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Abstract: Currently, there are more than 1.5 million knee and hip replacement procedures carried
out in the United States. Implants have a 10–15-year lifespan with up to 30% of revision surgeries
showing complications with osteomyelitis. Titanium and titanium alloys are the favored implant
materials because they are lightweight and have high mechanical strength. However, this increased
strength can be associated with decreased bone density around the implant, leading to implant
loosening and failure. To avoid this, current strategies include plasma-spraying titanium surfaces
and foaming titanium. Both techniques give the titanium a rough and irregular finish that improves
biocompatibility. Recently, researchers have also sought to surface-conjugate proteins to titanium to
induce osteointegration. Cell adhesion-promoting proteins can be conjugated to methacrylate groups
and crosslinked using a variety of methods. Methacrylated proteins can be conjugated to titanium
surfaces through atom transfer radical polymerization (ATRP). However, surface conjugation of
proteins increases biocompatibility non-specifically to bone cells, adding to the risk of biofouling
which may result in osteomyelitis that causes implant failure. In this work, we analyze the factors
contributing to biofouling when coating titanium to improve biocompatibility, and design an
experimental scheme to evaluate optimal coating parameters.

Keywords: titanium coating; implanted medical devices; biomaterials; surface chemistry; chemical
descriptors; machine learning

1. Introduction

There is an increasing aging population [1–3] and an increasing use of implants such as total joint
replacement [2–4]. The life span of the hip implant [2,5] is around 10–15-years [3,4]. A major problem
with such implants is their failure and the consequent need of revision or re-operation which carries
major risks to the patients [4]. Implant failure can result from a variety of other reasons that include
infection [1,4], failure to integrate [1,6,7], biomechanical problems leading to stress protection and bone
resorption [8], and inflammatory reaction to implant degradation products [1–4,6,7].

Implant infection accounts for up to 30% of revision surgeries show complications with infections [2–
4]. One of the prophylactic measures to avoid infection is the use of antibiotics loaded into poly(methyl
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methacrylate) (PMMA), the bone cement applied around the implant [6]. PMMA creates a roughened
surface that promotes cell attachment and bone ingrowth, however, even this clinical standard has
been found to be problematic and unable to promote sufficient bone ingrowth to prevent long-term
implant failure, prompting a need for coating and other surface modifications. The development of
total joint replacement (TJR) implants that materially and structurally integrate into the surrounding
bone better will help extend implant life.

TJR implants in development rely on the use of porous foamed titanium surfaces for healing bone
to grow into the implant [9]. The development of bioactive coatings for implants can improve the
biocompatibility and long-term performance of implants. Cell-adhesive proteins can be crosslinked
together through the conjugation of methacrylate monomer groups to lysine side chains. Methacrylate
and acrylate monomers are esters with a reactive pi bond between the α and β carbons. Fujisawa and
Kadoma [10] showed that varyingα substitution (methacrylates are methylα substituted while acrylates
are not) and varying β substitution can have effects on the monomer resistance to hydrolysis. Although
methacrylates and acrylates can be polymerized using ultraviolet (UV) light and a photoinitiator,
previous work by Khademhosseini et al. [11] has shown that crosslinking methods alternative to
UV curing are readily available. In the current work we examine two protein-monomer conjugates
that have potential as bioactive coatings, gelatin methacryloyl (GelMA) and methacrylated troponin.
Methacrylate linkages can be conjugated to metal surfaces using atom transfer radical polymerization
(ATRP). Choi et al. [12] used ATRP to conjugate osteogenic growth factor, bone morphogenetic
protein 2 (BMP-2), to a titanium surface with polyethylene glycol (PEG)-methacrylate. Although
researchers are hesitant to use ATRP for biomedical applications due to slow reaction times and residual
impurities from use of metal catalysts [11,13], Rainier et al. [14–16] introduced photo accelerated ATRP
which has been joined by metal-free ATRP reactions [13,16]. The attachment of proteins containing
integrin-binding RGD sequences facilitate improved biocompatibility through stronger cell attachment
to implant surfaces. However, a drawback to creation of a biocompatible surface is that biofouling can
occur due to increased nonspecific bacterial attachment. Yarovsky et al. [17] used machine learning
to analyze chemical descriptors of polymeric surfaces [18] that have anti-fouling properties. Shiba
et al. [19] looked at the effectiveness of coating titanium with peptides with known antimicrobial
properties. Studies on protein adsorption to titanium surfaces [20,21] have looked at fibrinogen while
lysozyme has been looked at on other surfaces [17].

