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Abstract: This paper presents an adaptive hysteresis compensation approach for a piezoelectric
actuator (PEA) using single-neuron adaptive control. For a given desired trajectory, the control input
to the PEA is dynamically adjusted by the error between the actual and desired trajectories using
Hebb learning rules. A single neuron with self-learning and self-adaptive capabilities is a non-linear
processing unit, which is ideal for time-variant systems. Based on the single-neuron control, the
compensation of the PEA’s hysteresis can be regarded as a process of transmitting biological neuron
information. Through the error information between the actual and desired trajectories, the control
input is adjusted via the weight adjustment method of neuron learning. In addition, this paper
also integrates the combination of Hebb learning rules and supervised learning as teacher signals,
which can quickly respond to control signals. The weights of the single-neuron controller can be
constantly adjusted online to improve the control performance of the system. Experimental results
show that the proposed single-neuron adaptive hysteresis compensation method can track continuous
and discontinuous trajectories well. The single-neuron adaptive controller has better adaptive and
self-learning performance against the rate-dependence of the PEA’s hysteresis.

Keywords: piezoelectric actuator; hysteresis compensation; single-neuron adaptive control; Hebb
learning rules; supervised learning

1. Introduction

As a sub-nanometer-resolution actuation device, piezoelectric actuators (PEAs) have been widely
applied in various applications requiring nanometer-accurate motion [1–4]. However, the inherent
hysteresis nonlinearity of the PEA greatly degrades its positioning accuracy, thus affecting its
applicability and performance in precise operation tasks. The most significant characteristics of
the PEA’s hysteresis are the rate-dependence and asymmetry [5–7], i.e., the hysteresis loop becomes
thicker with the increment in the input rate (or frequency) and the hysteresis loop is not symmetric
about the loop center. These characteristics increase the complexity of the system and cause great
difficulties in hysteresis modeling and compensation.

To address the above problems, lots of control methods have been proposed to characterize and
compensate the hysteresis of the PEA. Physical models can be derived from physical measurement
methods, such as magnetization, stress–strain, and energy principles [8,9]. However, the mathematical
representations are often complex, making it difficult to obtain the inverse hysteresis model. In
the meantime, a phenomenon-based model is also proposed, such as the Preisach model [10],
Prandtl–Ishlinskii (PI) model [11,12], and Maxwell model [13]. As the inversion of the classical PI
model is analytically available, it has been widely utilized in much research to describe the hysteresis
characteristics of the PEA. After the inversion model is obtained, it can be utilized as a feedforward
hysteresis compensator. This modeling and inversion approach is widely adopted, and many adaptive
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methods can be integrated [14–17]. In order to avoid the inversion calculation, the direct inversion
method (DIM) is also proposed to identify the inverse hysteresis model directly from the measurements
in parameter identification [18–20].

For model-based hysteresis compensation, the performance of the controller is highly dependent
on the modeling accuracy of the hysteresis model. However, the PEA’s hysteresis is susceptible to many
factors, such as the external load and the frequency of the control input. This makes the modeling and
compensation of the PEA’s hysteresis very case-sensitive. As a result, a high-precision hysteresis model
is generally difficult to obtain. Therefore, many intelligent control algorithms have been proposed
to achieve higher robustness and adaptability. For instance, sliding mode control has been proposed
to improve the accuracy and the robustness against noise and disturbances [14,21]. A linearization
control method with feedforward hysteresis compensation and proportional-integral-derivative (PID)
feedback has also been proposed [22]. Besides, iterative learning control schemes have been verified to
achieve high-performance tracking for PEAs [23].

In the field of intelligent control, the neural network is a highly powerful system identification
tool. It has a strong self-learning ability and powerful mapping ability to nonlinear systems, which
has been widely used in the control of complex systems [24,25]. In the hysteresis compensation of the
PEA, Wang and Chen presented a novel Duhem model based on the neural network to describe the
dynamic hysteresis of PEAs [26]. An inversion-free predictive controller was proposed based on a
dynamic linearized multilayer feedforward neural network model [27]. A cerebellar model articulation
controller neural network PID controller was also proposed [4]. A radial basis function (RBF) network
was also used to model and compensate for the PEA’s hysteresis [28]. However, the use of the S-type
action function increases the calculation difficulty for fast, high-frequency, and fast-response systems
such as the PEA.

