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Abstract: The sensitive quantification of low-abundance nucleic acids holds importance for a range
of clinical applications and biological studies. In this study, we describe a facile microfluidic chip for
absolute DNA quantifications based on the digital loop-mediated isothermal amplification (digital
LAMP) method. This microfluidic chip integrates a cross-flow channel for droplet generation with
a micro-cavity for droplet tiling. DNA templates in the LAMP reagent were divided into ~20,000
water-in-oil droplets at the cross-flow channel. The droplets were then tiled in the micro-cavity for
isothermal amplification and fluorescent detection. Different from the existing polydimethylsiloxane
(PDMS) microfluidic chips, this study incorporates gold nanoparticles (AuNPs) into PDMS substrate
through silica coating and dodecanol modification. The digital LAMP chip prepared by AuNPs-PDMS
combines the benefits of the microstructure manufacturing performance of PDMS with the light-to-heat
conversion advantages of AuNPs. Upon illumination with a near infrared (NIR) LED, the droplets
were stably and efficiently heated by the AuNPs in PDMS. We further introduce an integrated device
with a NIR heating unit and a fluorescent detection unit. The system could detect HBV (hepatitis
B virus)-DNA at a concentration of 1 × 101 to 1 × 104 copies/µL. The LED-driven digital LAMP
chip and the integrated device; therefore, demonstrate high accuracy and excellent performance for
the absolute quantification of low-abundance nucleic acids, showing the advantages of integration,
miniaturization, cost, and power consumption.
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1. Introduction

Owing to its superior performance over real-time nucleic acid amplification technology (qNAAT)
in terms of accuracy, specificity, and reproducibility, digital nucleic acid amplification technology
(dNAAT) is widely used in low-abundance nucleic acid quantification for the diagnosis of cancer,
viruses, and bacterial infections [1,2]. For dNAAT-based nucleic acid detection, DNA samples are
divided into thousands of microdroplets or microchambers, which are subsequently amplified at
specific temperatures. DNA concentrations can be accurately measured through the combination of
endpoint fluorescence detection and Poisson probability models [3]. According to the temperatures
required for nucleic acid amplification, dNAAT can be divided into digital polymerase chain reaction
(dPCR) and digital isothermal amplification technology (dIAT) [4]. As a branch of dIAT, digital
loop-mediated isothermal amplification (digital LAMP) permits nucleic acid amplification under
isothermal conditions, thus eliminating the need for the complex thermocycling procedures used in
dPCR [5,6].
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Studies on dNAAT have focused on sample segmentation using innovative microfluidic chips [7–9].
Although the microfluidic chips for dNAAT have emerged endlessly, most dNAAT instrument systems
still require more than three sets of auxiliary devices, including sample segmentation unit, heating
unit and fluorescence detection unit. As an example, in commercial dNAAT systems based on
microdroplets such as QX 200 (Bio-rad), DNA samples must be transferred between a microdroplet
generator, a thermal cycler, a sealing instrument, and a flow fluorescence detection device [2,10]. In
the QuantStudio 3D (Thermo Fisher Scientific) dNAAT system, DNA samples are dispersed into
the microchambers of a silicon-based chip using a sample loading device, and incubated in a Peltier
heater prior to fluorescence imaging [11]. These systems perform to a high level, but rely on multiple
auxiliary devices leading to complex operating procedure and high-power usage. The future of dNAAT
development; therefore, focuses on portability, integration, and miniaturization [12–14].

