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Abstract: In this article, we describe an enzyme-based, membraneless, microfluidic biofuel cell for
the continuous determination of glucose using electrochemical power generation as a transducing
signal. Enzymes were immobilized on multi-walled carbon nanotube (MWCNT) electrodes placed
parallel to the co-laminar flow in a Y-shaped microchannel. The microchannel was produced with
polydimethylsiloxane (PDMS) using soft lithography, while the MWCNT electrodes were replicated
via a PDMS stencil on indium tin oxide (ITO) glass. Moreover, the electrodes were modified with
glucose oxidase and laccase by direct covalent bonding. The device was studied at different MWCNT
deposition amounts and electrolyte flow rates to achieve optimum settings. The experimental results
demonstrated that glucose could be determined linearly up to a concentration of 4 mM at a sensitivity
of 31 mV·mM−1cm−2.
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1. Introduction

Enzyme-based electrochemical biosensors, which use enzymes for signal transduction, have been
extensively studied due to their high specificity and sensitivity toward their target analyte [1,2].
Typical analytes including glucose, lactate, cholesterol, glutamate, and urea, play a vital role in our
body’s biochemistry, thereby implying the need for the proper monitoring of their concentrations.
To achieve that, a particular set of enzymes is needed that catalyze specific biochemical reactions to
measure the corresponding analytes in complex biological fluids. Glucose oxidase (GOx) is the most
widely employed enzyme for glucose oxidation in the area of biosensors and biofuel cells due to its
extremely specific catalytic activity for glucose [3,4]. Ever since the first demonstration of an enzymatic
glucose sensor in the early 1960s, research interest has grown considerably, thereby achieving many
advancements in the field of biosensors [5]. This progress has been reported in terms of the use of
advanced materials, electrode design, enzyme immobilization strategies, analytical measurement
methods, miniaturization techniques, etc. [6–10]. To get a high specific surface area, antifouling
properties, and high conductivity, carbon nanotubes (CNTs) provide a versatile tool to construct
bioelectrodes for electrochemical applications. Due to their high three-dimensional electroactive area
that increases the surface concentration of both the enzymes and the redox mediators, CNTs have been
the choice of scientists to utilize in enzymatic biofuel cells (EBFCs) [6].

EBFCs that use enzymes as the biocatalyst to generate electric power have gained significant
research interest due to their operation in normal conditions [11,12]. In glucose/oxygen biofuel cells,
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glucose is oxidized at the anode while oxygen is reduced at the cathode to produce electricity.
The produced power output of the EBFC can be used as an analytical signal that is directly proportional
to the glucose concentration, thereby eliminating the need for an additional power source [13–15].
Such devices are termed self-powered glucose sensors (SPGSs). They have an extremely simple
design due to a two-electrode setup instead of three electrodes, which is very beneficial for device
miniaturization. Since the first demonstration of self-powered biosensors by Willner and Katz based
on glucose [16], exciting progress has been made by researchers in the fields of both implantable
and wearable diagnostics [17]. This concept was then expanded to other analytes such as fructose,
lactate, ascorbic acid, and cholesterol. Additionally, different approaches have been implemented for
monitoring these biomarkers; for instance, many authors have described microneedle- and paper-based
SPGSs [18–21]. However, there has not yet been any research published on microfluidic, membraneless
EBFCs as self-powered biosensors.

The integration of biosensors into lab-on-chip technology using microfluidics has resulted in robust
analytical tools, thereby providing integrated and miniaturized substitutes for conventional laboratory
methods [22,23]. Previously, we reported the fabrication of a Y-shaped microfluidic EBFC for power
generation [24]. In this work, we applied that microfluidic EBFC as a proof-of-concept self-powered
biosensor for the electrochemical detection of glucose using enzymes as bio-recognition elements.
To the best of our knowledge, this is the first time that a co-laminar, flow-based, and membraneless,
microfluidic chip has been used for the continuous detection of glucose. The proposed microfluidic EBFC
as a self-powered biosensor showed high sensitivity and high recovery rates, which is advantageous
for continuous glucose determination. From our test results, the microfluidic device can be used for
glucose detection within a linear range of up to 4 mM.

