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Abstract: The field of droplet electrohydrodynamics (EHD) emerged with a seminal work of G.I.
Taylor in 1966, who presented the so-called leaky dielectric model (LDM) to predict the droplet
shapes undergoing distortions under an electric field. Since then, the droplet EHD has evolved
in many ways over the next 55 years with numerous intriguing phenomena reported, such as tip
and equatorial streaming, Quincke rotation, double droplet breakup modes, particle assemblies at
the emulsion interface, and many more. These phenomena have a potential of vast applications in
different areas of science and technology. This paper presents a review of prominent droplet EHD
studies pertaining to the essential physical insight of various EHD phenomena. Here, we discuss
the dynamics of a single-phase emulsion droplet under weak and strong electric fields. Moreover,
the effect of the presence of particles and surfactants at the emulsion interface is covered in detail.
Furthermore, the EHD of multi-phase double emulsion droplet is included. We focus on features such
as deformation, instabilities, and breakups under varying electrical and physical properties. At the
end of the review, we also discuss the potential applications of droplet EHD and various challenges
with their future perspectives.
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1. Introduction

In recent years, electrohydrodynamics (EHD) of emulsion droplets has evolved in many ways
as the research gained pace in this field. The field emerged with the seminal works of Taylor in
1966, who presented his leaky dielectric model (LDM) and predicted the single-phase droplet steady
deformation [1,2]. Subsequently, the validation of the model was reported, and more accurate models
emerged [3–12]. Recent EHD studies have explored more complex EHD interface topologies related
to multiple phase emulsion droplets, and also covered the broader aspects, such as the emulsion
instabilities, breakups, and particles manipulation at the emulsion interface forming novel colloidal
assemblies [13–34]. Though it has been almost six decades since the research in this area commenced,
it is only until recently that a few studies pertaining to the droplet EHD with applicative prospects
have been reported [35–52].

This review has emphasis on the recent advancements for the essential physical insights of the
droplet EHD problems. Since droplet EHD is a very broad area of research and it is not possible to cover
all the aspects in a single review, here we mainly focus on the behavior of a single-phase droplet with
particle-free or particle-covered interface and multi-phase (compound or double) emulsion droplets
within the perspective of their deformation, instabilities, and breakups under weak and strong external
stimuli of electric fields, considering only the most prominent works (See Figure 1). Here, we do not
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discuss the EHD of droplet coalescence, as it merits a separate review. In the latter part of the article,
we also discuss the applications of droplet EHD with their challenges and future directions.
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charge (diffuse charge or electric double layers) is still an ongoing struggle [10,54-56]. For numerical 
simulation, the governing equations of fluid flow and electro-quasi statics are implemented, and the 
two-phase problem is solved using different methods, such as volume of fluid (VOF) [57,58], 
boundary element method (BEM) [26,59-61], finite volume technique [62,63], level set methods (LS) 
[14,64-66], and phase field methods (PF) [67,68]. Each method has its advantages and disadvantages. 
Recently, CLSVOF (coupled level set and volume of fluid) method has emerged as a new approach 
for the interface capturing [69,70]. VOF method has its drawbacks to calculate its spatial derivatives 
across the interface. Then, a coupled LS and VOF approach is employed to overcome this deficiency. 
With its spatial gradient calculated accurately, the level-set function is smooth and continuous. For 
the experiments, a container (cuvette or glass-walled rectangular box) with electrodes embedded on 
the two opposite sides is filled with a continuous liquid and a dispersed liquid is dispensed using a 
micro-pipette. The high voltage is supplied across the electrodes and dynamics are captured by using 
cameras. In these studies, some authors have also introduced surfactants at the liquid-liquid interface 
[27,71-89]. A summary of the most prominent works related to droplet EHD are summarized in Table 
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Figure 1. Hydrodynamics of emulsion droplets under an electric field.

2. Approaches Used to Study the Droplet Electrohydrodynamics (EHD)

The approaches to study the fundamentals of droplet EHD are twofold: (i) theory and/or numerical
method, and (ii) experiments. The basic analytical model is the LDM [1,2,53]. This model assumes no
net charge on the interface and electroneutrality of the bulk liquids within the Stokes regime, however,
the derivation of the LDM from the electro kinetic equations considering the net charge (diffuse
charge or electric double layers) is still an ongoing struggle [10,54–56]. For numerical simulation,
the governing equations of fluid flow and electro-quasi statics are implemented, and the two-phase
problem is solved using different methods, such as volume of fluid (VOF) [57,58], boundary element
method (BEM) [26,59–61], finite volume technique [62,63], level set methods (LS) [14,64–66], and phase
field methods (PF) [67,68]. Each method has its advantages and disadvantages. Recently, CLSVOF
(coupled level set and volume of fluid) method has emerged as a new approach for the interface
capturing [69,70]. VOF method has its drawbacks to calculate its spatial derivatives across the interface.
Then, a coupled LS and VOF approach is employed to overcome this deficiency. With its spatial
gradient calculated accurately, the level-set function is smooth and continuous. For the experiments, a
container (cuvette or glass-walled rectangular box) with electrodes embedded on the two opposite
sides is filled with a continuous liquid and a dispersed liquid is dispensed using a micro-pipette.
The high voltage is supplied across the electrodes and dynamics are captured by using cameras. In
these studies, some authors have also introduced surfactants at the liquid-liquid interface [27,71–89].
A summary of the most prominent works related to droplet EHD are summarized in Table 1.
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Table 1. Summary of the most prominent works related to droplet electrohydrodynamics.

Ref. Approach a Method b,c

Electric
Capillary
Number

(CaE)

Deformation
Type Characteristics Remarks

Single-phase droplet (clean)

[1] E and A Leaky-dielectric model, o/o
emulsion (S/C and C/S), CaE < 1 Both Deformation DC field

[7] E and A
Leaky-dielectric model, o/o

emulsion (S/C, C/S, etc.)
w/o emulsion (W/C, W/S, etc.)

CaE < 1 Both
Deformation,

pinch-off,
dimpling

DC and AC field

[18] E and A

Leaky-dielectric model,
o/o emulsion (S/C),electrolyte
(AOT, TBAB), linear stability

analysis

CaE ≈ 4 Oblate
(R/S > 1)

Streaming
from equator,

Quincke
rotation,
dimpling

DC field,
micro-droplet

generation

[24] E

Leaky-dielectric model, w/o
emulsion (W/S, G/S, etc.),

o/o emulsion (C/S),
non-Newtonian emulsion
(PAM and XAN solution)

CaE < 1 Prolate
(R/S < 1)

Deformation,
pinch-off, tip

streaming

DC field, effect
of viscosity

[90] A and N
Leaky-dielectric model,

boundary element method,
interfacial charge convection

CaE < 3 Oblate
(R/S > 1)

Deformation,
Quincke
rotation

DC field, 3D
simulation

Single-phase droplet (surfactant-laden)

[72] E and A

Leaky-dielectric model,
linear stability analysis,

o/o emulsion (PVDF/PS, S/C,
C/S),

w/o emulsion (W/S), surfactant
(PS-b-PMMA, Tween 60, etc.),

non-Newtonian fluid
(XAN solution)

CaE < 1 Both

Deformation,
bulbous end,

tip
streaming

DC field, effect
of viscosity,
non-ionic
surfactant

[84] E and N

Level-set method,
ghost-fluid method,

w/o emulsion (W/Marcol 52),
surfactant (Span 80)

CaE < 0.3 Prolate
(R/S < 1)

Deformation,
breakup

DC field,
non-ionic
surfactant

Single-phase droplet (particle-covered)

[91] E and A
Leaky-dielectric model,

o/o emulsion (S/C), particle (Al,
glass, PMMA, PE, etc.)

