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Abstract: In this study, we developed a modified glassy carbon electrode (GCE) with graphene
oxide, multi-walled carbon nanotube hybrid nanocomposite in chitosan (GCE/GO-MWCNT-CHT) to
achieve simultaneous detection of four nucleobases (i.e., guanine (G), adenine (A), thymine (T) and
cytosine (C)) along with uric acid (UA) as an internal standard. The nanocomposite was characterized
using TEM and FT-IR. The linearity ranges were up to 151.0, 78.0, 79.5, 227.5, and 162.5 uM with a
detection limit of 0.15, 0.12, 0.44, 4.02, 4.0, and 3.30 uM for UA, G, A, T, and C, respectively. Compared
to a bare GCE, the nanocomposite-modified GCE demonstrated a large enhancement (~36.6%) of the
electrochemical active surface area. Through chronoamperometric studies, the diffusion coefficients
(D), standard catalytic rate constant (Ks), and heterogenous rate constant (K},) were calculated for the
analytes. Moreover, the nanocomposite-modified electrode was used for simultaneous detection in
human serum, human saliva, and artificial saliva samples with recovery values ranging from 95%
to 105%.

Keywords: graphene oxide; multi-walled carbon nanotube; nanocomposite; guanine; adenine;
cytosine; thymine; uric acid; voltammetry

1. Introduction

Deoxyribonucleic acid (DNA) is an important bio-macromolecule which plays a critical role in the
storage of genetic information and the overall functioning of biological systems [1-5]. Deoxyribonucleic
acid is composed of four nucleobases: guanine (G), adenine (A), thymine (T), and cytosine (C). Both
G and A are classified as purines, whereas T and C are known as pyrimidines. These bases are
the essential building blocks of the three-dimensional DNA double helix structure, where G is the
complementary base with C, and A is the complementary base with T [1-6]. The order sequence of
these bases in DNA is imperative, as it initiates several meticulous processes such synthesis of proteins
by replication and transcription of the genetic information and duplication of the cell [1,4,7].

The abnormal concentration levels and methylation of nucleobases may be associated to DNA
damage and diseases such as cancers, HIV/AIDS, myocardial cellular energy status, prostatitis, and
Parkinson’s disease [6,8-10]. Thus, the multiplexed and sensitive detection of all nucleobases can be of
great significance for clinical diagnosis and biomedical applications.

Various analytical techniques have been successfully used for the detection of nucleobases
such as capillary electrophoresis (CE) [11], high-performance liquid chromatography (HPLC) [12],
ultra-high-performance liquid chromatography combined with electrospray ionization and tandem
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spectroscopy (UHPLC-ESI-MS/MS) [13], gas chromatography [14], chemical luminescence method [15],
spectrophotometric method [16], and Raman spectroscopy [17]. Although these methods are well
established and very powerful, they also exhibit some drawbacks such as high-cost, time-consuming
procedures, complex operation, and pre-treatment of samples [1,6,18]. To overcome some of these
challenges, researchers have been leaning towards developing electrochemical sensors for the analysis
of DNA bases. Electrochemical methods display many advantages such as low-cost, simple operation,
rapid and real-time detection, high sensitivity, and ease of miniaturization into a portable device [1,6,18].

Nevertheless, electrochemical detection of DNA bases remains challenging because purines and
pyrimidine compounds tend to strongly adsorb on the surfaces and high energy is required to oxidize
T and C bases. Previously, T and C were assumed to exhibit no electrochemical activity at carbon-based
electrodes because of their slow electron transfer kinetics. For example, Xiao et al. [8] fabricated a
modified glassy carbon electrode (GCE) using ionic liquid, multi-walled carbon nanotubes (MWCNTs),
and gold nanoparticles but could only achieve detection of guanine and adenine. Hason et al. [19]
developed a mechanically roughened edge-plan pyrolytic graphite electrode and were still only able
to detect the purine nucleobases. Similar attempt was made by Geng et al. [20], where they used a
complex three-dimensional WS, nanosheet/graphite microfiber hybrid electrode, but detection for
pyrimidine nucleobases was still unachievable. Brett et al. [7] were the first to report the electrochemical
oxidation of all four DNA bases at a GCE in highly basic conditions. In their method, linear ranges
for detecting all nucleobases were quite narrow: from 0.2 to 10 uM for purines and 1 to 20 uM for
pyrimidines [7]. Hence, there is a need to develop a sensor with improved linear ranges and a higher
sensitivity for the simultaneous detection of the four nucleobases.

Since uric acid (UA) is the final product formed in the blood as a result of metabolism of purines
such as G and A, it is important for the sensor to have the capacity to detect these bases along with UA
as an internal standard [21]. The chemical structure of UA is also extremely similar to the structures of
G and A purines, thus simultaneously detecting this compound along with the four DNA bases is
important to ensure that no interference or overlapping of signals would be observed.