2. Materials and Methods

2.1. Chemicals

The following chemicals were purchased from Sigma-Aldrich and were used without
further purification: glucose oxidase (GOx) from Aspergillus niger (128.2 U·mg−1 solid),
laccase from Trametes versicolor (12.9 U·mg−1 solid), N-hydroxysulfosuccinimide
(NHS; 98%), N-ethyl-N’(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC; 98%),
2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), multi-walled carbon nanotubes
(MWCNTs; carboxylic acid-functionalized), sodium perchlorate (NaClO4, 98%), D-(+)-glucose,
ferrocenemethanol (FcCH2OH), and indium tin oxide (ITO) glass (15 Ω.sq−1). Uric acid (99%),
L-(+)-ascorbic acid (99+%), and 4-acetamidophenol (98%) were purchased from Alfa Aesar, South Korea.
The aqueous solutions were prepared in deionized (DI) water. Polydimethylsiloxane (PDMS; Sylgard
184, Dow Corning, Midland, MI, USA) was mixed in a 10:1 ratio of base and curing agent. All analytical
experiments were performed in a sodium phosphate buffer prepared with 50 mM NaH2PO4 and
50 mM Na2HPO4; the pH was adjusted by their proper mixing.

2.2. Biosensing Principle

The working principle of the electrochemical microfluidic EBFC is based on the enzymatic reactions
of GOx and laccase at the anode and cathode, respectively, according to the following equations:

C6H12O6→ C6H10O6 + 2H+ + 2e−

O2 + 4H+ + 4e−→ 2H2O

The EBFC operation is described in the schematic diagram in more detail in Figure 1c. The fuel
and oxidant flow in the microchannel in a co-laminar fashion without convective mixing, thereby
eliminating the need for a proton exchange membrane [25]. Glucose is oxidized to gluconolactone by
GOx immobilized at the anode. The electrons are efficiently transferred to the anode surface using
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FcCH2OH as a mediator. These electrons flow towards the cathode side through the external circuit.
Protons produced by the oxidation reaction travel towards the cathode side through the co-laminar flow
interface between the electrolytes in the microchannel. Likewise, oxygen is reduced to water by using
laccase as an enzyme biocatalyst immobilized at the cathode. The mediator, ABTS, is used to shuttle
the reducing equivalents from the cathode to the active sites of laccase. In this way, the microfluidic
device generates power, which is a function of glucose concentration in the flow stream.
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Figure 1. A schematic (A) and optical (B) image of the membraneless, microfluidic enzymatic biofuel
cell (EBFC) (Inset shows microchannel dimensions in mm). (C) Schematic presentation of cross-section
(A–A) illustrating the biosensing mechanism of the microfluidic EBFC.

2.3. Bioelectrode Preparation

Before MWCNT electrode fabrication, the ITO glass (used as a conductive substrate) was wet-etched
in concentrated HCl using a patterned AZ-1512 photoresist made by photolithography. Additionally,
PDMS stencils, which were created by spin-coating the PDMS solution onto the master mold at 800 rpm
for 30 s followed by blowing with a gentle nitrogen stream and curing at 90 ◦C for 1 h, were used to
produce MWCNT electrodes on the ITO glass.

The master molds for both the stencil and microchannel were fabricated via photolithography
using the negative SU-8 2100 photoresist. The thicknesses of the master molds were 250 and 120 µm
for the stencil and microchannel, respectively; the whole procedure of making them was discussed
in detail in our previous work [24]. Both master molds were salinized with tridecaflouro-1, 1, 2,
2-tetrahydroocty1-1-trichlorosilane in a desiccator before use.

To prepare the MWCNT electrodes, the etched ITO glass was cleaned with DI water and placed
in 2% 3-amino-propyltriethoxysilane in acetone for 1 h and then dehydrated on a 120 ◦C hot plate
for 1 h. The stencil was manually aligned on the ITO glass in such a way that the conduction gap
between the electrodes was covered. A suspension of 1 mg/mL MWCNT in DI water was sonicated for
1 h, and 20 µL of this suspension was pipetted onto the stencil on ITO glass placed on a hot plate at
100 ◦C and allowed to evaporate. This dispensing process was repeated until the amount of MWCNTs
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reached the desired value. For example, the suspension was pipetted eight times to obtain a uniform
surface of 0.4 mg/cm2 MWCNT.