Using molecular dynamics, properties such as adsorption to metal surfaces can be predicted within
reasonable error [22–26]. While molecular descriptors can be reliably calculated using commercial
packages [17], there have also been attempts to make structure-based predict bioactivity [27–29]. To
our knowledge, this is the first attempt to make structure-based predictions of biocompatibility of
GelMA and other methacrylatyed proteins on titanium surfaces. In this paper, we use the structures
of troponin and collagen to create a generalizable model and workflow to predict biofouling on
protein-coated surfaces.

2. Biomaterial Modeling

Molecular modeling was performed in chimera and a molecular operating environment (MOE)
(Chemical Computing Group, Montreal, Canada). {1, 1, 1} Titanium Lattice was constructed to act as a
binding surface, with a cross platform construction of the structural model was important to conserve
compute resources. For globular proteins, structures were imported from RCSB and denatured strand
proteins were constructed from sequences obtained from the NCBI protein database (see Supplementary
Materials).

In the GelMA model, 60% of lysine residues were modified by methacrylation using the builder
function (Figures 1B and 2). The selection of modified residues was randomly assigned, similar to
synthetic conjugation of the residues. Multimer assemblies were covalently linked at methacrylated
lysines and the resulting structure was energy minimized.
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shown in orange (residues 81–89 and 183–192) the longer fragment (173–200) is colored cyan. Lysine
residues are colored beige and integrin-binding RGD sequences are green.

Protein descriptors were selected from a set of common molecular descriptors found in MOE as
well as potentially useful descriptors such as the zeta potential and mobility for coating electrically
sensitive surfaces of devices such as electrodes. The structures were converted to .mol2 format in
chimera and imported into AlvaDesc (Kode Chemoinformatics, Pisa, Italy). From the pool of 5000+

descriptors calculated for each structure, we selected a set of 421 (see supplemental files). Descriptors
were calculated using a multicore Thinkcentre workstation. We allocated runtimes of a few minutes to
several hours, and we set a cutoff of 18 hours after which calculation was terminated.

After initial molecular and chemical descriptor (32 descriptors) calculation, we performed an initial
principal component analysis (PCA) screen to gauge the data behavior upon dimension reduction. The
results were stored in a database file and the file was analyzed using PCA function in MOE.
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Subsequently, we calculated the selected pool of 421 descriptors, then exported the results and
pooled them into comma-separated files (CSV) format, then inserted the bioactivity data manually. We
used Scikit Learn, Numpy, Statsmodel and Pandas packages to complete machine learning on the data.
We split the data into 0.25 test set and remainder used the remainder as a training set for PCA. The
training and test set was rotated so that the model could be trained and tested on each peptide. We
generated a matching matrix and evaluated accuracy using sk-learn and NumPy (see supplemental
files). The target data was also treated as continuous and multiple linear regression was used to train a
model and make predictions about the coating proteins.

3. Results and Discussion

We generated a total of 32 molecular and chemical descriptors for each protein or polypeptide
conjugate. Descriptors that were consistently low or null valued were excluded, leaving 28 descriptors.
The protein set was plotted along the first two principal components seen in Figure 3A. Although the
data was not partitioned, a natural division arose along the PC1 axis.
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Figure 3. Results on initial datasets, (A). principal component analysis (PCA) of 32 descriptor set, (B).
activity prediction of antibacterial peptides from Shiba et al [19] using multiple linear regression.

A selection of the calculated descriptors is shown in Tables 1 and 2. We selected chemical
descriptors that can be compared to experimental values without great difficulty as well as values that
are useful for chemical simulation.

Table 1. Calculated chemical descriptors.

Molecule Mass (kDa) pI seq pI 3D r g Hydrodynamic Radius

Lysozyme (253L) 18.57 10.18 10.17 16.64 20.84
Fibrinogen (3GHG) 225.36 6.24 6.74 153.87 50.970001
Troponin-C (1NCX) 18.44 3.65 3.47 22.55 21.35

Collagen (1BKV) 7.96 12.6 10.29 24.8 13.92
Troponin-T (4Y99) 9.13 10.01 9.95 20.73 20.309999

Methacrylated-Troponin monomer 9.67 10.01 5.26 20.62 20.83
Methacrylated Troponin trimer 28.95 10.11 6.89 40.53 41.099998
GelMA trimer 210aa fragment 59.53 9.96 7.17 251 200.78999
GelMA trimer 30aa fragment 4.45 10.46 8.34 23.89 23.889999
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Table 2. Additional structure-based molecular descriptors.