In this work, we developed a novel nanocomposite of graphene oxide (GO)-multi-walled
carbon nanotube (MWCNT) hybrid in chitosan (CHT) for the modification of a GCE surface
(GCE/GO-MWCNT-CHT) and utilized this modified GCE for the simultaneous determination of
all four DNA bases in presence of UA as the internal standard. To the best of our knowledge, no study
has been done to detect all four bases simultaneously in the presence of UA using nanocomposite
modification of GCE. Both GO and MWCNT have been widely used nanomaterials for the modification
of electrodes since they possess excellent mechanical flexibility, bio-compatibility, stability, large surface
area, and high electrochemical conductivity [10,22-24]. Recently, a novel class of hybrid materials
has been introduced which are generated by hybridizing MWCNT with graphene or graphene oxide
sheets [25]. These hybrids showed to have better performances in electroanalytical applications
compared to when the materials making up the hybrid were used separately. Moreover, this hybrid is
beneficial for sensor fabrication because the 7—m stacking interaction between the hydrophobic region
of GO and the walls of MWCNT assist in avoiding the restacking of the MWCNT and increase the
stability of the GO-MWCNT dispersion [25,26]. Additionally, the natural polymer, CHT, is used as
a dispersing material in the modification steps of GCE surfaces [22]. An ideal candidate for sensor
fabrication is CHT due to its unique properties such high stability, biocompatibility, good adhesion
and insolubility in water [27,28].

In this study, a set of calibration curves were constructed for the four nucleobases along with uric
acid using differential pulse voltammetry (DPV). Scan rate dependence and chronoamperometric studies
were also conducted for the determination of effective area, diffusion coefficient (D), catalytic standard
rate constant (Ks) and heterogenous electron transfer rate constant (Ky). Interference, reproducibility
and stability studies were also performed using DPV. Most importantly, the nanocomposite-modified
GCE was successfully tested for simultaneous determination of G, A, T, C, and UA in real samples
such as human blood serum and artificial and human saliva. All experimental data demonstrated that
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GCE/GO-MWCNT-CHT can serve as an excellent platform for simultaneously detecting all four DNA
bases and UA with good sensitivity.

2. Materials and Methods

2.1. Materials and Reagents

Uric acid (UA), guanine (G), adenine (A), thymine (T), cytosine (C), graphene oxide (GO, 2 mg/mL,
dispersion in water), chitosan (CHI), potassium ferricyanide (III), potassium ferrocyanide (II), potassium
chloride, phenol: chloroform: isoamyl alcohol (24:25:1 v/v), acetic acid, hydrochloric acid, sulfuric
acid, and human serum (H4522-20 mL) were all acquired from Sigma—Aldrich (Oakville, ON, Canada).
Electrolyte solutions of 0.2 M phosphoric acid (Fischer Scientific, Mississauga, ON) were prepared in pH
range 2.0 to 8.0 using concentrated NaOH solution for pH adjustment. Multi-walled carbon nanotubes
(MWCNT, 13-18 nm) were purchased from Cheap Tubes Inc. (Cambridgeport, VT). Solutions of 1%
and 1.5% (w/v) chitosan in 1% (v/v) acetic acid were prepared for electrode modification procedures.
Various sizes of 3.0 um, 1.0 pm, and 0.05 pm alumina powders were obtained from CH Instrumental Inc.
(Austin, TX). A solution of 15% (w/v) zinc sulfate and acetonitrile (50/40, v/v) solution was prepared to
remove protein in human serum samples. All chemicals were used without further purification and
deionized water was used as for the dilutions of all solutions.

2.2. Instrumentation

To characterize the nanocomposite structure of the modified GCE, a Hitachi H-7500 transmission
electron microscopy (TEM, Hitachi Ltd., Japan) and an Alpha Fourier transform infrared spectroscopy
(FT-IR, Bruker Corp., Germany) were used. All electrochemical measurements were performed
at room temperature using pAutolab PGSTAT 128N (EcoChemie, Utrecht, The Netherlands)
potentiostat/galvanostat controlled by NOVA™ 2.1 (EcoChemie, Utrecht, The Netherlands) software.
The system is a conventional three- electrode cell system where GCE/GO-MWCNT-CHT was the
working electrode, a platinum wire was used as the counter electrode and a saturated silver/silver
chloride electrode (sat. Ag/AgCl) was used as the reference electrode. Differential pulse voltammetry
(DPV) was conducted in a potential window from 0.1 to 1.6 V at a step potential of 5 mV and a
modulation amplitude of 0.025 V and modulation time of 0.05 s with an interval time of 0.5 s All
electrochemical runs were repeated at least three times, unless otherwise mentioned. Measurement
of pH was achieved by using a VWR SB70P pH meter. The sonication of chemical mixtures was
performed by a VWR B2500A-DTH ultra-sonicator.