For the covalent attachment of enzymes to the carboxylic acid-functionalized (COOH-) MWCNT
electrodes, NHS was used to activate the carboxyl groups of MWCNTs using EDC coupling chemistry
via amide bonds [26]. For this, 2 mL of a phosphate buffer (50 mM; pH 7) containing 30 mM of EDC
and 90 mM of NHS was pipetted onto the surface of the electrodes and allowed to react for 1 h at room
temperature. After drying gently with nitrogen gas, the anode and cathode were coated with GOx and
laccase (5 mg·mL−1 in a 50 mM phosphate buffer at pH 7), respectively, and allowed to react for 12 h.
The electrodes were then thoroughly rinsed with the phosphate buffer (50 mM; pH 7) before use.

2.4. Microfluidic EBFC Fabrication

Schematic and optical images of the microfluidic device are shown in Figure 1. The microchannel
was produced via PDMS casting using soft lithography. The height of the microchannel was 120 µm,
for which the silicon master mold was fabricated using a negative SU-8 photoresist, as already discussed
in detail in the previous section. After the master mold was salinized, the degassed PDMS solution
(10:1 of base and curing agent) was poured onto it and cured at 90 ◦C (for at least 2 h). The PDMS
replica was then peeled off from the mold and punched with a sharpened biopsy punch (1.5 mm) to
produce the inlet and outlet for Tygon tubes. Finally, the PDMS microchannel was manually aligned
and attached to the ITO glass containing the covalently attached enzyme-MWCNT bioelectrodes and
clamped in an acryl holder to avoid any leakage.

2.5. Electrochemical Measurements

All the electrochemical experiments were performed using a Bio-Logic Science Instruments SP-50
model potentiostat supplied with the EC-Lab® software package, and all the measurements were
carried out at room temperature. For cyclic voltammetry (CV) analysis, a three-electrodes setup was
used; an Ag/AgCl (saturated KCl.) electrode was the reference, a platinum wire was the counter, and a
carboxyl-MWCNT (on ITO glass) electrode was used as the working electrode. The anolyte stream
consisted of a sodium phosphate buffer (50 mM; pH 7) containing 100 mM NaClO4, 1 mM FcCH2OH,
and D (+)-glucose (varying concentrations), while the catholyte solution contained a sodium phosphate
buffer (50 mM; pH 5) with 100 mM NaClO4 and 2 mM ABTS. Since the redox-active site of Gox, which
is flavin adenine dinucleotide (FAD), is deeply buried within a protective protein shell, the realizing
of direct electron transfer (DET) is very difficult [27]. Therefore, different mediators are utilized for
efficient electrochemical communication between a redox center and electrodes to ensure accurate
glucose detection in biosensors [28,29]. This choice of mediators, i.e., FcCH2OH at the anode and ABTS
at the cathode, was made since their redox potential lies between the redox potential of the enzymes
and that of the electrodes [30,31]. A D (+)-glucose stock solution was prepared at least 24 h before the
experiment to establish an anomeric equilibrium between α and β cyclic forms of D (+)-glucose.

3. Results and Discussion

3.1. Electrocatalytic Oxidation of Glucose at GOx-Modified MWCNT Bioanode

Before analyzing microfluidic EBFC for glucose monitoring, the electrocatalytic behavior of the
GOx-modified bioanode was explored via the CV test at varying glucose concentrations ranging from
0 to 10 mM, as shown in Figure 2A. The active surface area of bioanode fabricated for CV analysis was
1 cm2. The bioanode was scanned between −0.1 and +0.5 V versus Ag/AgCl in a 50 mM phosphate
buffer (pH 7) containing 100 mM NaClO4 and 1 mM FcCH2OH. CV was performed at a scan rate
of 10 mV/sec.
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Figure 2. (A) Cyclic voltammograms of a glucose oxidase (GOx)-modified bioanode during the
successive addition of varying glucose concentrations at 0 mM without a mediator (dashed curve) and
0–10 mM with a mediator (solid curves) in a sodium phosphate buffer (50 mM; pH 7) at a scan rate
of 10 mV/sec. The arrow indicates increasing glucose concentration. (B) Corresponding calibration
curve of the current density peaks at different glucose concentrations with a coefficient of correlation
of R2 = 0.985.