CaE < 5 Oblate
(R/S > 1)

Deformation,
Quincke
rotation

DC field,
particle

self-assembly

[92] E and A
Leaky-dielectric model,

o/o emulsion (S/C),
particle (PE)

1 < CaE < 8 Oblate
(R/S > 1)

Quincke
rotation

DC field,
micro-motor

Multi-phase droplet (clean)

[13] E, A, and N

Leaky dielectric model,
level-set method,

o/o/o emulsion (C/S/C),
electrolyte (Red-O dye)

CaE ≤ 1 Prolate/Oblate

Deformation,
pinch-off,

bulbous end,
tip

streaming

DC field, effect
of viscosity, and

R/S

[93] A

Leaky-dielectric model,
closed form analytical solution,

o/o/o emulsion (C/S/C,
C/Corn/S, S/C/S, etc.)

CaE < 0.1 Both/Both Deformation DC field

[94] E o/w/o emulsion (S/W/S),
w/o/w/o emulsion (W/S/W/S), CaE < 0.1 Oblate/Prolate,

P/O/P

Eccentricity
stability,

electro-phoresis
DC field

[95] E and N
Leaky dielectric model,

phase field model,
w/o/o emulsion (W/C/S)

CaE < 1 Prolate/Prolate
Deformation,
pinch-off, tip

streaming
AC field
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Table 1. Cont.

Ref. Approach a Method b,c

Electric
Capillary
Number

(CaE)

Deformation
Type Characteristics Remarks

Multi-phase droplet (surfactant-laden)

[16] E and A
Leaky dielectric model,

w/o/o emulsion (W/S/C),
surfactant (Tween 80)

CaE ≤ 1 Prolate/Oblate Deformation,
bulbous end DC field

[25] E and A

Leaky dielectric model,
o/w/o emulsion (HC/WE/S),
w/o/o emulsion (WE/C/S),
surfactant (Span85, Brij58)

CaE < 1 Both/Oblate Pinch-off, tip
streaming

DC field,
multi-core

double emulsion

a E: Experimental, A: Analytical, N: Numerical. b S: Silicone oil, C: Castor oil, W: DI water, G: Glycerol solution, HC:
Hexane and chlorobenzene, WE: Water-ethyl alcohol mixture. c PAM: Polyacrylamide, XAN: Xanthan gum, AOT:
Dioctyl sulfosuccinate sodium salt, TBAB: Tetrabutylammonium bromide.

3. Background and Theory

It was a general perception before the seminal work by Taylor that the liquid droplets submerged
in another immiscible liquid behave as a perfect dielectric and that their exposure to an electric field
will always result in prolate deformation (elongation along the direction of the electric field) of the
interface [96]. This concept was presented as the electro-hydrostatic (EHS) theory. This theory always
predicted that the electric stresses act normal to the interface. However, later it was found by the
experiments of Allan and Mason that all the dielectrics do not always exhibit elongation along the electric
field direction and contrary to EHS theory, some show oblate deformation (elongation perpendicular
to the direction of the applied electric field) [97]. Motivated by these experimental findings, Taylor in
his pioneer work introduced the LDM, assuming that liquids with finite conductivities permit slight
current flow through them and result in accumulation of free charge at the liquid-liquid interface [1,2].
The interaction of this free charge with the electric field results in the creation of net tangential electric
stresses in addition to the normal stresses. Since hydrodynamic stresses should also exist to balance
the tangential electric stresses, Taylor concluded the existence of flow circulations, which were later
confirmed experimentally. Taylor’s theory predicts the small deformation of emulsion droplets under
Stokes flow reasonably well. Later, Torza et al. [7] studied the response of droplets both experimentally
and theoretically under DC and AC electric fields and found that Taylor’s theory underestimates
the deformation for most of the cases, though the sense of the deformation observed in experiments
agreed well with Taylor’s predictions. Ajayi [3] improved Taylor’s theory and calculated the droplet
deformation up to a second-order approximation. His theory agreed with the experimental results up
to a larger limit of droplet deformation compared to Taylor’s theory. In addition to the steady-state
deformation, Esmaeeli and Sharifi [5] predicted the transient deformation of droplet.

3.1. Non-Dimensional Parameters

For a droplet of radius, a, under an unperturbed external electric field strength Eo, the characteristic
velocity U∞ is defined as:

U∞ = ε2E2
oa/µ2 (1)

The droplet EHD problem depends on the non-dimensional parameters based on the liquid
properties, such as conductivity ratio (R = σ1/σ2), permittivity ratio (S = ε1/ε2), and viscosity ratio
(M = µ1/µ2) between the inside and the outside liquids. Here, the subscripts ‘1′ and ‘2′ denote the
droplet and outside liquid, respectively. Non-dimensionalization of the governing equations results
in other various non-dimensional parameters, such as flow Reynolds number (Re), electric Reynolds
number (ReE), and electric capillary number (CaE). The Re is the ratio of inertial to viscous forces and
is expressed mathematically as:

Re = ρ2aU∞/µ2 (2)
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where ρ2 is the density of outside liquid. LDM is valid only for low flow Reynolds number Re ≤ O(1)
and for small droplet size.

The ratio of the viscous to the inertial force and surface tension is called the Ohnesorge Number
(Oh), and controls the transient modes of deformation, such as monotonic and oscillating,

Oh = µ/
√
ργa (3)

Electric capillary number is defined as the ratio between the magnitude of electrical stresses
(ε2E2

0) and capillary stresses (γ/a), where γ is the interfacial tension between two liquids, and
controls/delineates the droplet deformation regimes, such as stable and unstable,

CaE = µ2U∞/γ = ε2E2
oa/γ. (4)

Electric Reynolds number is defined as the ratio of the charge relaxation time scale (tc = ε2/σ2)
to the time scale of charge convection by flow (th = µ2/ε2E2

0). A small value implies that the charge
convection effects are negligible. Based on the medium properties, it is given as:

ReE = tc/th = ε2
2E2

o/µ2σ2 (5)

Another important non-dimensional number is the Saville number (Sa), which is the ratio
of the electric capillary number and electric Reynolds number and decides the droplet breakup
mode transitions,

Sa = ReE/CaE (6)

LDM assumes the interface is instantly charged, i.e., the surface charge convection effects
represented by electric Reynolds number (ReE) are negligible.