2.3. Synthesis of GO-MWCNT Hybrid in CHT

Using a method described by Veerappan et al. [26], GO-MWCNT hybrid was synthesized and
dried in open tubes overnight. Then, hybrid nanocomposite (4.1 mg) was mixed with 200 puL of 1.0%
(w/v) CHT in 1% acetic acid and was sonicated for 1 h. An aliquot (100 pL) of the mixture was further
diluted with 100 pL of 1.5% (w/v) CHT in 1% acetic acid and was sonicated again for 1 h. A flow-chart
for preparing GO-MWCNT hybrid nanocomposite in CHT is shown in Scheme 1.
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Scheme 1. Diagram for the preparation of graphene oxide, multi-walled carbon nanotube (GO-MWCNT)
hybrid nanocomposite and the modification of glassy carbon electrode (GCE) surface.

2.4. Modification of GCE Surface with GO-MWCNT Hybrid Nanocomposite in CHT

A GCE (3 mm in diameter) was polished mechanically until mirror shiny with alumina powder
paste in decreasing sizes from 3.0, 1.0 to 0.05 um. It was then rinsed with deionized water followed
by an ethanol rinse. The CV scanning (15 cycles) were used to activate the surface in 0.5 M H,SO4
solution with potential ranging from —1.5 V to 1.5 V at scan rate of 100 mV/s. Next, 5 uL of prepared
GO-MWCNT hybrid nanocomposite in CHT was drop-cast on the surface of the activated GCE and
was left to drying. The nanocomposite-modified GCE was polished electrochemically by running 10
cycles of CV in 0.2 M PBS (pH 7.0) from -0.4 V to 1.6 V at 100 mV/s.

2.5. Spiked Human Serum Sample Preparation (10x dilution)

All experimental studies on human serum samples were performed following the ethical guidelines
of the University of Toronto. To prepare the human blood serum samples, the method described by
Suh et al. [29] was used to precipitate out the protein in human serum sample. Briefly, 1 mL human
serum was mixed in a solution of 0.9 mL 15% (w/v) zinc sulfate and acetonitrile (50/40, v/v). This
mixture was then put in ice and vortexed for 20 min. After centrifuging for 5 min at 14,000 rpm for
10 min under room temperature, 0.9 mL supernatant was withdrawn and was diluted with 3.6 mL
phosphate buffer solution (0.2 M). Drops of concentrated NaOH solution were added to neutralize
the pH of the solution. An aliquot (3 mL) of supernatant was transferred into the cell after another
centrifuge cycle. Each standard solution of G (0.0025 M), A (0.0025 M), T (0.005 M) and C (0.005 M) was
prepared and gradually spiked into the processed diluted human serum sample. DPV was performed
from —1.5V to +1.5 V at 100 V/s with a step of 0.005 V and an amplitude of 0.025 V.

2.6. Spiked Human Saliva Sample and Artificial Saliva Sample Preparation (5x dilution)

All experimental studies on human saliva samples were performed following the ethical guidelines
of the University of Toronto. Saliva samples were collected freshly from a healthy female volunteer and
was put into ice bath prior to use. An aliquot (400 pL) of human saliva was then mixed with 1600 pL
of phosphate buffer solution (pH 7.0) to serve as electrolyte solution. The same set of four standard
nucleobase solutions was then used to spike the diluted human saliva solution. For the preparation of
artificial saliva samples, a method described by Madsen et al. [30] was followed. An aliquot (20 mL) of
artificial saliva solution (2.5 mM NaHCOj3, 7.4 mM NaCl, 10 mM KCl, 2 mM CaCl,-2H,0, 6.4 mM
NaH;PO4-2H,0 in deionized water) was prepared [30]. Similarly, to the procedure described for
human saliva samples, artificial samples were first diluted and then spiked with the standard solutions
of four nucleobases for electrochemical measurements.
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3. Results and Discussion

3.1. Characterization of GO-MWCNT Hybrid Nanocomposite in CHT

Surface morphology of the nanocomposite-modified GCE was investigated using transmission
electron microscopy (TEM). As shown in Figure 1A, the hybrid nanocomposite formed a largely
entangled complex, which potentially provided lots of active sites for electrochemical reactions. Thin
sheets of GO and a large amount of MWCNTs twisting around pores of the complex were observed
clearly in Figure 1B. With this rough surface and many highly conductive components, the surface
of nanocomposite-modified GCE had the promising potential to promote electrochemical kinetics of
analytes with an enhanced electron transfer efficiency.

Figure 1. TEM images for the GO-MWCNT nanocomposites in CHT which were used for the
modification of GCE surface (scale bars for image (A) to (B) are 1.0 and 0.5 um).