In the course of NAAT, a series of heating schemes based on Peltier [15], near infrared (NIR) laser [16],
acoustic waves [17], and other mechanisms were proposed and combined with fluorescence detection
technology, thereby promoting the emergence of integrated qNAAT instruments including qPCR devices.
Among these heating schemes, the NIR heating demonstrates the advantages of large heating area, fast
speed, and easy integration with fluorescence detection unit. Since 2015, gold nanostructures with strong
surface plasmon resonance effect have been gradually applied in the field of NAAT research. Due to its
excellent photothermal efficiency, the introduction of gold nanostructures allowed photothermal NAAT
to get rid of the reliance on costly laser equipment, and even realized LED-driven NAAT [18]. Lee and
colleagues employed a polymethylmethacrylate (PMMA) cavity covered with two thin gold nanofilms
to evenly absorb light to heat the PCR mixture, and established a heating device based on a 3 W LED
arrays [19,20]. Roche and coworkers introduced gold nanorods into the PCR reactions to achieve ultra-fast
and real-time plasmonic qPCR under the illumination of a 2 W laser, which completed 30 thermal cycles in
54 s [21]. Weizmann’s group extended their photothermal system based on gold bipyramids to isothermal
nucleic acid amplification and restriction enzyme digestion [22]. In the current development of qNAAT
towards dNAAT, the introduction of LED-driven heating technology into dNAAT is of great value in
promoting the integration and miniaturization of related instruments. However, these heating methods that
performed well in qNAAT are not directly applicable to dNAAT, which is a complex technique that requires
the integration of sample segmentation and heating. For example, the opaque gold films employed by Lee
led to challenges for subsequent fluorescence detection, and the PMMA substrate is not the ideal material
for dNAAT microfluidic chip due to its reliance on complex and expensive processing methods. If gold
nanoparticles (AuNPs) are mixed into microchambers or microdroplets, it is difficult to ensure the uniform
distribution of AuNPs. In addition, in Roche and Weizmann’s research, AuNPs have a certain inhibitory
effect on DNA amplification. Although they have proposed some methods to reduce the inhibition effect
of AuNPs for DNA amplification, it is not clear whether these methods can be applied to dNAAT reagent,
which is a biochemical system with lower tolerance to external additives than qNAAT [23]. To employ gold
nanostructures for dNAAT heating, not only the heating performance itself, but also sample segmentation,
chip manufacturing and subsequent optical detection should be taken into consideration systematically.

In this study, to overcome the limitations of these methods, we proposed an AuNPs-PDMS
microfluidic chip that realizes microdroplet-based sample segmentation and surface plasmon
resonance heating-based nucleic acid amplification. Due to its high performance for microstructure
manufacturing and thermostability, PDMS has been used in microfluidic chips for microdroplet
dNAAT (ddNAAT) and microchamber dNAAT (cdNAAT). The introduction of gold nanoparticles
into the PDMS substrate imparts the PDMS with a compact and integrated heating function under
illumination. The AuNPs-PDMS described herein were obtained through the mixing of silica-coated
and dodecanol-modified AuNPs-ethanol with PDMS prepolymers and then evaporating the ethanol.
The advantage of this strategy is that the content and morphology of the AuNPs can be independently
regulated with no loss of manufacturing capability and bonding performance of PDMS. In addition,
the AuNPs dispersed in the PDMS substrate will not inhibit nucleic acid amplification.
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We designed and prepared patterned AuNPs-PDMS films based on an SU-8 mold, and bonded
the AuNPs-PDMS film between a bottom and a top glass substrate to fabricate a “glass–PDMS–glass”
sandwich digital LAMP chip. The digital LAMP chip integrates a cross microchannel for droplet
generation and a microcavity for LAMP amplification and fluorescence detection. Driven by two syringe
pumps, the digital LAMP mixture was evenly divided into multiple microdroplets and tiled in the
AuNPs-PDMS microcavity. Under the illumination of a near-infrared LED (808 nm), the AuNPs-doped
PDMS achieved uniform and stable heating, leading to the simultaneous amplification of target DNA
in the droplets. In addition, we established an integrated device that combined NIR-LED heating and
fluorescent detection. As a proof of concept, we evaluated the performance of the chip and integrated
device with serial dilutions of hepatitis B virus (HBV) DNA, which demonstrated an accurate detection
of low-abundance nucleic acids. To the best of our knowledge, this is the first study to achieve an
absolute quantification of nucleic acids based on the photothermal effects of gold nanoparticle. The
integrated device for NIR LED heating and fluorescence detection has the advantage of low costs, a
compact size, and low energy consumption. This highlights the potential of the system to promote the
development of dNAAT towards portability, integration, and miniaturization.

2. Experimental Design

2.1. Materials and Reagents

Hepatitis B Virus (HBV) DNA templates were obtained from Nucleic Acid Quantitative Assay Kits
(P101, Tianlong, China) and their initial concentrations were confirmed by qPCR instrument (Gentier
96E, Tianlong, China). DNA template was stored at -20 ◦C prior to use. Digital LAMP primers were
purchased from Sangon Biolotech Co., Ltd (Shanghai, China) according to HBV sequence. The LAMP
primers were as follows:

Forward outer primer (F3): 5-TCCTCACAATACCGCAGAGT-3; backward outer
primer (B3): 5-GCAGCAGGATGAAGAGGAAT-3; forward interior primer (FIP): 5-GTTGG
GGACTGCGAATTTT-GGCTTTTTAGACTCGTGGTGGACTTCT3; reverse interior primer
(BIP): 5-TCACTCACCAACC-TCCTGTCCTTTTTAAAACGCCGC-AGACACAT-3.