3.2. Govening Equations of Leaky Dielectric Model (LDM)

Here, we summarize the core governing equation of LDM. Note that the equations reproduced
here are for a single-phase emulsion droplet.

3.2.1. Electric Field Equations and Their Solutions

For a general dynamic system, electric field (
→

E) and magnetic field (
→

B) are coupled in the governing
Maxwell equations [98]. The Faraday’s law is given as:

∂
→

B
∂t

+∇×
→

E = 0. (7)

Saville [53] showed that with small electric currents and in the absence of external magnetic field,
Maxwell equations can be simplified significantly, and the Faraday’s law becomes:

∇×
→

E = 0. (8)

Equation (8) shows that the electric field is irrotational and thus,
→

E = −∇V, where V is the electric
potential and the droplet is assumed to be placed in an unperturbed external electric field strength of
magnitude Eo.

Gauss’s law is given as:

Q = ∇·
(
ε
→

E
)

(9)

where Q is the volumetric charge density and ε is the liquid permittivity.
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Conservation of charge is another important governing equation given as:

∂Q
∂t

+∇·Iρ = 0, (10)

where Iρ is the current density defined as:

Iρ = σ
→

E + Q
→
u (11)

The above equation shows that the charge movement is owing to the Ohmic conduction and the
convection, respectively. Here,

→
u is the liquid velocity and for incompressible liquids with uniform

properties in each of the phases; Equations (9)–(11) are combined to give

DQ
Dt

+
σ
ε

Q = 0, (12)

where D/Dt = ∂/∂t +
→
u ·∇ is the material derivative. The solution of the above equation yields:

Q = Qo exp(−t/tc). (13)

The above equation shows that the volumetric charge decays by time exponentially and becomes
zero in the bulk. Where, tc = ε/σ is the charge relaxation time scale or the rate of charge decay.
Provided that if tc is much smaller than the time scale of any other process of interest, then the charge
immediately accumulates at the interface and Equation (11) becomes:

Iρ = σ
→

E ,

∇·

(
σ
→

E
)
= 0.

(14)

and for liquids with constant properties:

∇·
→

E = 0. (15)

As the electric field is irrotational and
→

E = −∇V, this equation results in:

∇
2V = 0, (16)

where ∇2 is the Laplacian operator? For a single droplet with azimuthal symmetry, the electric
potential V is only a function of r and θ in the spherical coordinates. For a droplet of radius a
under an unperturbed external electric field strength Eo, the solution of Equation (16) with boundary
conditions [1,7],

V1(0,θ) should be bounded,
V1(a,θ) = V2(a,θ),

σ1∂V1/∂r = σ2∂V2/∂r,
V2(∞,θ) = Eor cosθ,

(17)

leads to the electric potential at the droplet inside V1 and droplet outside V2 given as:

V1 =
3

R + 2

( r
a

)
cosθ aEo, (18)

V2 =

[( r
a

)
−

R− 1
R + 2

(a
r

)2
]

cosθ aEo. (19)

The electric field at the inside and the outside of the droplet can be determined by taking the
gradient of the electric potential given in Equations (18) and (19), respectively.
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The Maxwell stress tensor is given as [99]:

TM = ε
→

E
→

E −
1
2
ε
→

E ·
→

EI. (20)

The divergence of Maxwell stress tensor determines the electric force per unit volume of the liquid
( fE) that is substituted in Navier–Stokes equation. Conveniently, electric stresses can be split into
normal and tangential components in a t− n coordinate system and their jumps across the interface
have a direct impact on the flow field and deformation of the droplet at the steady state, respectively.

The jumps in the tangential ‖
→

TM,t‖12 and normal components ‖
→

TM,n‖12 of electric stresses can be found
by the evaluation of the stress tensor at both sides of the droplet interface where En ≡ Er and Et ≡ Eθ,
where ‖R‖12 denotes the jump of the property, “R2 −R1” across the interface.

‖TM,θ‖12 =
9
2

S−R

(R + 2)2 ε2E2
o sin 2θ, (21)

‖TM,r‖12 =
9
2

(
R2 + 1− 2S

)
cos2 θ+ S− 1

(R + 2)2 ε2E2
o . (22)

From these equations, one can deduce the direction of shear stresses that are particularly important
in determining the flow circulations. When R > S, the direction of net shear stress is from the equator
to the poles and vice versa.

3.2.2. Fluid Flow Equations and Their Solutions

The governing equation for fluid motion with velocity (
→
u), viscosity (µ), and pressure (p) is the

conservation of mass and momentum.
∇·
→
u = 0, (23)

µ∇2→u + fE = ∇p. (24)

The divergence of the Maxwell stress tensor from Equation (20) gives:

fE = ∇·TM = Q
→

E −
1
2

→

E
2
∇ε. (25)

As discussed above, if the charge instantly accumulates at the interface, for example, for a leaky
dielectric system, the volumetric charge density (Q) is zero in the bulk and for liquids with constant
properties, ∇ε = 0. Thus, fE = 0 in the bulk and Equation (24) reads

µ∇2→u = ∇p. (26)

This shows that the electric force affects the solution only through the momentum jump boundary
condition at the interface. The solution of the resulting Stokes equation can be obtained by introducing
a stream function at the two sides of the droplet interface [100].

ur =
1

r2 sinθ
∂ψ

∂θ
, (27)

uθ =
1

r sinθ
∂ψ

∂r
, (28)

D4ψ = 0. (29)
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D4 = D2
(
D2

)
, where D2 = ∂2/∂r2 +

(
sinθ/r2

)
(∂/∂θ)[(1/ sinθ)(∂/∂θ)] is a well-known differential

operator appearing in Stokes equation. The general solution of ψ is made specific by the following
boundary conditions:

ur,1 and uθ,1 should be bounded at r = 0,
uθ,1(a,θ) =uθ,2(a,θ),

ur,1(a,θ) = ur,2(a,θ) = 0,

‖
→

TH,θ‖12 + ‖
→

TM,θ‖12 = 0,
ur,2(∞,θ) = uθ,2(∞,θ) = 0.

(30)

The solution using the above boundary conditions at a steady state gives:

ψ1 =

[( r
a

)3
−

( r
a

)5
]
Umaxa2 sin2 θ cosθ, (31)

ψ2 =

[(a
r

)2
− 1

]
Umaxa2 sin2 θ cosθ, (32)

Umax =
9ε2E2

oa(S−R)

10µ2(1 + M)(R + 2)2 (33)

The velocity field is obtained from Equations (27) and (28).

ur,1 =

[( r
a

)3
−

( r
a

)]
Umax

(
1− 3 cos2 θ

)
, (34)

uθ,1 =
1
2

[
5
( r

a

)3
− 3

( r
a

)]
Umax sin 2θ, (35)

ur,2 =

[(a
r

)2
−

(a
r

)4
]
Umax

(
1− 3 cos2 θ

)
, (36)

uθ,2 =
( r

a

)4
Umax sin 2θ. (37)

From these equations, it is evident that the flow direction is from the poles to the equator if Umax

is positive and vice versa. On the other hand, the sign of Umax depends on the sign of quantity (S−R).