Nanocomposite structure was also investigated using FT-IR. As shown in Figure 2, FT-IR of
CHT had several characteristic peaks for -NH; stretch at ~ 3400 cm™!, -OH stretch at ~3200 cm ™2,
sp3 C-H stretch at ~2900 cm™!, C=0 stretch at ~1700 cm~!, N-H bend at ~1400 cm~! and C-O
stretch at ~1000 cm™!. FT-IR spectrum for GO has a very broad and intense peak for -OH stretch at
~3200 cm~!, which was expected. Peaks that were attributed to C=O stretch at ~1700 cm~!, C=C stretch
at ~1600 cm™!, C-OH stretch at ~1350 cm~! and C-O-C stretch at ~1200 cm ™! were also observed.
No obvious transmittance peaks were observed for MWCNTs, which was expected as described in
literature [26]. FT-IR spectrum for GO-MWCNT hybrid nanocomposite in CHT had all the characteristic
peaks of CHT and GO but with reduced intensity. This result confirmed that hybrid nanocomposite in
CHT was successfully synthesized.

0.99

Transmittance (%)

C-0-C
stretch

C-OH
stretch

— GO-MWCNT-CHT
— MWCNT

— CHT

— GO

y

c=C
stretch

0.84 " " " " " " )
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber (cm!)

Figure 2. FT-IR spectra for MWCNT, GO, CHT and GO-MWCNT hybrid nanocomposite in CHT.
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3.2. pH Effect

Using GCE/GO-MWCNT-CHT, the pH effect of electrochemical detection of the four DNA bases
along with UA was investigated using DPV. As depicted in Figure 3, anodic current peaks for five
analytes all appeared with pH ranging from 5.0 to 8.0. Indeed, with an increase in pH, analyte peaks
shifted towards lower oxidation potentials, which indicated involvement of protons in electrochemical
oxidation reactions for each analyte. As shown in Figure 3, under acidic conditions (pH 4.0 and
lower), the oxidation peaks for pyrimidine compounds disappeared due to masking of background
electrolyte current as a result of oxygen evolution. Optimal pH was determined to be pH 7.0, where
an excellent agreement could be reached for relatively low analyte oxidation potentials and high
current intensities. All oxidation peaks for the analytes were well distinguished and separated under
this physiological pH which also brought convenience for real sample measurements. The linear
relationships between pH and oxidation potentials (Ep) were analyzed as shown in Figure 4. The
regression equations extrapolated from Figure 4 are summarized in Table 1. The slopes for plots of
Ep vs. pH were 62.5, 56.1, 60.1, 58.2, and 52.7 mV/pH for UA, G, A, T and C, respectively. All these
values were close to the Nernstian theoretical value of 59.1 mV/pH which indicated that there was an
equal number of protons and electrons exchanged for each analyte in the electrochemical oxidation
mechanisms [31]. These experimental results matched with previous literature records [11,22,28,31-34].
As shown in the reaction scheme (1)—(3) and (5) of Scheme 2, two protons and two electrons were
postulated to be involved in rate determining steps of electrochemical oxidations of UA G, A, and
C[11,22,31,32,34]. While for oxidation of T, only one electron and one proton were involved (reaction
scheme (4), Scheme 2) [35].

pH 8

pH 7.4

pH7

pH 6

pH 5 /\ M/

N /W IzuA

0.1 02 03 04 05 06 07 08 09 1 1.1 1.2 13 14 1.5
E/V

Figure 3. DPV voltammograms using GCE/GO-MWCNT-CHT for pH effect on the simultaneous
electrochemical detection of four DNA bases in the presence of UA (pH range: 2.0, 3.0, 4.0, 5.0, 6.0, 7.0,
7.4, and 8.1).
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Figure 4. Relationship between pH and Ep for the simultaneous electrochemical detection of all four

DNA bases in the presence of UA using GCE/GO-MWCNT-CHT.

Table 1. A summary of the results for the linear dependence of E,, on pH for UA and DNA bases using

GCE/GO-MWCNT-CHT.

Analytes Linear Relationships Slopes (mV/pH) Regression Coefficients
UA Ep (UA) = -0.0625 pH + 0.7084 62.5 R% =0.9911
G Ep (G) = —0.0561 pH + 1.0518 56.1 R? =0.9905
A Ep (A) = —0.0601 pH + 1.3644 60.1 R? = 0.9906
T Ep (T) = -0.0582 pH + 1.5672 58.2 R? =0.9907
C Ep (C) = —0.0458 pH + 1.6268 52.7 R? =0.9913
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3.3. Electrochemical Behavior of UA and Nucleobases