Oil phase reagent (HFE7500, 3M, containing 2% surfactant) were purchased from Bio-Rad (Hercules,
USA). Fluorescent dye including calcein and manganese chloride were purchased from Sigma-Aldrich
(St. Louis, MO, USA). Bst DNA polymerase, ThermoPol®buffer, betaine, and deoxyribonucleotide
triphosphate (dNTP) were purchased from Sangon Biolotech (Shanghai, China). The components of
the 20 µL digital LAMP reagent system used herein are shown in Table 1. It should be noted that before
adding the DNA template to the LAMP reagent, the HBV-DNA template needs to be quantified by
standard qPCR method and then serially ten-fold diluted, so that the initial template concentration
range in the LAMP system is 1 × 101 to 1 × 104 copies/µL.

Table 1. The components of the digital LAMP reagent.

Components Concentration Volume Remark

ddH2O / 7 µL /

Betaine 0.8 M 2.7 µL /

ThermoPol®buffer 10× 2 µL /

dNTP mix 10 mM 0.7 µL 2.5 mM of each of the four dNTPs

Forward outer primers 10 µM 0.7 µL /

Backward outer primers 10 µM 0.7 µL /

Forward interior primers 20 µM 2 µL /

Reverse interior primers 20 µM 2 µL /

Bst DNA polymerase 8000 U/mL 1 µL /

DNA template / 0.7 µL /

Fluorescent dye / 1 µL 0.5 µM calcein and 10 µM manganese chloride premixed solution
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PDMS prepolymer (SYLGARD 184 A) and curing agent (SYLGARD 184 B) were purchased
from Dow Corning Inc (Midland, USA). All other chemicals were obtained commercially and used
without purification.

2.2. Preparation of AuNPs and AuNPs–PDMS

AuNPs prepared in aqueous reagent have a tendency to agglomerate in organic PDMS [24]. Herein,
we adopted a method of silica coating and dodecanol modification to make AuNPs dispersed in ethanol
that are miscible with PDMS prepolymer, as shown in Figure 1. As a class of AuNPs with tunable
absorption peaks, gold nanorods were synthesized using the seed-mediated growth method [25].
Briefly, seed solutions were prepared through the mixing of hexadecyl trimethyl ammonium bromide
(CTAB) solution (10 mL, 0.1 M) and HAuCl4 (0.085 mL, 0.028 M) with fresh NaBH4 (0.07 mL, 0.1 M).
For the growth of the gold nanorods, 0.3 mL seed solution was added to CTAB (12 mL, 0.1 M), sodium
oleate (18 mL, 0.013 M), HAuCl4 (0.5 mL, 0.028 M), HCl (1 mL, 0.1 M), AgNO3 (0.32~0.37 mL, 0.01 M),
and ascorbic acid (0.05 mL, 0.1 M). Following incubation at 30 ◦C for 24 h, the newly-produced AuNPs
colloids were centrifuged at 10,000 rpm for 30 min, decanted, and resuspended in 30 mL of 1 mM
CTAB to decrease free CTAB and sodium oleate levels. To enhance the stability of the gold nanorods at
high temperatures, silica-coated gold nanoparticles (AuNPs@SiO2) were synthesized using the Stober
method. NaOH (0.1 M) was added dropwise to adjust the pH of AuNPs to 10.4~11.0. Next, 0.1 mL
of tetraethyl orthosilicate (TEOS) was added for 1 h with shaking and left for 12 h for static growth.
A layer of silica was successfully coated onto the surface of the nanorods which were then centrifuged
at 10,000 rpm for 20 min and decanted. The AuNPs were mixed with dodecanol to a total volume
of 30 mL. Next, 1 g of C7H8O3S was added and after ultrasonic dispersion for 10 min, the solution
was transferred to a high-temperature reactor and incubated at 70 ◦C for 3 h. The solution was then
centrifuged at 11,000 rpm for 30 min, decanted, and resuspended in 30 mL of ethanol. Following
ethanol washing and centrifugation, aqueous AuNPs were concentrated in 3 mL of ethanol. Of note,
dodecanol modifications could reduce the hydrophilic hydroxyl groups on the silica shell, enhancing
the lipophilicity and dispersion of the AuNPs in PDMS.
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Figure 1. Schematic diagram of the AuNPs-PDMS preparation.