3.2.3. Taylor Deformation Parameter (D)

The deformation or distortion of the droplet interface is caused by the electric and the hydrodynamic
fields being discontinuous at the interface, resulting in the interfacial stress jumps countered by the
interfacial capillary stresses. [

‖σH,r‖12 + ‖TM,r‖12

]
= γκ, (38)

where σH,r are the normal hydrodynamic stresses (‖σH,r‖12 = ‖TH,r‖12 − ‖p‖12). ‖TH,r‖12 is found
from the velocity field and ‖p‖12 is obtained by integrating Equation (26). The coupling between
hydrodynamic and electric fields occur at the interface.

For small deformations:
κ =

2
a
+

8D
3a

(
3 cos2 θ− 1

)
, (39)

where the Taylor’s deformation parameter D is defined as:

D = (L−W)/(L + W), (40)
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where L and W represent the length of the axis of the deformed droplet parallel and perpendicular to
the electric field direction, respectively. Additionally:

‖σH,r‖12 = (2 + 3M)
(
1− 3 cos2 θ

)µ2Umax

a
. (41)

Substitution from Equations (22), (39) and (41) in Equation (38) gives a deformation of droplet in a
uniform electric field:

DDC = 9
16 CaE fd,

fd = 1
(R+2)2

[(
R2 + 1

)
− 2S + 3(R− S)

(
3M+2
5M+5

)] (42)

where CaE is the electric capillary number and fd is the deformation characteristic function When fd > 0,
the droplet shows prolate deformation and, when fd < 0, it shows oblate deformation. A leaky dielectric
droplet remains spherical if fd = 0 (See Figure 2A). The deformation-circulation map depends on R
and S of the system. If S/R < 1, the flow direction is from equator to pole and resulting shape of the
droplet is always prolate (Region I). On the other hand, if S/R > 1, the flow direction is from the pole
to equator and droplet shape can be prolate (Region II) or oblate (Region III) as shown in Figure 2B.
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Figure 2. Steady deformation-circulation maps of single-phase emulsion droplet under weak DC/AC
electric field. (A) Deformation regimes depending on conductivity ratio (R), permittivity ratio (S), and
viscosity ratio (M) as predicted by leaky dielectric theory (LDM). (B) Flow patterns surrounding the
droplet in DC electric field for different regimes as mentioned in (A) [68]. (C) Flow patterns surrounding
the droplet in an AC electric field for different regimes [101].

Ajayi [3] used a domain perturbation method to improve the deformation predicted from Equation
(42) by incorporating second-order function of CaE, and the formulations are given as [59],

DDC = k1CaE + k2Ca2
E + O

(
Ca3

E

)
, (43)

where
k1 = (9/16) fd,

k2 = k1

[(
9
5

R−1
R+2 −

1
16

)
fd + R−S

(R+2)2 β
]
,

β = 23
20 −

139
210

(
1−M
1+M

)
−

27
700

(
1−M
1+M

)2
.

(44)

The transient deformation, DDC(t) of the droplet has an exponential form given as [5]:

DDC(t) = D∞[1− exp(−t/τ)],

τ =
(19M+16)(2M+3)aµ2

(40M+4)γ .
(45)

Here, D∞ is the steady state deformation as calculated from Equations (42) or (43).
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3.2.4. Effect of AC Electric Field

The theoretical foundation was established by Torza et al. [7] who considered a droplet under an
AC electric field, Eext(t) = Eo cosωt, within the Stokes flow regime, where ω is the frequency of applied
electric field. The net normal ‖TM,r‖12 and tangential electric stresses ‖TM,θ‖12, the velocity field

→
u , and

the deformation D have a time-independent steady component (s) that is a function of frequency in
addition to another important parameter and a time-dependent component (t) with frequency twice
that of frequency of an applied electric field.

RAC = Rs +Rt. (46)

Here R represents one of ‖TM,r‖12, ‖TM,θ‖12,
→
u , and D. For the steady component of the stress, the

deformation is given by an equation similar to (42), namely:

Ds =
9

16 CaE fs,

fs = 1− R(11M+14)+15(M+1)+S(19M+16)+15Π2(M+1)(2S+1)
5(M+1)[(R+2)2+Π2(S+2)2]

, (47)

where fs is the deformation characteristic function for an AC electric field, which determines the
sense of drop deformation, and Π = ε2ω/σ2 ≡ tc/te, where tc = ε2/σ2 and te = 1/ω are the charge
relaxation and the electric field time scales. For ω→ 0 , fd = fs and the steady deformation (Ds) are
same as the deformation under a DC electric field, provided that

Erms = lim
T→∞

√
1

2T

∫ T

−T
(Eo cosωt)2dt =

Eo
√

2
, (48)

in place of Eo in the Taylor’s solution (Ds = (1/2)DDC). For ω→∞ , the steady deformation (Ds) is
same as the solution provided by Allan and Mason [97] (DDC_PD = (9/16)CaE(S− 1)2/(S + 2)2) for a
perfect dielectric in a DC electric field, provided that Erms = Eo/

√
2 is used (Ds = (1/2)DDC_PD). In

this case, the charge relaxation time scale (tc) is much larger than the timescale of the electric field (te)

and hence the system behaves as a perfect dielectric. The transition between prolate and oblate ellipse
takes place at a critical frequency defined as

ωcr =
σ2

ε2

√
5(M + 1)(R2 + 1) + (9M + 6)R + (16 + 19M)S

5(M + 1)(S− 1)2 . (49)

For ω > ωcr, Ds > 0 (prolate deformation), and for ω < ωcr, Ds > 0, or Ds < 0 (oblate deformation)
(See Figure 2C). At ω = ωcr, the drop remains spherical (Ds = 0). For the time-dependent part,

Dt =
9

32
CaE

Φ cos(2ωt + α)(
1 + k2λ2

2

)1/2

, (50)
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where

Φ ≡
{

f 2
s +

Π2(19M+16)(R−S)2[(M+1)(20S−1)−3]

25(M+1)2[R2(1+2R)2+Π2(S+2)2]
2

}1/2

,

k ≡ ωµ2a/γ,

cosα ≡ h∗+h∗
2I , sinα ≡ h∗−h∗

2I
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where i is imaginary unit, and h∗ represents the complex conjugate of h∗.
To evaluate how much oscillatory deformation (Dt) affects the overall deformation compared to

the steady deformation (Ds), we consider the following ratio:

Dt

Ds
=

Φ cos(2ωt + α)

2 fs
(
1 + k2λ2

2

)1/2
, (52)

Obtained from Equations (47) and (50). The dimensionless parameter k, defined by Equation (51)
and which plays an important part in characterizing the ratio (Dt/Ds), may be considered as the ratio
of the oscillatory hydrodynamic stress (ωµ2) and the capillary pressure (γ/a) at the droplet interface.
When ωµ2 →∞ and γ/a remains fixed, k→∞ and Dt/Ds →∞ , the droplet surface being unable to
respond to the oscillating stress.