It could be seen that without both the mediator and glucose, there was no oxidation and reduction
peaks (dashed CV curve in Figure 2A). However, when mediator was used at 0 mM glucose, a pair of
well-reversible redox peaks with a formal potential of 0.24 V was observed, and this was assigned
to one-electron reversible redox reaction of ferrocene–ferrocenium ion (Fc/Fc+) [32,33]. Additionally,
with a glucose concentration of 1–10 mM, the anodic peaks occurred at around 0.3 V, which was the
same as found without glucose. Figure 2B shows the corresponding calibration curve of the current
density at oxidation peaks versus glucose concentration; this curve showed linearity until a glucose
concentration of 10 mM with a linear regression of 0.985, thereby indicating the good electrocatalytic
behavior of the GOx-modified bioanode.

3.2. Microfluidic EBFC Characterization for Glucose Biosensing

To check the biosensing ability of microfluidic EBFC, polarization and power density curves were
analyzed at various glucose concentrations. An electrochemical method known as chronopotentiometry
(CP) was used to obtain the polarization curves, which was accomplished by controlling the current
load and attaining variation in output voltage concerning time. Power density curves were plotted by
multiplying the current density against the resulting output voltage. The current and power densities
were calculated by dividing them by the active surface area of the electrodes. The active surface
area of the MWCNT electrodes was 0.4 cm2 (with each electrode having an area of 0.2 cm2). In the
experimental setup, the counter and reference electrode probes of the potentiostat were connected to
the bioanode, while the working electrode probe was connected to the biocathode.

The polarization and power density curves as a function of glucose concentration are shown in
Figure 3A,B, respectively. The results indicated a notable change in the output signal for different
glucose concentrations; nonetheless, these curves are not analogous to the previously reported one
where different load resistances were applied instead of current loads to obtain the polarization
curves [34]. With that method, the power peaks occurred at different current densities for different
glucose concentrations. However, contrary to that, it was noticeable that the power peaks occurred
at a specific current density of 100 µA·cm−2 for all glucose concentrations, indicating that the use
of a single current load was enough to define the calibration curve. Furthermore, it can be seen in
Figure 3B that the microfluidic EBFC gave power density even at 0 mM glucose, which was due to
the presence of ferrocene methanol in the anolyte solution. This happened as a result of the oxidation
of ferrocene methanol to ferrocenium methanol at the anode and the reduction of oxygen to water
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at the cathode [35]. This phenomenon was also revealed by the CV curve, which is discussed in the
previous section in detail. As shown in Figure 3C, the calibration curve concerning peak power density
displayed a linear response in the glucose concentration range of 0–5 mM, with a linear coefficient
of 0.977. These results assure the capability of the membraneless, microfluidic EBFC to be used as a
glucose biosensor.
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Figure 3. Polarization (A) and power density (B) curves of a microfluidic EBFC composed of a
glucose oxidase (GOx)-attached bioanode and a laccase-attached biocathode operating in different
glucose concentrations (0, 1, 2, 3, 4, and 5 mM). The arrows indicate increasing glucose concentration.
(C) Corresponding calibration curve of the microfluidic EBFC (R2 = 0.977).