A comparison study was completed in order to demonstrate that the nanocomposite-modified
sensor is able to significantly enhance the electrocatalytic activity. The CV and DPV voltammograms
for the simultaneous determination of four DNA bases along with UA as an internal standard
using bare GCE, GCE modified with 1% chitosan (GCE/CHT) and the nanocomposite-modified GCE
(GCE/GO-MWCNT-CHT) are shown in the Figure 5. In the CV study, there were no significant current
peaks observed when using the GCE-CHT, whereas only UA, G, and A were detected using bare GCE
with low current peaks at 0.37, 0.77, and 1.07 V, respectively. The GCE/GO-MWCNT-CHT enabled the
simultaneous detection of all five analytes with relatively high current peaks. The electrochemical
oxidation of all five analytes were irreversible on GCE/GO-MWCNT-CHT as only the anodic peaks
were detected at 0.31, 0.69, 0.97, 1.15, and 1.30 V for UA, G, A, T, and C, respectively. Similarly, using
DPV, the GCE-GO-MWCNT displayed a more sensitive response to the simultaneous detection of
all analytes. The peaks were well-separated and well- distinguishable at 0.28, 0.65, 0.93, 1.13, and
1.27 V for UA, G, A, T, and C, respectively. The DPV of GCE-CHT demonstrated two broad peaks with
significantly low current peaks which could not be identified. Based on these CV and DPV results,
GCE/GO-MWCNT-CHT was shown to have better overall analytical performance for the simultaneous
detection of the four DNA bases along with UA in comparison with control electrodes, bare GCE, and
GCE/CHT.

——Bare GCE

i 10 kA

——GCE with CHT

——GCE with GO-MWCNT-CHT C

B
——GCE with CHT
——Bare GCE
. 1 uA
——GCE with GO-MWCNT-CHT C
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 12 1.3 1.4

E/V

Figure 5. (A) Comparison of CV using bare GCE, GCE/CHT, and the GCE/GO-MWCNT-CHT to detect
175 uM UA, 50 uM G, 50 uM A, 250 pM T, and 250 uM C in 0.2 M PBS (pH 7.0); (B) comparison of DPV
using bare GCE, GCE/CHT, and the GCE/GO-MWCNT-CHT to detect 15 pM UA, 15 uM G, 15 uM A,
35 uM T, and 35 uM C in 0.2 M PBS (pH 7.0).
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3.4. Simultaneous Electrochemical Detection of Nucleobases in Presence of UA

Individual detections of each four DNA bases were also investigated using DPV. As shown in
Figure 6, the peaks were observed around 0.65, 0.93,1.13, 1.27 V for G (blue), A (brown), T (black), and
C (purple), respectively. The overlay in Figure 6 of the individual detections with the simultaneous
detection (red) of all four bases demonstrated that there were no significant fluctuations in current
response or peak potential when comparing the individual detections (blue, brown, black, and purple
lines) with the simultaneous detection (red).

——G only
—— A only
= T only
— C only

—— All nucleobases

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Figure 6. Overlay of DPV measurements using GCE/GO-MWCNT-CHT for individual detections and
simultaneous detection of 12.5, 147.5, 97.5, and 10 uM of A, T, C, and G in 0.2 M PBS (pH 7.0).

To build calibration curves, the simultaneous detection of UA and DNA nucleobases using
GCE/GO-MWCNT-CHT were investigated using DPV. As all analytes solutions were added into the
buffer solution, the intensity of current peaks (I) increased with linear dependence on concentration.
Therefore, a set of calibration curves were constructed as shown in Figure 7. Excellent linear dependence
was observed between I, and concentrations for each analyte as illustrated in Figure 8. As shown in
Figure 8, two linear segments were obtained for UA, G, and A [28,36]. Linear ranges for detecting UA
were from 1 uM to 31 uM with calibration Equation (1) and from 31 uM to 151 uM with calibration
Equation (2). Similarly, linear responses for G were from 2 uM to 13 uM with calibration Equation (3)
and from 13 uM to 78 uM with calibration Equation (4). The linear ranges for A were from 2 uM to
19.5 uM with calibration Equation (5) and from 14.5 uM to 79.5 uM with calibration Equation (6). For T
and C, the linear ranges were from 12.5 to 227.5uM and from 5 to 162.5 uM, respectively. Calibration
equations for T and C are Equations (7) and (8), respectively. LODs were calculated using 3S,/m, where
LOD is the detection limit, S, represents the standard deviation of the blank signal, and m represents
slope from calibration curves [32,36]. The LODs were determined as 0.12, 0.11, 0.43, 1.71, and 0.80 pM
for UA, G, A, T, and C, respectively. In comparison with the other electrochemical ones reported in
the literature, this nanocomposite-modified sensor had a promising performance for detecting all
four nucleobases in the presence of UA simultaneously, as it demonstrates a low LOD and a wide
linear range for each analyte as shown in Table 2 [5,32,33,37-42]. The performance between classical
chromatography methods and our proposed electrochemical method were compared in Table S2. The
proposed modified electrode had the capacity to provide satisfactory recovery results and limit of
detection in comparison to classical methods in literature in only 4 min [43—45].