4. Single-phase Emulsion Droplets

4.1. Deformation

As discussed in Section 3, the droplet can undergo prolate or oblate steady deformation. The
EHD of single-phase emulsion droplets can also be categorized with respect to electric capillary
number (CaE) and steady or transient deformation (D). Taylor’s LDM predicts the deformation of
droplets within low-deformation limit, i.e., when CaE � 1 adequately well. In this case, the droplet
adopts a spheroidal shape. If the electric field strength is increased, the droplet is susceptible to
instabilities and breakups, and LDM no longer remains valid. The steady and transient deformation
of droplets at a low electric field is vastly studied and is well understood. In literature, various
analytical, numerical, and experimental studies addressing different issues, such as effect of inertia,
charge convection, charge relaxation, and type of electric field (AC or DC, uniform or Non-uniform),
are found [4–6,8,9,11,24,54,61,68,102–111].

4.1.1. Under DC Electric Field

The transient deformation of a droplet essentially depends on two dimensionless numbers,
Ohnesorge number (Oh) and the Reynolds number (Re) [68]. When Re � 1 or Oh > 1, the droplet
always has a steady mode represented by monotonic deformation during its transient evolution.
Whereas, if Re � 1 and Oh < 1, the droplet has an oscillating deformation before achieving the
steady configuration. The droplet has a quasi-steady mode of deformation at the borderline region
that distinguishes the monotonic and oscillating deformation regions (See Figure 3A,B). Feng and
Scott showed that the droplet shape may change from oblate to prolate due to the inertial effects
associated with the increase in the strength of the electric field [6]. The main effect of charge convection
is to reduce the interfacial velocity that results in more deformation of a prolate droplet, while an
oblate droplet undergoes lesser deformation. Lanauza [103] and Das et al. [4] showed that the surface
charge convection causes formation of “charge shocks” near an oblate droplet’s equatorial region. The
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experimental data for the deformation of a silicone oil droplet in castor oil is as shown in Figure 3C.
All the theoretical or numerical models fail to capture the dynamics except the one that considers the
charge relaxation and convection effects.Micromachines 2020, 11, x 12 of 30 
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(Re) parametric space [68]. (C) The effect of charge relaxation and convection on transient deformation
of a silicone oil droplet in castor oil [60]. (D) Evolution of the deformation with time. (E) Evolution of
the kinetic energy of the fluid system with time [101].

4.1.2. Under AC Electric Field

Although the sense of steady-state flow circulation pattern in an AC electric field is the same as
that in a DC electric field, the sense of Ds is not the same as that of DDC. Instead, it depends on the
field frequency ω being below or above a critical frequency ωc, defined by Equation (49) [7,101,112].
Esmaeeli and Halim [101] compared the transient deformations of droplet in a DC electric field to those
in an AC electric field using direct numerical simulation (DNS). For the range of the physical parameters
used in their study, the evolution of the drop deformation DAC with time t showed that the drop
settled to its quasi-steady state in a relaxation time tr = (µ1 + µ2)a/γ (See Figure 3D). Additionally,
they showed that the kinetic energy of the fluid system is minimized when the rate of the deformation
(∂DAC/∂t) is zero, where there is a state of minimum or maximum deformation. On the other hand, it is
maximized when in the state of steady deformation during the deformation half-cycle (See Figure 3E).
Esmaeeli [112] showed flow field in and outside of drop in an AC electric field, and evolution of the
total deformation DAC versus nondimensional time ωt for three different deformation regions.

4.2. Instabilities and Breakups

The dynamics of a droplet under a strong electric field when CaE & 1 depends on the ratio of
electrical conductivity to electrical permittivity (R/S).

4.2.1. Prolate Deforming Droplets

In most of the studies related to single-phase droplets, the droplet generally settles to an equilibrium
shape under a relatively weak electric field. However, if the strength of the electric field is high and
R/S > 1, then the droplet becomes unstable and thereby disintegrates or breaks into daughter droplets.
This topic is covered by different authors who have tried to determine the critical parameters to
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distinguish between the stable and unstable regimes [6,8,9,15,22,26,59,61,113]. The numerical models
are developed assuming ellipsoidal or slender shapes. Sherwood [61] studied the droplets under
a strong electric field using boundary integral method. Similar to Sherwood, Lac and Homsy [59]
used an axisymmetric boundary integral method and studied droplet stability by changing different
parameters. Bentenitis and Krause [8] theoretically studied the large deformation of the droplets,
extending the conventional leaky dielectric model by analytical solutions of an electric field and flow
field in a framework of spheroidal deformation. Figure 4A shows a transient evolution of a droplet
that continuously stretches under the applied electric field and eventually becomes unstable, ejecting
daughter droplets at the side apex. It was reported that as the droplet’s semi-major axis becomes
greater than 1.5 times its undeformed radius, the droplet becomes unstable [15]. For the case of a castor
oil droplet in silicone oil, this instability occurred at CaE ∼ 0.25 (See Figure 4B). However, the critical
electric capillary number for a conducting droplet, such as a water droplet in silicone oil, is well known
to take place at CaE ∼ 0.2± 0.2 [6,61].
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Figure 4. Breakup of a prolate droplet under a strong DC electric field. (A) Transient evolution of a
castor droplet in silicone oil and breakup at the side ends. (B) Non-dimensional stretching vs. electric
capillary number leading to instability (reproduced from [15] with permission from The Royal Society
of Chemistry). (C) Effects of viscosity ratio and liquid conductivity (in terms of Saville number)
on the droplet shapes [114]. (D) Droplet breakup mode transition depending on electric Reynolds
Number [115].

Two important modes of breakups are reported, such as end pinching and tip streaming [114,115].
In the former mode, the droplet is converted into bulbous-shaped lobes that eventually disintegrate,
whereas in the latter case, the droplet develops sharp cone-like tips ejecting jets. These jets eventually
disintegrate into tiny droplets. The transition between these modes is rather complex and depends
on various parameters, such as droplet conductivity (R), viscosity ratio (M) between the liquids, and
applied electric field (E0). Figure 4C shows the effect of viscosity ratio and droplet conductivity. At
M = 1, the droplet forms small daughter droplets at the tip with small protrusion. As the M increases,
the jet length and daughter droplet size increases. This shows the importance of viscous stresses to
balance the electrical tangential stresses to form a jet. Droplet conductivity effect is represented in terms
of Sa (Sa ∝ 1/σ2). A high-conductivity droplet ejects thinner jets and smaller daughter droplets via tip
streaming. For a low-conducting droplet, the jet vanishes, and the breakup is via end-pinching due to
rapid domination of capillary stresses. It is also notable that with a decrease in droplet conductivity, the
jet length first increases, reaches a maximum (Sa ≈ 1), and then it decreases [114]. It is also reported
that a change of mode can also take place due to surface charge convection effects represented by ReE,
as shown in Figure 4D [115].
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4.2.2. Oblate Deforming Droplets

The droplet undergoes electro-rotation under a strong electric field if R/S < 1 due to the surface
charge convection effects (See Figure 5A) [18,90,116–119]. The phenomenon is similar to the rotation
of solid particles in fluid known as Quincke rotation, where the induced dipole tries to align itself
with the electric field, and the resulting torque causes a rotation perpendicular to the direction of the
applied electric field. It takes place when the applied electric field is above the certain threshold value
(Eq). The value for a rigid sphere is given as [118,120]:

Eq =

√
2µ2σ2(R + 2)2

3ε1ε2(1−R/S)
. (53)
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above the threshold electric field of Quincke effect [90]. (B) Irregular rotational motions [118]. (C)
Equatorial streaming. (D) Mapping of different instabilities, such as electro-rotation, dimpling, and
equatorial streaming [18].