AuNPs-PDMS was prepared as shown in Figure 1. The AuNPs-ethanol solution was added to
PDMS prepolymers, stirred, and then heated in a 70 ◦C ventilated dryer for ≥ 2 h to fully evaporate the
ethanol. AuNP-PDMS films were obtained after mixing the AuNPs-doped PDMS prepolymers with
curing agent at a weight ratio of 10:1, and then curing at 90 ◦C for 1 h. To study the photothermal
characteristics of AuNPs-PDMS film, we prepared 5 AuNPs-PDMS films at a range of AuNPs
concentrations. For these 5 sample films, the volume of the concentrated AuNP solution incorporated
into 3 g of PDMS before evaporating were 1, 2, 3, 4, and 5 mL, respectively. The relative mass of the
AuNPs in the AuNPs-PDMS films were estimated as 0.031%, 0.062%, 0.093%, 0.124%, and 0.155%,
respectively. It should be noted in advance that the AuNPs content for the digital LAMP chips was
0.093%.

2.3. Digital LAMP Chip Design and Fabrication

A schematic of the digital LAMP microfluidic chip is shown in Figure 2 and was designed using
Auto CAD. The chip consists of a cross microchannel for droplet generation and a microcavity for
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droplet tiling. Based on the principle of flow focusing, nucleic acid samples and LAMP reagents were
divided and wrapped into multiple water-in-oil droplets. These water-in-oil droplets were transferred
and tiled in the microcavity through a three-stage branch flow channel. The integrated chip has a
small footprint with a length of 43 mm, a width of 32 mm, and a height of 8 mm. The width of
droplet-generating microchannel is 60 µm (Figure 2a), which is a dimension that can be easily prepared
by PDMS. The microcavity has a length of 20 mm, a width of 15 mm, a height of 0.1 mm, and can
collect and tile ~20,000 droplets with a diameter of ~100 µm. To avoid the collapse of the microcavity,
50 micro-pillars with diameters of 1 mm were designed.

The digital LAMP microfluidic chip was fabricated based on soft lithography processes and
sandwich assembly. As shown in Figure 2b,d, a layer of SU-8 2050 negative thick photoresist (PR,
MicroChem Corp., Newton, MA, USA) with a thickness of 100 µm was first spun onto a silicon
substrate and followed by a soft bake process. A standard lithography process with an exposure dose
equal to 230 mJ/cm2 was performed to copy the pattern of the chrome mask onto the SU-8 photoresist.
The SU-8 development process was finished by immersing the exposed substrates into a developer
solution (MicroChem Corp., Newton, MA, USA) and using ultrasonic agitation to obtain well-defined
SU-8 structures. After treatment with octafluorocyclobutane (C4F8) for 3 min to facilitate demolding,
the SU-8 mold was ready for the preparation of patterned PDMS film. Similar to the preparation
of the AuNPs-PDMS film, the AuNPs-doped PDMS prepolymer (with 0.093% AuNPs) and curing
reagent were mixed at a weight ratio of 10:1, respectively, and poured onto the SU-8 mold. Following
degassing and heating in a vacuum desiccator at 90 ◦C for 1 h, the microchannel of the SU-8 mold was
replicated on the AuNPs-PDMS film. The patterned AuNP-PDMS film had a thickness of 1.5 mm and
was peeled off from the silicon wafer, installed with three joints, and bonded to a top and a bottom
glass through oxygen plasma treatment. The sandwich assembly avoided the thermal evaporation of
droplets. To ensure reliability, drops of pure PDMS were applied onto the edge of the microfluidic chip
and heated for curing. After rinsing with fluorosilane and drying, the chips were ready for digital
LAMP experiments (Figure 2c).
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2.4. Design and Establishment of Integrated Device for NIR Heating and Fluorescence Detection

To integrate the heating and fluorescence detection unit for digital LAMP into a single device,
we designed and fabricated an integrated prototype as shown in Figure 3. The overall dimensions of
the device were 210 mm in length, 150 mm in width, and 330 mm in height, which was more compact
than the existing commercial instrument.