Among the neural network-based controllers, the single adaptive neuron system retains the
advantages of the neural network and can satisfy the requirements of the real-time control of fast
processes [29,30]. Therefore, a single-neuron adaptive hysteresis compensation method is proposed
in this paper. The controller imitates an adaptive single-neuron system to learn and uses Hebb
learning rules and supervised learning to adjust the controller. The controller can respond quickly to
time-varying signals, making it suitable for the rate-dependent hysteresis compensation. Positioning
and trajectory tracking experiments are carried out to investigate the performance of the proposed
method. The performance of the PID control is also investigated for the purpose of comparison. For
the positioning control, the proposed method can converge in about 8 ms and the steady-state tracking
error can be reduced to the noise level of the system. For trajectory tracking, sinusoidal and triangular
trajectories with frequencies up to 50 Hz are utilized. The experimental results show that the proposed
method has excellent robustness and adaptability against the rate-dependence of the PEA’s hysteresis,
and the hysteresis can be successfully compensated.

This paper is organized as follows: Section 2 introduces the properties of the inherent hysteresis of
the PEA. Section 3 presents the single-neuron adaptive controller design and analysis. To investigate the
efficiency of the proposed method, experimental verifications and performance analyses are provided
in Section 4. Section 5 summarizes this paper.

2. The Hysteretic Nonlinearity of the PEA

2.1. Experimental Setup

As shown in Figure 1, in this paper, a standalone PEA (model PZS001 from Thorlabs with
integrated strain gauge sensors, Newton, NJ, USA) with a high-voltage amplifier (model ATA-4052
from Aigtek with a bandwidth of DC-500 kHz, Xi’an, China) is selected as the plant. The maximum
displacement output of the PEA is measured to be 12.925 µm under the maximum actuation voltage of
10 V, i.e., the actuation gain (displacement/voltage) is 1.2925. According to the datasheet, the resonant
frequency of the PEA used in this paper is 69 kHz. A dynamic Wheatstone bridge amplifier (model
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SDY2105 from Beidaihe Institute of Practicality Electron Technology with a bandwidth of DC-300
kHz, Qinhuangdao, China) is utilized to measure the strain of the PEA, which is used to calculate
the displacement of the PEA. The data acquisition and closed-loop control tasks are implemented on
a real-time target (model microlabbox from dSPACE, Paderborn, Germany) with a sampling rate of
10 kHz. The algorithm is programmed in Simulink and implemented in Controldesk. Due to the
influence of the strain gauges and the Wheatstone bridge amplifier, the measurement noise of the
overall system is found to be ±34 nm.
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Figure 1. Schematic of the system setup for the standalone piezoelectric actuator (PEA).

2.2. Characteristics of the PEA’s Hysteresis

Obvious nonlinearities can be observed in the input–output relationship of the PEA. Generally, the
hysteresis is the dominant factor affecting the motion accuracy of the PEA. This paper uses sinusoidal
signals of u(t) = 5sin(2πft − π/2) + 5 to drive the PEA at different frequencies. By observing the input
signal and the measured displacement output of the PEA, hysteresis loops of the PEA can be obtained.
Figure 2 depicts the measured input–output loops of the standalone PEA. As the resonant frequency
of the PEA is 69 kHz, within the driving frequency of 1–400 Hz, the dynamics of the PEA can be
neglected. As a result, the measured input–output loops shown in Figure 2 are totally produced by the
hysteretic nonlinearity of the PEA. It can be seen that there is an obvious rate-dependent behavior
in the measured hysteresis loops. As the input frequency increases, the hysteresis loop grows bigger
and thicker. In addition, the hysteresis loop is not strictly symmetric about the loop center. The above
rate-dependence and asymmetry properties increase the model complexity and increase the difficulty
in the controller design of the PEA. Therefore, how to compensate the hysteresis and linearize the
system have become crucial problems of the PEA.
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3. Single-Neuron Adaptive Controller Design

3.1. Single-Neuron Adaptive Control Algorithm

Aiming to compensate the hysteresis of the PEA, this paper proposes a single-neuron adaptive
controller without modelling the hysteresis of the PEA. A single neuron is a non-linear processing unit
that has self-learning and self-adaptive capabilities and is applicable for many different control tasks.
The input and output of a single-neuron system are expressed as follows:

y = K ·
n∑

i=1

wixi + δ, (1)

where K denotes the gain characterizing the response speed of a neuron; xi, y, and δ are the state
variable, output, and threshold, respectively; and wi represents the weight of xi that can be adjusted by
the learning rules.