Molecule Mobility Net Charge Dipole Moment Zeta Potential

Lysozyme (253L) 17 10.58 310.07001 30.82
Fibrinogen (3GHG) −50 −10.87 1442.53 −82.110001
Troponin-C (1NCX) −66 −33.23 267.32999 −119.47

Collagen (1BKV) 15 3.9300001 1209.37 28.559999
Troponin-T (4Y99) 6.5 5.1100001 707.23999 11.75

Methacrylated Troponin monomer −1.5 −0.07 631.57001 −2.73
Methacrylated Troponin trimer −3.7 −5.2399998 722.01001 −6.3400002
GelMA trimer 210aa fragment −0.12 −1.3200001 14932.37 −0.17
GelMA trimer 30aa fragment 5.5 3.01 597.71002 0

We then expanded the descriptor set and used the bacterial load in ng/cm2 from Shiba et al. [19]
as target variables for optimization by PCA. The bacterial load was categorized as high or low based
on a threshold of 100 ng/cm2. We also left the target data as continuous and performed multiple linear
regression (Figures 3B and 4). Through training the algorithm on antimicrobial peptides, we hoped
to predict similar structure-based activity in the methcrylated polypeptide polymers. Although the
training set produced consistent predictions with high dimensional data, the results on the test set
were not robust enough to make accurate predictions when applied to GelMA and other proteins. One
reason is the larger size of the proteins when compared to the peptides. During energy minimization,
smaller GelMA fragments aggregated in a fashion similar to that seen with hydrophobic sequences
of denatured proteins, resulting in precipitation from solution. The difference in energy-minimized
structures is seen for methacrylated troponin in Figure 4. The smaller GelMA aggregates may have
also distorted the value of some descriptors. Coarse-graining the model can allow model construction
without short fragments, though there is a cost in fine-grain structural resolution. Coarse-graining is
also critical to tactical use of computational resources while simulating docking of a coating protein
to the metal surface, as a step shows in our proposed workflow in Figure 5. This step was obviated
in Ti-GelMA system because of ATRP bonding. Another possible reason for the observed result was
the small training set size, as with a total of four peptides to allocate between the training and test
set, a smaller than ideal training set resulted. Seen in PCA and re-emphasized in multiple regression,
the model will predict a high bacterial load if most training set values are high, even if the ground
truth result is not. PCA and multiple regression are likely incapacitated by differing trends in an
extensive descriptor set. Alternative algorithms may be more capable of predictive discrimination. In
comparison with PCA, autoencoders have been shown to depict clearer trends and subgroups when
visualizing data while achieving comparable accuracy. Autoencoders can also be stacked into a deep
neural net to increase predictive abilities at the cost of increased training times and computational
demands [30,31]. Another strategy that could be useful is augmenting cheminformatic data prior to
algorithmic processing by an autoencoder or an alternative learning method. [32,33] Regardless of
whether or not autoencoders and data augmentation are used in the machine learning step, generation
and processing of the structure-based molecular descriptors and correlation with bioactivity data could
use our workflow (Figure 5).
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4. Conclusions

In this study, we examined the potential of using structural information about GelMA and other
proteins to predict their biocompatibility with implanted medical devices. We generated a workflow
that fed structural data into a machine learning pipeline. It is possible that with further development
many of these steps could be automated, generating software packages useful to the biomaterials
and medical device community. From this investigation, we found that cheminformatic methods
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can be applied to methacrylated proteins to evaluate their suitability for coating titanium implants.
Methacrylated proteins such as GelMA offer cell attachment sites for improved biocompatibility
over uncoated titanium, while other methacrylated proteins that have biomaterial properties such as
elasticity are important in the fabrication of stents for cardiovascular applications. Further development
of this work will allow methacrylated protein-coated titanium implants, which will be less susceptible
to biofilm formation and will show improvement in biocompatibility, leading to improvement in
implant integration. Although the most immediate application of protein coatings of metal are
medical devices, alternatives such as surface plasmon resonance, bio-organic solar cells or industrial
biosynthesis are a few of many possible applications which could benefit from efficient testing and
optimization of biocompatibility.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/11/1/87/s1.
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