The NIR heating unit consisted of a circularly arranged NIR LED array (24 V, 12 W, peak wavelength
at 808 nm, Vanch Photoelectric, Inc., Shanghai, China) to provide the NIR radiation for heating. Type-K
thermocoupling (5SC-TT-K-40-36, Omega Engineering) was used for temperature monitoring, and a
switching mode power supply (24 V, Weihua Electronics, Inc., Xi’an, China). The NIR-LED array has a
small footprint with a length of 58 mm, a width of 58 mm, and a height of 22 mm. The distance between
the chip and the object side lens is 27 mm. The circularly-arranged LED array consisted of 8 LEDs in
series illuminated on the microcavity zone of the chip at an angle of incidence of 45◦. The circularly
arranged LED array made the NIR irradiation more uniform, and multiple LEDs ensured sufficient
NIR heating power and large heating area. The temperature controlled system was implemented using
a microcontroller based on ARM (STM32F103RET6). The NIR LED array was powered through a 24 V
power supply controlled by a TTL (transistor transistor logic)-controlled relay (CMX60D10, Crydom
Co., San Diego, CA, USA). The TTL line was actuated at 1000 Hz with the duty cycle controlled by the
program built into the microcontroller. During thermal incubation, the microcontroller showed an
output of 3.3 V to close the TTL-controlled relay to illuminate the NIR LED. Once the temperature from
the thermocoupler exceeded 62.5 ◦C, the microcontroller led to an output of 0 V TTL and disconnected
the power supply of the NIR LED, prompting the temperature of the digital LAMP reagent to return to
~62 ◦C. When the temperature dropped below 61.5 ◦C, the reverse operation was performed.
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The fluorescence detection unit consisted of a CCD camera (C11440-50U, 6.97 × 5.23 mm,
Hamamatsu, Japan), a customized object side lens (149 mm focal length), an image side lens (MVL100M1,
100 mm focal length, Thorlabs), a multichannel filter module, a blue LED (M470L3, 470nm, 3.3 V,
0.76 W, Thorlabs), and a white LED (MCWHL5, 0.38 W, 3.3V, Thorlabs). Light from the blue LED or
white LED passed through a long-pass dichroscope (DMLP470R, 25 × 36 mm, Thorlabs), a focusing
lens (ACL2520U-B, Thorlabs), a liquid optical fiber (16 mm diameter, NA 0.5, Chunhui, Inc., Nanjing,
China), a collimating lens (65-553, Edmund), a multichannel filter module, and a customized object side
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lens and illuminated the microcavity zone. The filters and dichroic mirror mounted in the multichannel
filter module were: FF01-495/28-25 (Semrock) for excitation, FF01-525/39-25 (Semrock) for fluorescence
detection, and FF497-Di01-25×37 (Semrock) to split the beams of excited and omitted light. Using the
drive of the linear motor, the multichannel filter module could switch from fluorescent detection to
brightfield imaging. According to the focal length of the object-side and image-lens, the magnification
of the optical system was 0.67, and the size of a single imaging zone was 10.4 × 7.8 mm. Since the
size of micro cavity was 20 × 15 mm, four shots were required to obtain the complete images of all
the droplets.

2.5. Image Analysis

Under white LED, the CCD camera obtained bright-field images, which were analyzed to count
the total number of droplets. Fluorescence images of the droplets were acquired under the action of
blue LED and filter components, and were then used to distinguish whether the droplet was positive
or negative for the target DNA. Image processing was performed using Image J and MATLAB. Briefly,
according to the algorithms such as image filtering, local threshold processing, watershed-based
image segmentation, and particle statistics [26], both the number of total and positive droplets were
individually counted. According to the Poisson probability model, the average DNA copy number
were calculated using the following equation:

Concentration = −ln (1−Np/Nt)/Vd (1)

Where Nt represents the total number of droplets in the digital LAMP chip, Np represents the
number of positive droplets, Vd represents the droplet volume [7].

3. Results and Discussion

3.1. Characterization of AuNPs and AuNPs-PDMS Films

To avoid photo-bleaching of the NAAT fluorescent dye and probe during NIR thermal amplification,
the NIR LED was set to 808 nm [21]. The longitudinal absorption peak of gold nanorods were controlled
near to 808 nm to achieve efficient photothermal conversion. Based on this condition, the gold nanorods
with corresponding longitudinal absorption peaks were prepared. We used silica coating and surface
modifications using dodecanol to improve the lipophilicity and dispersibility of the nanorods in organic
solvents including ethanol and PDMS prepolymers. TEM (transmission electron microscope) images
of the AuNPs are shown in Figure 4a. An average length of 80 nm and an average diameter of 20 nm
were observed. TEM images of the silica coated AuNPs are shown in Figure 4b, and indicate that a
15 nm thick silica layer was successfully wrapped on the surface of the AuNPs. Upon comparison of
the UV-Visible absorption spectra of unmodified AuNPs in water and modified AuNPs in ethanol
(Figure 4d), the longitudinal plasmon resonance band redshifted from 810 nm to 816 nm. This reflected
the increase in the refractive index of the medium around the AuNPs [27].

