray diffraction [12], and are much
smaller than for measurements relying on the determination of two independent elastic moduli [7,30].
We successfully used this approach to measure Poisson’s ratios of different hydrogels and showed that
this Poisson ratio varied in a large range of values (0.165 to 0.5). We discussed the limitations of the
methods and showed how channel and particle geometries should be chosen to accurately measure
Poisson’s ratio. Compared to other approaches, an important advantage of our method is that it is
done in situ directly in the surrounding fluid and does not require any drying of the sample. Another
advantage as compared to atomic force microscopy (AFM), which probes the mechanical properties at
the nanometer scale, is the determination of the mechanical property (Poisson’s ratio in our case) of
the entire hydrogel particle on a scale much larger than the pore sizes even for very porous materials.
Moreover, the technique presented here allows for an excellent measurement of the dynamical response
of the material, enabling the determination of Poisson’s ratio at long times and thus at equilibrium. Our
characterization method is not limited to particles directly fabricated inside a microchannel but can also
be used, for example, for protein or cell aggregates that can be flown into the microchannel. However,
their potentially more complex shape and porosity can make the analysis less straightforward [31]
and would require the use of effective strains and stresses to describe the particle deformation [32].
Moreover, if the condition σzz = 0 is not verified, our method could be adapted to measure Poisson’s
ratio, which in that case derives from the formula ν/(1− ν) = −εxx/(εyy + εzz). Because of these
advantages and its simplicity, we believe that this method will be used for the characterization of
Poisson’s ratio of many different soft objects from nature and industry.
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