Al (UA) = 0.084 [UA] +0.0327  (R? = 0.9903) 1)

Al (UA) = 0.0162 [UA] +2.1299  (R? = 0.9828) @)
Al (G) = 0.208 [G] +0.4042  (R* = 0.9861) 3)
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Al (G) = 0.0242 [G] +2.7964  (R? =0.9878) @)
ALy (A) = 0.0928 [A] +0.6759  (R? = 0.9800) (5)
Al (A) = 0.0291 [A] + 1.898  (R? = 0.9811) (6)
Al (T) = 0.0068 [T] +0.4826  (R? = 0.9849) )
Al, (C) =0.0174 [C] +0.2899  (R* = 0.9804) 8)

0.1 03 05 07 0.9 11 13
E(V)
Figure 7. Calibration curves based on DPV for simultaneous detection of UA, G, A, T, and C using
GCE/GO-MWCNT-CHT with concentrations ranging from 1.0-151.0, 1.0-78.0, 1.0-79.5, 5.0-267.5, and

12.5-182.5 uM for UA, G, A, T, and C, respectively. The lowest end of the dynamic ranges started from
the blue curve and ended in the purple curve for the highest.
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Figure 8. Calibration graphs for UA (A) and all four nucleobases (B—E), respectively.
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Table 2. Comparison of the nanocomposite-modified sensor with the ones recorded in the literature for
the detection of all four nucleobases.

Electrode Analytes Detec(t:])\;[\)lelt Llne(a:l\;{)a nge Reference
Graphene-Nafion modified GCE G 0-58 2120 [37]
A 0.75 5-170
MWCNT-Fe304 coated with PDA-Ag G 1.5 8-130 [38]
modified GPE A 57 0.1-120 ’
G 0.76 25-150
GMC modified GCE [39]
A 0.63 25-200
G 4.8 10-100
PANI-MnO, modified GCE A 2.9 10-100 [32]
T 13 10-100
C 13 10-100
G 33 3-170
MWCNT-graphite deposited with A 3.7 3-190 5]
Au-rGO modified GPE - :
T 79 7.5-800
C 9.0 9-900
Prussian blue/ poly(4-aminosalicylic
acid)/ uricase modified graphite UA 3.0 10-200 [40]
screen-printed electrode
Screen-printed graphene electrode UA 0.4 1.2-1.8 [41]
Poly(DPA). on SiO,@Fe3;0,4 modified UA 0.20 0.8-2500 133]
screen-printed graphene electrode
Au-Naf1on-p10d1f1ed carbon UA 03 0.5-600 [42]
screen-printed electrode
UA 0.12 1-151
G 0.11 1-78
GO-MWCNT hybrid with CHT A 043 2-1195 .
modified GCE : : This work
T 1.71 12.5-227.5
C 0.80 5-132.5

PDA: polydopamine; GPE: graphite paste electrode; GMC: graphitized mesoporous carbon; PANI: polyaniline; rGO:
reduced graphene oxide; poly(DPA): polydopamine.

3.5. Interference, Stability, and Reproducibility

A series of interference studies were conducted by increasing the concentration of one analyte
while keeping the others at a constant concentration for several measurements (# = 10). For instance,
as shown in Figure S1I), the current peaks for the electrochemical oxidation of UA increased in a linear
fashion with increasing concentrations, while the anodic current for all other four analytes (DNA bases)
remained at similar levels without significant variation (+ 5%). The same behaviors were observed
when varying concentrations of G, A, T, and C as demonstrated in Figure S1. These interference studies
are critical when developing a simultaneous sensor platform, because increasing the concentration of
one analyte should not have a significant effect on the others. [46] These results demonstrated that
there was no significant interference among the analytes and that simultaneous detection of all five
analytes was possible using the nanocomposite-modified sensor. Furthermore, reproducibility of our
sensor was investigated by evaluating peak current variation of measurements in 0.2 M PBS (pH 7.0) at
30, 57.5,12.5,147.5 and 97.5 uM of UA, G, A, T, and C, respectively. The relative standard deviation for
successive measurements (n=10) using GCE/GO-MWCNT-CHT were 2.37%, 1.87%, 1.40%, 0.82%, and
0.97% for UA, G, A, T, and C, respectively. These results demonstrated the promising reproducibility of
our sensor. Finally, the stability of the sensor was tested for a duration of 14 days. As shown in Figure
S2, the results were statistically similar, and the sensor was able to generate repeatable measurements
after the 2-week storage period at room temperature.
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3.6. Scan Rate Dependence

The CV was performed at different scan rates to assess the effective surface areas of bare GCE
and GCE/GO-MWCNT-CHT in a solution of 1 mM potassium ferrocyanide (KsFe(CN)g). The effective
areas were calculated using the Randles-Sevcik equation (9) below:

ip =2.69 x 10° n¥2 A Cy D 2 0! )