Five AuNPs-PDMS films, which were doped with different concentrations of AuNPs, and a
blank PDMS film were sectioned into circular pieces with a diameter of 12 mm and a thickness of
1.5 mm (Figure 4c). To characterize the light absorption properties of the AuNPs-PDMS, UV-Vis
absorption spectroscopy were obtained (Figure 4e). Due to the plasma effects of the gold nanoparticles,
AuNPs-PDMS films showed distinct absorbance peaks at ~512 and ~828 nm, whilst the blank PDMS
showed no absorbance peak in the UV and visible region. Compared to the UV-Vis absorption spectra
and color of the sample films of A–E, as the content of the AuNPs increased, the corresponding
absorption intensity increased. Since the refractive index of the PDMS (n = 1.42) exceeded that of water
(n = 1.33) and ethanol (n = 1.36), the transverse and longitudinal absorption peaks of the AuNPs–PDMS
appeared as a red-shift [27]. In addition, excluding the transverse and longitudinal absorption peaks,
no other absorption peaks in the UV-Visible absorption spectra were observed. This suggested that the
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AuNPs did not agglomerate in PDMS and ethanol, further illustrating the effectiveness of the adapted
preparation method for AuNPs-PDMS film.Micromachines 2020, 11, x FOR PEER REVIEW 8 of 15 
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3.2. Photothermal Performance

The aim of this study was to produce a digital LAMP chip based on the photothermal effect of
the AuNPs-PDMS films. It was; therefore, necessary to study the photothermal performance of the
AuNPs-PDMS films, particularly regarding the equilibrium temperature and heating rates. To simplify
the protocols, the AuNPs-PDMS film was bonded between two glasses to simulate the increase in
temperature of the LAMP chip. We used a thermocoupling instrument (5SC-TT-K-40-36, Omega
Engineering) to record temperature changes within the PDMS films containing different levels of
gold nanoparticles under the illumination of a multimode fiber semiconductor laser (808 nm, 0~5 W,
Leirui Laser, Inc., Changchun, China). The spot diameter of the laser on the AuNPs-PDMS film
was 12 mm, and the laser power was adjusted to 0.8, 1.5, 2, 3.5, and 5 W, in turn. Each film was
irradiated under different NIR laser powers for ~120 s. Temperature measurement experiments were
performed three times for each film. The representative temperature rise curves are shown in Figure 5.
As the PDMS burns at 250 ◦C, the laser was switched off at this temperature to allow heat dissipation.
For comparison, the temperature curve of blank PDMS films were also recorded (Figure 5a). At an
irradiation of 7.1 mW/mm2, blank PDMS only warmed by 3.5 ◦C, and the temperature increased to
73 ◦C under 44.2 mW/mm2. Figure 5b–f demonstrates that once the AuNPs were doped into the
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PDMS film, the AuNPs-PDMS film could be heated above 54 ◦C at 7.1 mW/mm2. This is significantly
different from blank PDMS, and demonstrates excellent photothermal effect of AuNPs-PDMS. When
the relative content of the AuNPs exceeded 0.093% under an illumination intensity of 7.1 mW/mm2,
the temperature could rise above 64 ◦C. However, under the illumination intensity of 30.9 mW/mm2,
blank PDMS films barely reached 52 ◦C, indicating that the introduction of the AuNPs reduced the
optical power of the photothermal LAMP by ≥ 77%. In addition, when the radiation intensity exceeded
13.3 mW/mm2, PDMS resulted with an AuNPs content ≥ 0.062% that could be heated from 25 to 94 ◦C
within 40 s. These data suggest that the AuNPs-PDMS film meets the heating requirements of LAMP,
and can be used for PCR that requires fast temperature cycling between 60 and 94 ◦C.
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Since the entire area of the heating zone is 20 × 15 mm, the temperature uniformity should
be considered. Prior to the assembly of the integrated device, the experimental system was built
based on the NIR LED heating components described in Figure 3, and the temperature field of LAMP
chip was then recorded using an infrared thermal camera. As shown in Figure 6a, the temperature
of the chip ranged from 61.6 to 63.4 ◦C. The temperature at the center of chip exceeded that of the
edge. This occurred due to the larger temperature difference compared to the external environment,
leading to rapid heat dissipation at the edge. In addition, the radiation of the NIR LED array was not
completely uniform, which also caused a non-uniform distribution of the temperature field. Future
studies should focus on improving the uniformity of the temperature distribution by improving the
NIR source and optimizing the heat dissipation of the chip. The LAMP experiments performed well
between 60 to 64 ◦C, meaning that all droplets in the chip can be heated to the temperature required
for LAMP amplification [28].