The equation is obtained by the balancing of electrical and viscous torques and is independent
of the size of sphere. The equation is often used to estimate the threshold of electro-rotation for the
liquid droplets and comparison with experimental results shows a relatively good approximation [117].
Results show that the droplet attains a steady tilt relative to the applied electric field and can undergo
irregular rotational motions (See Figure 5B). The electro-rotation stabilizes the droplet against breaking
by suppressing the droplet deformation. Recently, Brosseau et al. [18] observed very interesting
phenomena, such as droplet dimpling and equatorial streaming (Figure 5C,D). In the dimpling mode,
the droplet forms a torus shape; the torus subsequently breaks into relatively larger drops. This takes
place for droplets with M & 1 and CaE ∼ O(1). In the equatorial streaming mode, the droplet flattens
with the sharp edges. Concentric waves in the form of rings emanate from the thin edges that break
into tiny droplets. The critical conditions for this mode are R� 1, CaE � 1 and M . 0.1.

5. Particle-Covered Droplets

5.1. Deformation

A colloidal particle or Pickering droplet is formed when the particle-laden droplet or suspension,
for which R/S < 1, is subjected to an electric field [21,91,92,121–135]. Particles can be trapped at
the interface more rapidly under a weak electric field (~ 0.1 kV/mm) and once trapped, they remain
there. Depending on the strength of the electric field, particle concentration, electric conductivity,
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and size, various particle assemblies can be formed at the interface. Mikkelsen et al. [134] used low
to high particle coverage (~0.1 to ~0.8), and analyzed the conductive and non-conductive particle
conditions, as shown in Figure 6A. For high particle concentration of non-conducting particles, such
as polystyrene under a weak electric field, the oblate deformation of silicone oil increased as more
charges accumulated at the droplet surface and the EHD flows were suppressed. On the other hand,
as the electrical conductivity of particles entrapped at the silicone droplet interface increased, the
oblate deformation of the silicone oil droplet changed to prolate deformation. In this case, the dipole
moment becomes aligned with the electric field, unlike the case of the silicone droplet with the clean
interface or covered with non-conducting particles. For low particle concentrations in a range from
~0.1 to ~0.5 under a weak electric field, the particles at the interface can produce different assemblies,
such as “belts” (low-conductivity particles) or “chains” (high-conductivity particles). Belts may form
a static or dynamic sinusoid with a change in particle properties and electric field strength [91,134].
High-conductivity particles with regular size, such as spheres, organize into regular chains aligned
with the direction of an applied electric field, while random-size particles form random assemblies (See
Figure 6B). The particle belts can open and close over the entire surface of the droplet by application
and removal of the electric field, respectively [21] (See Figure 6C).
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Figure 6. Self-assembly of particles on the droplet interface by electro-hydrodynamic flows. Under a
weak electric field: (A) effect of particle electric conductivity and concentration on the particle structure
(reproduced from [134] with permission from The Royal Society of Chemistry). (B) Effect of particle
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electric conductivity and size on the particle structure [91]. (C) Opening and closing of belt [21]. Under
a high electric field: (D,E) effect of particle size, concentration, and electric conductivity on the particle
structure [91].

5.2. Instabilities and Breakups

For high particle coverage under a strong electric field, the droplet adopts peculiar drum-like
shapes and may even start rotating (electro-rotation phenomenon as discussed in Section 4.1.1) or
implode. The particle layer buckles, leading to various outcomes, such as ejection of particle clusters
or formation of ephemeral wings [122], as shown in Figure 6D. For low particle concentrations under a
strong electric field, droplets with chains (high-conductivity particles) eventually break at the side
ends (tip streaming), as shown in Figure 6E. Whereas, those forming belts (low-conductivity particles),
either redistribute to form counter-rotating vortices, lose their structure, or eject.

6. Surfactant-Laden Droplets

6.1. Deformation

The influence of interfacial properties on the droplet deformation and breakup under an electric
field has also been a topic of profound interest for decades [27,71–87]. The surface-active molecules
prompt to change in the interracial and rheological properties, leading to interfacial perturbations and
breakups [23,71,136–138]. It is important to note that under a weak electric field, the steady deformation
for a surfactant-laden aqueous droplet is lower at the same CaE (calculated in terms of surfactant-free
droplets), and this difference is more prominent for larger deformation [139,140] (See Figure 7A). This
could be the result of the surfactant harassing the EHD flows, though the already weak flows for
conducting droplets cannot fully justify it. The possible intriguing effect is the surfactant dilution
with an increase in interfacial area. The larger the deformation, larger is the increased interfacial area,
leading to an increased dilution and hindering the deformation significantly. The transient deformation
showed an interesting result that the droplet-stretching velocity decreased with an increase in the
non-dimensional surfactant concentration (C∗), however, as the surfactant concentration increased
beyond critical micelle concentration (C∗ > 1), there was no further decrease [27] (See Figure 7B). The
understanding of this dynamics is rather complex. The decrease in velocity for (C∗ < 1) is attributed to
the re-distribution of surfactant molecules with an increase in interfacial area and non-availability of
surfactant molecules from the bulk causing local surface tension gradients and Marangoni flows. These
flows oppose the droplet stretching and hence the droplet stretching velocity decrease. For (C∗ > 1), the
rate of exchange of the surfactant molecules from the bulk to the interface is still slow and saturation
in terms of Marangoni effect occurs. It is noteworthy that the exchange of surfactant molecules in
case of an electric field not only depends on viscosity ratio (M), but also on the permittivity (S) and
conductivity (R) of the liquids, as the circulation inside and outside the droplet relies on all these
parameters and can affect the droplet transient deformation.
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(B) Stretching dynamics [27]. (C) Breakup modes. (D) Conversion between breakup modes [83].

6.2. Instabilities and Breakups

Unlike the surfactant-free droplet, where the breakup modes are controlled by ratios of viscosity,
conductivity, and permittivity, dynamics of the interface manipulated by surfactant is another important
criterion in the breakup of a surfactant-laden droplet. The breakup of a surfactant-laden aqueous droplet
under a strong electric field can show different modes such as: conical shape-conical jetting, ellipsoidal
shape-conical jetting, ellipsoidal shape-filamentous breakup, and cylindrical shape-filamentous
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breakup [83] (Figure 7C). The conversion criterion between these breakup modes with respect
to electric capillary number and the increase in the surfactant concentration is specified in Figure 7D.
It has been shown that this behavior is similar to the tensile-fracture process in the elastic–plastic
mechanics and thus the stress-strain relationship is used to analyze the axial stretching.