where ip, is the measured analyte current, n is the electron transfer number for oxidation of K3Fe(CN)s
(equal to 1), Cy equals to 107% mol/cm?3 for the concentration of K3Fe(CN)g, and D is 7.6 X 107® cm-s~!
for diffusion coefficient in this process [47]. As shown in Figure 9, both electrodes had excellent linearity
between the anodic current and the square root of scan rate. This suggested electrochemical oxidations
of all analytes were diffusion-controlled processes using the ferrocyanide probe. Diffusion-controlled
processes can be advantageous since they can be a factor to reduce the effect of surface fouling that results
from the adsorption of molecules on the electrode surface [8,21]. Slopes of I}, vs. v1/2 were 0.000062
and 0.000085 A-s/V for bare GCE and GCE/MWCNT-GO-CHT, respectively. Based on Equation (9),
effective areas were calculated as 0.0842 and 0.115 cm? for bare GCE and GCE/MWCNT-GO-CHT,
respectively. Therefore, the nanocomposite-modified electrode had a 36.6% larger redox-active surface
area which considerably facilitated the electrocatalytic kinetics of analytes.
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Figure 9. Linear dependence of i;, on v for bare GCE and GCE/GO-MWCNT-CHT.
3.7. Chronoamperometry

To determine the diffusion coefficient (D) of each analyte as well as the standard kinetic
rate constant (Ks) and heterogeneous kinetic rate constant (Kp) of electron transfer reactions,
chronoamperometric studies were conducted. An example of the chronoamperograms obtained
from these studies for analysis of A using GCE/GO-MWCNT-CHT is shown in Figure 10. All
other figures of chronoamperometric studies for the detection of UA, G, T and C are displayed in
Figures S3-56, respectively. D of each analyte using GCE/ GO-MWCNT-CHT was calculated using
Cottrell Equation (10) [36]:

. _ nFAC\D

vt

where iis current in A, n is number of electrons transferred in electrochemical oxidation process, C is
the concentration of the analyte, F is Faraday constant (96485 C/mol), D is diffusion coefficient, and t is
time in s [36].

At GCE/GO-MWCNT-CHT surfaces, D was calculated as 1.27 x 107, 6.91 x 107>, 7.40 x 107°,
457 x 107 and 1.49 x 107 ecm? s7! for UA, G, A, T, and C, respectively.

(10)
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In addition, K}, was calculated by plotting the ic/ii in function of the square root of time
(Figures S7-511). The Ky, values were calculated by using the slopes obtained from these graph
following the equation (11) [47]:

X = RI(K,Cut)'? 11)

where i. is the catalytic current, iy, is the limiting current with no analyte, C}, is the concentration of
analyte in electrolyte, and t is time in s [46]. The K}, values were determined as 1.45 x 103 M~1s71,
3.31 x 10* M1s71,7.24 x 10* M~1s7!, 1.39 x 10> M~!s7!and 1.11x 10> M~'s™! for UA, G, A, T, and
C, respectively.

The K value of each analyte was also determined using the Velasco equation [48]:

_1
Ks = 1.11Dg% (Ep = Ep j2) 20"/ (12)

where Ey, is oxidation potential, E,y/2 is the half-wave oxidation potential, and Dy is the diffusion
coefficient [49]. As shown in Table S1, K values were determined as 2.00 x 1073, 4.58 x 1072,
1.16 x 1073,1.12 x 1072, and 2.61 x 103 cm s~! for UA, G, A, T, and C, respectively. Assuming Dy to be
2.00 x 107® mol? s~! for bare GCE, K values were also calculated as 1.90 X 1073, 1.83 x 1073,
8.46 x 107*,6.87 x 107* and 8.26 x 107® cm s™! for UA, G, A, T and C, respectively. When comparing
both bare and modified electrodes, GCE/GO-MWCNT-CHT had a larger K for G, A, T, and C which
indicated more improved electron transfer kinetics at the surface of the nanocomposite-modified GCE.
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Figure 10. (A) Chronoamperograms of GCE/GO-MWCNT-CHT for varying concentrations of adenine
(A): 25,50, and 150 uM in 0.2 M PBS (pH 7.0); (B) plots of anodic peak currents (Ipa) versus 12, (Q) plot
of the slope of the straight line versus concentration of A.

3.8. Real Samples

To investigate the application of the nanocomposite-modified sensor in real samples, simultaneous
detection of four DNA bases was performed in complex matrices such as saliva and human blood
serum. To achieve these measurements the standard addition technique was used. As shown in Figure
S12 to S14, standard solutions of G (0.0025 M), A (0.0025 M), T (0.005 M), and C (0.005 M) were used to
spike the diluted human serum and saliva samples as well as the artificial saliva ones. Using 0.2 M
PBS (pH 7.0), the real samples were diluted 10 fold, 5 fold, and 5 fold for human serum, human saliva,
and artificial saliva samples, respectively. Good recovery values were obtained for all samples which
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ranged from 95% to 105% using the nanocomposite-modified electrode as shown in Table 3. These
results demonstrated that our sensor had good potential for applications using real biological fluids.

Table 3. Summary of simultaneous voltammetric detection studies using the spiked human serum,
saliva, and artificial saliva samples at GCE/GO-MWCNT-CHT surfaces.