In addition, the entire process of LAMP amplification is as long as 45 min, so the temperature
stability during this process needs to be evaluated. We utilized a thermocouple attached to the central
surface of the digital LAMP chip to record the temperature profile within 60 min under the control
system and the NIR-LED irradiation, as shown in Figure 6b. The temperature profile indicated that the
chip temperature can reach ~62 ◦C within 17 s and then fluctuated slightly between 61.8 and 63.6 ◦C,
and this is an acceptable fluctuation range for LAMP amplification.
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Compared with the contact-type hot-plate heating method widely used in commercial instruments,
this non-contact LED-driven heating solution no longer requires the hot cover for reducing the
temperature difference between the hot plate and the chip [29]. This is because AuNPs can efficiently
and directly convert the energy from the NIR-LED source into heat of the PDMS film. At the
same time, thanks to the uniform illumination distribution from multiple LEDs, this LED-driven
heating solution also does not require a thermally-conductive aluminum block used in the hot-plate
solution for evenly distributing the temperature field. In addition, those complicated and bulky
aluminum blocks and hot cover can cause difficulties in automatic chip switching during fluorescence
detection, while the non-contact heating method can make the mobile platforms easier to implement.
Therefore, the LED-driven heating scheme proposed in this study is an effective solution to realize the
miniaturization and integration of digital LAMP instruments.

3.3. Performance Characterization of Digital LAMP Chip

The core functions of the integrated digital LAMP chip should include sample segmentation in
addition to isothermal heating. In this study, DNA sample segmentation was achieved by generating
water-in-oil droplets based on the principle of flow focusing [5,30]. Driven by two syringe pumps,
the water-phase reagent (LAMP reaction solution) and the oil-phase reagent (HFE7500) meet at a
cross microchannel of the digital LAMP chip, as shown in Figure 7a,b. The LAMP reagent was then
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sheared and pinched off by the continuous oil-phase to form dispersed microdroplets, into which
the DNA templates were divided. During droplet generation, the flow rate of the oil phase and the
LAMP reagent was 12 and 6 µL/min, respectively, so it takes ~4 min to complete sample segmentation
of 20 µL of LAMP reagent. The droplet size profile is of great value for characterizing the sample
segmentation performance of the microfluidic chip, because the variation in size of the droplets can
bias the Poisson-based calculations of template quantification. In order to characterize the size profile
of the microdroplets generated by the digital LAMP chip, we measured the diameter of 200 droplets
using a microscope and the Image J software. The average diameter was measured to be 100.2 µm
with a coefficient of variation of 5.12% (Figure 7c), such uniformity in droplet size is similar to that of a
previous study [5,31].
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3.4. Digital LAMP Operation and Verification

DNA quantification based on the digital LAMP method in this study requires the steps shown in
Figure 8, including sample loading, droplet generation, isothermal amplification, and fluorescence
detection. Prior to digital LAMP assays, DNA template, LAMP reagents, and the oil phase reagents
were freshly prepared. The volume of the LAMP mixture was 20 µL, as outlined in Table 1. As described
in Section 3.3, the DNA template was divided into a large number of droplets with average diameter of
100.2 µm, and then the droplets were tiled in the microcavity. Following droplet generation, the inlets
and outlets of the chips were sealed with plastic caps, and the chips were then loaded on the moving
platform of the integrated device (Figure 3). After attaching a thermocouple to the chip and turning on
the power and control system, the DNA amplification driven by LED can be started. After 45 min
of amplification, the microcontrol system turned off the NIR-LED and turned on the blue LED for
fluorescence detection, and then the CCD acquired the fluorescence images. Because the signal of
the negative droplet in the fluorescence image is weak, in order to facilitate the statistics of the total
number of droplets, the bright-field images of the chip were also obtained under the action of white
LED and corresponding filter mode. It should be noted that the exposure times for fluorescent and
bright-field images are 1 s and 40 µs, respectively. In addition, during optical detection, the chip needs
to be moved four times so that the CCD acquired the fluorescence and bright-field images of all the
droplets tiled in the chip.