7. Multi-Phase Emulsion Droplets

In the past few years, multi-phase droplets, such as double-emulsion droplets or compound
droplets with three liquid components (core, shell, and ambient) and two interfaces (core/shell and
shell/ambient), have gathered special attention due to their vast applications in various scientific
areas, such as in targeted drug delivery [141], artificial supply of oxygen in blood [142], etc. The
foundation of the theory of a double-emulsion droplet under an electric field is that of a single-emulsion
droplet as discussed in Section 3. A more comprehensive coverage of the governing equations is not
included in this review and can be found in literature [143,144]. An A/B/A type (core/shell/ambient) of
a double-emulsion droplet has the same liquid in the core, and ambient, and is essentially a two-phase
problem. On the other hand, an A/B/C type has three distinct liquid components. In this section, we
first consider the dynamics of double-emulsion droplets or compound droplets within a weak electric
field (CaE � 1) and, lately, under a strong electric field.

7.1. Deformation

The dynamics of a double-emulsion droplet within a weak electric field or small deformation limit
is extensively reported and well understood [33,67,93,94,143–151]. A/B/C types of a double-emulsion
droplets can show four distinct modes of deformation of core/shell-shell/ambient, i.e., prolate-prolate
(PP), prolate-oblate (PO), oblate-prolate (OP), and oblate-oblate (OO), which entirely depends on the
ratio (R/S) across each of the interface [67,93,143]. If R/S < 1, the interface deforms oblate and if
R/S > 1, it deforms prolate. For an A/B/A type, only two modes of core-shell deformation, i.e., PO and
OP, are possible. The use of an electric field in the centering of the core droplet can be found extensively
in literature and is well understood [42,145,148–150]. Oguz and Sadhal [145] conducted the earliest
study on the effects of a weak electric field on the dynamics of compound droplets. They showed that
under an electric field, stable equilibrium configuration of a compound drop is possible, which may
not be possible without using an electric field. T. Sukada et al. [147] showed that deformation and flow
strength are positively related to the strength of an electric field and core-to-shell droplet volume ratio,
using theoretical analysis and experimental observations.

Behjatian and Esmaeeli [143] studied the A/B/C type concentric emulsion analytically under a
DC electric field using domain perturbation method and showed various free-charge distributions
surrounding the interfaces depending on the relative magnitudes of R and S (See Figure 8A). They
also studied the deformation-time history of the double droplets under weak electric fields [93]. Their
analysis was based on the Laplace equation of charge distribution and considering the droplets to
have no net charge. Same as in LDM, electro-neutrality was assumed for the bulk liquids, and electric
and hydrodynamic tractions became discontinuous at the two interfaces. For Ri j < Si j, the charge
sense on the upper half of the core/shell and shell/ambient interface are the same with respect to each
other and as that on the supply electrode (+), while the lower half has the negative charge (−). The
oblate deformation of the interfaces and the OO configuration is expected. For Ri j > Si j, the charges
are reversed. Here, i j = 12. for core/shell and i j = 23 for shell/ambient, respectively. The prolate
deformation of the interfaces and the PP configuration is expected. For OP and PO configurations, the
core/shell and shell/ambient interfaces have opposite charges with respect to each other. By changing
the direction of electric field, the charge sense can be reversed but the direction of the tangential
electric stress remains the same. Unlike the case for a single-phase emulsion droplet, it is possible
to get two counter-rotating vertices in a multi-phase emulsion droplet, as shown in Figure 8B. The
generation of toroidal vortices depends on the electrical properties of the constituting liquids; however,
the precise criterion has still not yet been established. The extent of the deformation of the inner
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core droplet also depends on the electrical conductivity of the shell. Soni et al. [144] extended the
analytical analysis to an AC electric field. They showed that in the limit of zero frequency, their results
reduced to those derived by Behjatian and Esmaelli [143]. Abbasi et al. [14] showed that for shells
comprised of fewer conductivity liquids and R23 � 1 � R12, the electric potential lines are densely
concentrated in the shell region and reach the core/shell interface easily, causing deformation of both
the core and the shell droplets. On the other hand, if shell liquid has large electric conductivity and
R23 � 1� R12, it behaves like a shield and electric potential lines cannot penetrate through it, resulting
in a negligible core deformation (See Figure 8C). While Behjatian and Esmaeeli reported a steady
droplet configuration under a weak electric field, it was later reported in an experimental study [13]
that owing to electrophoretic effects and the presence of net charge arising from the existence of electric
double/diffuse charge layers on the droplet, the steady configuration was not possible for some of the
cases. As the charged core droplet experiences the electric field, it moves towards the droplet side apex
and is eventually dispensed into the ambient.
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7.2. Instabilities and Breakups

This feature of multi-phase droplets is relatively less explored. Only a few studies have explored
the breakups within a certain range of electric and hydrodynamic properties [13,14,16,25,30,95,152]. In
one of the earliest studies, Ha and Yang established the breakups of conducting emulsion droplets
comprised of inhomogeneous inner phase encapsulated by an outer membrane phase suspended in
silicone oil [25]. Castor oil and aqueous phase were used to form oil-in-water (o/w) or water-in-oil (w/o)
emulsions, depending on their fraction of volume, comprising either the membrane or non-uniform
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inner droplet phase. They recognized that the existence of non-uniformity in the form of multiple inner
droplets can significantly alter the breakup modes and stability as compared to homogenous Newtonian
conducting droplets. Pinch off and tip streaming modes of emulsion-breaking were observed. Soni et
al. [95] explored the breaking of a A/B/C type droplet comprised of NaCl aqueous/castor oil/silicone oil
in an AC electric field exhibiting PP mode of deformation, as shown in Figure 9A. The breaking of
the core occurred at a larger strength of electric field compared to a NaCl aqueous droplet in a bulk
castor oil. This was due to less penetration of electric potential as the shell was acting as a shield.
Recently, Abbasi et al. explored the dynamics of a double-emulsion droplet with a low electrical
conductivity shell beyond the small deformation limit in two separate studies and explored various
breakup modes of a core droplet under varying physical and electrical parameters, such as radius ratio,
electric capillary number, and/or interfacial tension [13,16]. In the former, breakups of a A/B/A type
of double-emulsion comprised of castor oil/silicone oil/castor oil (core/shell/ambient) for which PO
mode of deformation occurs is thoroughly explored. Four distinct breakups were reported, such as
uni-directional and three different bi-directional breakups. The charge convection effects caused a
change in the breakup of the core from the bulbous-shaped lobes to the formation of conical ends. The
breakup modes were then plotted on a core-to-shell droplet radius ratio vs. electric capillary number
parametric space. In the later study, a surfactant was introduced at the aqueous core phase of an A/B/C
type of double-emulsion to change the core/shell interfacial tension [16]. The core droplet instability
lead to the formation of asymmetric Janus and snowman-like stable or unstable ternary droplets, as
shown in Figure 9B. By theoretical analysis, the length of stretched semi-major axis of the core at which
the instability occurred was established to be 1.5 times its initial undeformed radius, and breakup
modes were delineated on a radius ratio vs. electric capillary number parametric space at different
non-dimensional surfactant concentrations (See Figure 9C). It is pertinent to mention here that the
dynamics of a double-emulsion droplet exhibiting OO mode of deformation under a strong electric
field still remains unexplored.
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8. Applications