3.3. Effect of the Current Load on the Biosensor Performance

As already discussed in the previous section and as is also obvious from the power density
curves (Figure 3B), a calibration curve could be obtained at a specific current load. For that reason,
the microfluidic chip was evaluated by applying different current loads at glucose concentrations
ranging from 0 to 5 mM, as illustrated in Figure 4. The applied current densities were 25, 50, 75,
and 100 µA·cm−2. The calibration curves at all the current densities showed linearity until a glucose
concentration of 5 mM. It is noteworthy that the slope of the curves got steeper from low to high
as current density increased. The sensitivity could be easily calculated from the slope of the linear
curve, which was determined as 0.445 and 1.5 µW·mM−1cm−2 for 25 and 100 µA.cm−2, respectively.
Furthermore, the calibration curve descended with a further increase in current density to 125 µA·cm−2

with linearity up to 4 mM (data not shown). Additionally, it was more convenient to use the resulting
voltage as an output signal response instead of power density since the current was maintained at a
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constant. Nevertheless, the results suggested that a specific current density of 100 µA·cm−2 should be
applied for the optimum performance of the microfluidic biosensor.Micromachines 2020, 11, x 7 of 12 
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3.4. Effect of Flow Rate on Biosensor Performance

Due to the laminar flow inside the microfluidic channel, the catholyte and anolyte solutions flow
in two separate streams in parallel without convective mixing [23]. To optimize the mass transport of
fuel and oxidant to their respective biocatalysts, it is necessary to regulate the flow rate of both the
electrolytes. For this reason, the membraneless, microfluidic chip was analyzed at different flow rates
(3, 6, and 9 mL/h) using glucose concentrations ranging from 0 to 4 mM (Figure 5). Both electrolytes
were fed to the microfluidic chip via a peristaltic pump (Reglo digital, Ismatec, Germany). In our
setup, the peristaltic pump was used to easily add glucose from the stock solution since we were
continuously monitoring glucose concentrations. Before the addition of glucose, the open circuit
potential (OCP), which is the maximum output voltage monitored when no current flows in the circuit,
was monitored at each flow rate. The OCP values were 436, 410, and 396 mV at the flow rates of 3,
6, and 9 mL/h, respectively (data not shown). From Figure 5, we can see that although the output
voltage at a low glucose concentration was lower at 3 mL/h, the output voltage for all three flow rates
still reached saturation at a glucose concentration of 4 mM. Hence, we achieved a better sensitivity of
35 mV·mM−1cm−2 for the flow rate of 3 mL/h.
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3.5. Effect of MWCNT Amount on Glucose Determination

Due to its high specific surface area of more than 1000 m2/g, MWCNTs are broadly used to provide
highly porous nanostructured electrodes [36]. However, the amount of MWCNTs for constructing the
electrodes needed to be optimized to achieve a uniform electrode thickness and better performance.
The amount of MWCNTs was calculated by the mass of MWCNTs in the solution pipetted per
unit surface area of the electrodes. Three samples with different MWCNT amounts of 0.2, 0.4,
and 0.6 mg/cm2 were prepared as described in Section 2.3. The dependence of the glucose linearity
curve as a function of the deposited MWCNT amount is shown in Figure 6. It is worth noting that the
optimal MWCNT amount was 0.4 mg/cm2 because it gave better linearity and sensitivity. However,
when we increased the amount of MWCNTs to 0.6 mg/cm2, the electrodes started detaching from
the ITO glass in some areas. This little detachment from the ITO glass was due to the drying of the
newly pipetted MWCNT solution on the already dried MWCNT layer while on the hot plate. This may
happen due to the contraction of the dried MWCNT layer with MWCNT solution during evaporation.
This could have been the reason for the small linear range of the calibration curve (i.e., up to 3 mM) at
the MWCNT deposition of 0.6 mg/cm2.
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3.6. Detection of Glucose under Optimized Conditions