In this study, the entire operation process took only 61 min (Figure 8), which saved nearly half
of the time compared to traditional qPCR. Compared with commercial dNAAT instruments such
as QX 200 (Bio-rad) and QuantStudio 3D (Thermo Fisher Scientific), the microfluidic chip reported
herein integrates functions including sample segmentation, heating, and droplets tiling for detection,
and avoids sample loss and contamination during multi-step sample transfer. Meanwhile, the AuNPs
with high photothermal performance incorporated in the chip realizes stable heating under the
irradiation of low-power and low-cost LEDs, thereby enabling facile integration of the heating unit and
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the fluorescence detection unit. Therefore, the chip and integrated device proposed in this paper can
promote the development of the dNAAT system towards miniaturization, portability, and economy.
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The sensitive quantification of low-abundance nucleic acids hold great value for clinical
applications. To evaluate the accuracy of the digital LAMP chip and the integrated device, ten-fold
serial dilutions of HBV DNA stocks were prepared at four orders of magnitude from 1 × 101 to
1 × 104 copies/µL, deemed a low nucleic acid concentration range. Using the digital LAMP chip
and integrated device, we performed nucleic acid quantifications on the HBV samples according
to the operation process mentioned above. Each experiment was performed in quadruplicate to
ensure reproducibility.

After droplet generation and amplification based on our chip and device, we obtained fluorescence
images and bright-field images, as shown in Figure 9. The gray value of the negative and positive
droplets were compared and analyzed using Image J software. The results showed that the gray
value of the positive droplets was about 2.6~3.5 times that of the negative droplets. This phenomenon
indicates that DNA has indeed undergone amplification. Because the calcein used in this study is a
fluorescent dye whose fluorescence can be quenched by Mn2+. The pyrophosphate ions caused by
DNA amplification can react with Mn2+ to form intolerant salts, thereby reducing the concentration
of free Mn2+ in reagent, leading to an increase in fluorescent signal. As seen in Figure 9, the droplet
size was relatively uniform, indicating that most did not break or fuse during DNA amplification.
Comparing and analyzing the a~e panels in Figure 9, we can find that as the concentration of template
DNA increased, the number of bright positive droplets increased.
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For digital LAMP assessments, the ideal conditions are that each droplet contains only one or
zero template DNA molecules, and the number of positive droplets directly reflects the number of
DNA molecules. However, for actual detections, the DNA is not evenly divided and the sample
concentration are insufficiently diluted, with some droplets containing more than one DNA molecule.
It is; therefore, necessary to combine the Poisson probability model to correct the DNA concentrations of
the original samples, as described in Section 2.5. We used Image J and MATLAB to analyze fluorescence
and bright-field images, and calculate the proportion of positive droplets by counting the number
of positive droplets in fluorescence images and the number of total droplets in bright-field images,
as shown in Figure 10. The average ratios of positive droplets in those serially-diluted DNA samples
after amplification were 0.51%, 4.85%, 39.29%, and 98.93%, respectively, while there were no positive
droplets in negative control. As shown in Figure 10f, the measured concentrations of serial-ten-fold
diluted HBV-DNA samples were well correlated with the expected concentrations (R2 = 0.9985), which
demonstrates the feasibility of the developed digital LAMP chip and device for quantification of
low-abundance nucleic acids. At the same time, the batch-to-batch variation of the replicates of DNA
samples with the same concentration was small, which reflected the good repeatability of digital
LAMP-based DNA detection.
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Figure 10. Verification results of digital LAMP. (a) Statistics of droplets for negative control. (b–e) Droplet
statistics for serially-diluted DNA samples. (f) Linear relationship between measured values (copies/µL)
by the digital LAMP chip and the expected copy number per reaction. Four tests were performed for
each data point.

4. Conclusions

In summary, we developed a digital LAMP chip integrated with DNA amplification heating
function. The chips consisted of AuNPs-doped PDMS which enabled the PDMS to have higher
light-to-heat conversion efficiency that retained the original advantages of the microstructure
manufacturing process. The AuNPs content was varied from 0.031% to 0.155% to study the UV-Vis
absorption spectra and photothermal characteristics of the AuNPs-PDMS films. The results showed
that AuNPs with a relative mass of 0.093% could heat the PDMS films to above 62 ◦C under an NIR
radiation of 7.1 mW/mm2, and could reduce the power of the NIR light source by ≥ 77%. We designed
and prepared a digital LAMP chip based on this AuNPs-PDMS composite for droplet generation and
photothermal amplification. Using flow focusing, approximately 20,000 water-in-oil droplets were
generated and tiled in the microfluidic chip that consisted of AuNPs-PDMS. Utilizing the photothermal
performance of the digital LAMP chip, we further developed an integrated device with an NIR heating
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unit and fluorescence detection unit. The integrated device realized LED-driven microfluidic heating
and imaging-based fluorescence detection, demonstrating low cost, low levels of power consumption,
high integration, and a reduced requirement for auxiliary equipment for digital LAMP experiments.
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agreed to the published version of the manuscript.
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