Real Sample Analytes Concersltlz'ial:;:in (uM) Concg:te:::itsj (uM) % Recovery
G 5 5.0 100
Human serum A 10 104 104
T 13.33 13.3 100
C 83.3 80.8 97
G 51.25 52.6 103
Human saliva A 325 324 100
T 62.5 59.1 95
C 62.5 64.5 103
G 50 48.1 96
Artificial saliva A 50 48.2 9
T 100 98.6 99
C 100 105.0 105

4. Conclusions

In this work, a cost-effective and sensitive nanocomposite-modified sensor was developed for the
simultaneous detection of DNA nucleobases along with UA as an internal standard. Compared with
other sensors in the literature, it demonstrated wider linear ranges and lower detection limits. Scan
rate studies demonstrated that the nanocomposite-modified surface had a large redox-active area that
facilitated the electrochemical oxidation of analytes. Important kinetic parameters, such as D, K, and
K, were calculated based on our chronoamperometric data. Moreover, simultaneous detection was
successful in spiking studies using human serum and saliva samples as well as artificial saliva ones
with good recovery values. Overall, the sensor had a promising potential to eventually be developed
into a diagnostic tool to study DNA damage and DNA methylation in gene expression.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/3/294/
s1, Figure S1: Differential pulse voltammograms of GCE/MWCNT-GO-CHT for interference studies: I) The
concentrations of G, A, T and C were kept constant at 10.5 uM, 12.5 uM, 147.5 uM and 97.5 uM, respectively,
while varying the concentrations of UA from 0 to 37.5 uM; II) The concentrations of UA, A, T and C were
kept constant at 30 pM, 32.5 uM, 147.5 uM and 97.5 uM, respectively, while varying the concentrations of G
from 0 to 28 uM; III) The concentrations of UA, G, T and C were kept constant at 30 pM, 10.5 uM, 147.5 uM
and 97.5 uM, respectively, while varying the concentrations of A from 0 to 32.5 uM; VI) The concentrations of
UA, G, A and C were kept constant at 30 uM, 10.5 uM, 12.5 uM and 97.5 uM, respectively, while varying the
concentrations of T from 0 to 247.5 uM; V) The concentrations of UA, G, A and T were kept constant at 30 pM,
32.5 uM, 147.5 uM and 97.5 uM, respectively, while varying the concentrations of C from 0 to 28 uM. Figure S2:
DPV of simultaneous detection of 30, 57.5, 12.5, 147.5 and 97.5 uM of UA, G, A, T and C, respectively, using freshly
prepared (0 days) electrode (red line) and stored (14 days at room temperature) electrode (green line). Figure S3:
(A) Chronoamperograms of GCE/GO-MWCNT-CHT for varying concentrations of UA: 20, 30, 50 uM in 0.2 M PBS
(pH 7.0); (B) Plots of anodic peak currents (Ipa) vs. t~1/2; (C) Plot of the slope of straight line vs. UA concentration.
Figure S4: (A) Chronoamperograms of GCE/GO-MWCNT-CHT for varying concentrations of G: 10, 20, 30 uM
in 0.2 M PBS (pH 7.0); (B) Plots of anodic peak currents (Ipa) vs. t1/2; (C) Plot of the slope of straight line vs. G
concentration. Figure S5: (A) Chronoamperograms of GCE/GO-MWCNT-CHT for varying concentrations of
T: 25, 50, 150 uM in 0.2 M PBS (pH 7.0); (B) Plots of anodic peak currents (Ipa) vs. t~1/2; (C) Plot of the slope of
straight line vs. T concentration. Figure S6: (A) Chronoamperograms of GCE/GO-MWCNT-CHT for varying
concentrations of C: 25, 100, 125 uM in 0.2 M PBS (pH 7.0); (B) Plots of anodic peak currents (Ipa) vs. t~12; ©
Plot of the slope of straight line vs. C concentration. Figure S7: Linear dependence of square root of time on I./
Iy, for UA detection using chronoamperometry. Figure S8: Linear dependence of square root of time on I/ I,
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for G detection using chronoamperometry. Figure S9: Linear dependence of square root of time on I/ I for A
detection using chronoamperometry. Figure S10: Linear dependence of square root of time on I/ I for T detection
using chronoamperometry. Figure S11: Linear dependence of square root of time on Io/ I}, for C detection using
chronoamperometry. Figure S12: DPV for standard addition in human serum sample that was diluted 10-fold in
0.2 M PBS (pH 7.0). Figure S13: DPV for standard addition in human saliva sample that was diluted 5-fold in 0.2 M
PBS (pH 7.0). Figure S14: DPV for standard addition in artificial saliva sample that was diluted 5-fold in 0.2 M
PBS (pH 7.0). Table S1: A summary of calculated diffusion coefficients, catalytic rate constants and heterogeneous
kinetic rate constant (Ky) for UA, G, A, T and C using the designated electrode. Table S2: Comparison table of
classical methods for DNA detection and the proposed electrochemical method.
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