8.1. Mass Production of Micro/Nano Droplets

EHD-based electric shear stress is used to produce tiny droplets by cutting off the liquid interface
formed under the nozzle, which is called electrospray [153]. Also, in droplet-based microfluidic
systems, electric fields are used to generate smaller droplets [154]. In addition to generating simple
tiny single droplets or particles, these techniques can be used to make more complex droplets,
such as double droplets [141,155], and thus many studies have been conducted in the fields of
bioengineering [156], medical [157], and pharmaceutical [141]. Similarly, breakup at high voltage
was observed in free-emulsion droplets [15] or emulsion droplets anchored on a nozzle [158,159]
(Figure 10A,B). The droplet that is stretched under a strong electric field produces tiny daughter
droplets at both ends, which is called tip streaming [15,25]. Using this phenomenon, it is possible
to generate many small droplets ranging from sub-nano to micro size. Moreover, under special
conditions, the droplets show equatorial streaming, which can be used to create a large number of
micro droplets [18] (Figure 10C). In a more complex case, the condition in which a compound droplet
breaks up was analyzed by Su et al., through a numerical analysis method [160].
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induced breakup of a liquid column from a nozzle, and small droplet formation behavior [158]. (B)
Electric production of emulsion droplets in a microfluidic system [161]. (C) Droplet generation via
streaming from the equator of a drop in an electric field [18]. (D) Stabilizing the shape of deformed
colloidal particles by the interfacial jamming of nanoparticles [121]. (E) Optical diaphragm based on the
particle self-assembly [162]. (F) Generation of an aluminum Janus particle using an electric field [163].

8.2. Functional Droplet/Particle Synthesis

The electric field can be used to produce and manipulate various types of droplets that are
not spherical. Brosseau et al. used cross-linking UV curable polymer (NOA 81, Norland Optical
Adhesive, Norland Products Inc., East Windsor, NJ, USA) drop to make spheroidal shapes via EHD
deformation [164]. On the other hand, in the case of droplets covered with high-concentration particles,
the unique shapes deformed by the EHD flow can be fabricated due to particle jamming even if the
electric field is removed [121,128,130] (Figure 10D). Manipulating particles anchored on the droplet
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interface is one of the promised techniques for designing functional droplet. Using active structuring
of a particle-covered droplet under the electric field, Rozynek et al. demonstrated a millimeter-sized
optical diaphragm [162] (Figure 10E). Li et al. redistributed aluminum nanoparticles on an o/w
emulsion droplet via an electric field for generating a Janus droplet [163] (Figure 10F). Moreover, an
AC electric field stabilized the double-emulsion droplet by centering the core droplet, which can be
used to synthesize a polymer shell or hollow particle [42].

8.3. Micro-Rotor

When R/S < 1, a droplet or particle shows a unique phenomenon, called Quincke rotation,
under a strong electric field. Particles on the electrode show a rolling or hovering motion with
Quincke rotation [165,166]. Many theoretical or experimental researches have been conducted for
Quincke rotation of polymer particles to make a rotor [165,167], motor [168], pump [169], and so
on. Similarly, a single droplet with/without particles also shows electro-rotation with ellipsoidal
deformation (Figure 11A). Electrohydrodynamic propulsion of two Pickering droplets placed at a close
proximately takes place at different angles relative to an applied electric field with the propulsion
velocities approaching 0.1 mm/s [92]. The electric field is below the threshold for the Quincke rotation
and the drops may co-rotate or counter-rotate perpendicular to the field (See Figure 11B).
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of particles from a w/o emulsion using an electric field [170]. (D) The releasing holes for material
transportation from/to the capsule [171].

8.4. Encapsulation/Target Delivery

The double emulsion type capsulation technique is an important technique in the process of drug
delivery or producing functional particles, but the resulting double emulsion may be too unstable
or too stable for these purposes. However, if an electric field is used, the core droplet can be moved
to the center [94,148] or ejected outward [13,14]. Tucker–Schwartz et al. showed that in the process
of encapsulation of a material having a density difference with a photocurable polymer, centering
through an electric field has a great influence on the stability of the capsule after the curing process [42].
Jia et al. used an AC field to initiate the release process and control the release direction of actives
encapsulated in single- and dual-core double-emulsion droplets [172]. Deng et al. demonstrated a
two-step selective controlled release under an AC field based on the discrepancy of the shell thickness
or core conductivity of the encapsulated droplet [173]. Moreover, some studies showed that the electric
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field can be used to manipulate the particles inside the droplet or on the droplet interface. Based on this
techniques, Nudurupati et al. demonstrated that it was able to extract particles inside the droplet [170]
(Figure 11C). Rozynek et al. suggested that the release rate of some areas of the droplet, named
releasing holes, can be increased by rearranging the particles using an electric field [171] (Figure 11D).

9. Conclusions and Future Perspectives

In this review, we discussed the droplet EHD in detail. We discussed the features such as droplet
deformation, instabilities, and breakups for single-phase and multi-phase droplets. The single-phase
droplet deforms prolate or oblate and undergoes instabilities above a threshold value of the electric
field. The low limit deformation is well-predicted by so-called Taylor’s leaky dielectric model, which is
the most established theoretical model to date for the droplet electrohydrodynamics, neglects the effects
of diffuse charge layers near the interfaces, and thus is incomplete to explain the electro-migration
of droplets under a direct current electric field. Therefore, an effort to derive a complete model
incorporating the electro-kinetic theory for liquid-liquid interface is required. Interesting phenomena,
such as tip streaming or equatorial streaming, can be used to produce many tiny droplets. Particles at
the emulsion interface can be manipulated to produce intriguing assemblies, such as belts, chains, and
caps, by controlling the physical and electrical parameters. High particle concentration can produce
colloids undergoing rotating flows under a strong electric field. Use of surfactant molecules alter
the deformation and droplet breakup dynamics. Development of simulation models are required to
understand the electrohydrodynamics of more complex interfaces, and those laden with surfactant or
coated with particles merit further investigations. A double-emulsion droplet shows different breakups
and can be controlled to produce Janus and ternary droplets. Simulating three-phase emulsion droplets
under an electric field is likely to display further interesting dynamics.

The applications of droplet EHD can be broad, such as mass production of micro droplets,
functional particle synthesis, development of micro-rotors, rigid ellipsoids, or complex shapes, and
so on. Such a method could then be implemented on a microfluidic platform, if a large quantity of
rigid, deformed complex shapes is to be produced. However, unfortunately the demonstration of
droplet EHD on a mass scale to produce species or development of new products has still not been
fully demonstrated. Still, there remain many issues and challenges that are either less explored or not
explored at all and warrant further investigations.
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