Figure 7 shows the calibration curve for glucose detection after optimizing several factors, including
the MWCNT amount, current loading, and flow rate effect. In the optimized setup, 0.4 mg/cm2 MWCNT
was deposited on the electrodes, and a current density of 100 µA·cm−2 was applied. The flow rate of
the electrolytes was 3 mL/h. The biosensor showed a linear response until a glucose concentration of
4 mM with a linear regression of 0.998. Notably, the calibration curve reached a plateau after 5 mM.
This was attributed to the limitation of oxygen reduction at the biocathode, which was a constant
that was independent of the increment in glucose concentration [37,38]. It is also clear from the CV
results of the GOx-modified bioanode (Section 3.1), where the calibration curve had a linear range until
10 mM of glucose concentration, thus confirming the limitation of performance by the laccase-modified
biocathode. The microfluidic EBFC showed a high reproducibility by giving almost the same calibration
curves from three different devices. From the error bars, it can be noticed that the results were highly
reproducible. The limit of detection (LOD) was 0.23 mM in glucose, which was found using the
standard deviation of low concentration (i.e., 3.3 * standard deviation/slope of calibration curve).
Moreover, the time constant of the device for sensing the 1 mM glucose concentration was 40 ± 5 s,
which was defined as the time required to attain a change from its initial output to 63% of stable output
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value. The biosensor showed a sensitivity of 31 mV·mM−1cm−2, which could be calculated from the
slope of the linear calibration curve.
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3.7. Interference and Recovery Analysis

The interferences from electroactive species such as uric acid (UA), ascorbic acid (AA),
and acetaminophen (AP), generally found in physiological samples of glucose, were studied.
The voltametric responses of the microfluidic, EBFC-based glucose biosensor were obtained at a
constant current load of 100 µA·cm−2 with a stepwise addition of 0.5 mM glucose, 0.3 mM UA, 0.1 mM
AA, and 0.1 mM AP, as shown in Figure 8A. These amounts of interferents were added according to
the minimum of their average concentration in physiological glucose samples. It is noteworthy that
there was a slight interference by UA and AP. However, the biosensor showed a significant response
upon the addition of AA that was even more than glucose. This result was most probably due to
the peroxidation of AA at bioanode since it was the most common compound to oxidize at the same
potential range as glucose [39]. This interference by AA could be eliminated using a perm-selective
membrane such as a Nafion coating on the enzyme-modified MWCNT electrodes [40,41]. Furthermore,
for continuous glucose detection, the recovery characteristics of the device according to stepwise
changes in glucose concentration were also recorded, as shown in Figure 8B. The recovery rates were
98.82%, 97.89%, 100.4%, 100%, and 100.5% at glucose concentrations of 0, 1, 2, 3, and 4 mM, respectively.
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Figure 8. Voltametric responses of the microfluidic, EBFC-based glucose biosensor at a constant current
load of 100 µA·cm−2 for (A) interference analysis with the stepwise addition of 0.5 mM glucose, 0.3 mM
uric acid, 0.1 mM ascorbic acid, and 0.1 mM acetaminophen, as well as for (B) recovery analysis with a
stepwise 1 mM increment and 1 mM decrement in glucose concentration.
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4. Conclusions

This work has demonstrated the feasibility of using membraneless, microfluidic biofuel cells, which
were previously fabricated by our group for the electrochemical determination of glucose. The enzymes
used as bio-recognition elements were covalently attached to MWCNTs through modification with
EDC/NHS. The microchannel was fabricated via PDMS casting, while the electrodes were prepared
using a PDMS stencil and MWCNTs patterned on etched ITO glass. The microfluidic device was
optimized with different parameters, including flow rate, current load, and MWCNT deposition
amount. The enhanced results were obtained at the flow rate of 3 mL/h, a current load of 100 µA·cm−2,
and 0.4 mg/cm2 of MWCNT deposition on the electrodes. The optimized glucose sensor showed
linearity until a glucose concentration of 4 mM, with a linear regression coefficient of 0.998 and a
sensitivity of 31 mV·mM−1cm−2. Moreover, the microfluidic EBFC also presented good recovery
rates, thereby indicating its effectiveness for continuous glucose determination. The proportionality
of the power density to the glucose concentration specified the applicability of the proposed EBFC
as a self-powered biosensor. This approach of applying a constant current load to simply get the
output voltage as an output signal for glucose detection will lead to a simpler design of self-powered
glucose sensing systems. However, the low linearity of the glucose calibration curve and the use of
mediators in electrolytes were the limitations of this study, and these could be overcome by enhancing
the catalytic activity of performance limited cathode and immobilizing the redox mediators on the
electrodes, respectively. Though the proposed microfluidic, EBFC-based glucose biosensor has some
analytical limitations, the use of such an approach in a simpler and more practical single-flow channel
microfluidic device is one of our future goals.
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