Neurons are generally considered to be self-organizing by modifying their synaptic weighting
values. Supervised Hebb learning rules are usually used for the adjustment of the weights. Assuming
the weight of the neuron wi(t) during learning is proportional to the signal pi(t) and decays slowly, the
learning rule of the neuron can be expressed as

wi(t + 1) = (1− c)wi(t) + dpi(t), (2)

where c is a positive constant that determines the impact of the last weight value, d is a constant
characterizing the learning efficiency, and pi(t) is the learning rules. To further improve the adaptability
of neurons, the following learning rules are employed:

pi(t) = Z(t)S(t)xi(t), (3)

where S(t) indicates that the adaptive neuron adopts the Hebb learning rule, and Z(t) shows supervised
learning rules. Z(t) means that external information is self-organized to have a control effect under
the guidance of the teacher signal. In this way, the adaptive neuron algorithm combined with Hebb
learning rules and supervised learning can perform self-organizing and adaptive control for nonlinear
systems.

3.2. Controller Design for the PEA

As shown in Figure 3, the state variables to the controller are calculated by the error between the
desired trajectory r(t) and the actual trajectory y(t). The output of the controller is u(t). In order to
ensure the convergence and robustness of the learning algorithm, the following modified adaptive
learning algorithm is adopted in this paper:

x1(t) = e(t)
x2(t) = ∆x1(t) = e(t) − e(t− 1)

x3(t) = ∆x2(t) = e(t) − 2e(t− 1) + e(t− 2)
, (4)

where e(t) = r(t) − y(t) is the error between the desired and actual trajectories, and x1(t), x2(t), and x3(t)
are adopted as the state variables to the neuron system.
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Figure 3. Schematic diagram of the single-neuron adaptive hysteresis compensation method.

The previous controller output u(t−1) can be utilized as the threshold, i.e., δ = u(t − 1). Substituting
this into Equation (1), the controller output of the single-neuron adaptive controller can be written as
follows:

u(t) = K ·
n∑

i=1

wixi + u(t− 1), (5)

For the adaption of the weights, Z(t) = e(t) is adopted as the supervisory function and S(t) = u(t) is
adopted as the Hebb learning rule. Substituting these into Equations (2) and (3), the learning rule of
the neuron can be expressed as follows:

wi(t) = wi(t− 1) + d · e(t) · u(t) · xi(t), (6)

where c is set as 0 because wi(t) will converge to a stable value if c is small enough. According to the
common experience of single-neuron adaptive control, d is typically less than 0.5. In this paper, d = 0.4
is adopted.

The whole control progress proceeds as follows. After getting the desired trajectory and actual
trajectory, the state variable xi(t) is calculated using Equation (4). Three state variables correspond to
three control outputs produced by the neuron, which are the proportional feedback u1(t), first-order
differential feedback u2(t), and second-order differential feedback u3(t), respectively. The proportional
feedback can quickly reduce the tracking error. The first-order differential feedback can improve
the system’s transient state performance, i.e., the response speed and overshoot. The second-order
differential feedback ensures that the system remains stable during a fast response. The change in
the weight reflects the dynamic characteristics of the controlled plant and the response process. The
neuron continuously adjusts the weight through its own learning rules, and quickly eliminates the
error and enters the steady-state under the correlation of the three feedbacks.

The system response speed is positively proportional to K, but a large overshoot might make
the system unstable. On the contrary, if K is too small, the actual trajectory cannot track the desired
trajectory. Thus, the tuning of K is very important. In order to determine the proper value for K,
we built a mathematical model for the PEA using the Prandtl–Ishlinskii model. Through several
simulation tests, the influence of K is computationally investigated. A candidate K is then selected
according to the simulation results. Subsequently, this candidate K is adopted as the initial value and it
is tuned manually online to achieve improved tracking performance. In this case, only fine tuning
within a very small range is necessary.

4. Experimental Verifications

On the basis of the above analyses, the single-neuron adaptive control algorithm is applied to
compensate the PEA’s hysteresis. Positioning and trajectory tracking experiments are carried out to
verify the proposed method’s performance in hysteresis compensation.
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In order to better compare the performances, this paper also includes the open loop and PID
control results for the purpose of comparison. For the open-loop control, the PEA is assumed to
be linear and the actuation gain (the ratio between the maximum allowable control input and the
maximum displacement output) is utilized to finish the input–output mapping, i.e.,

u(t) = r(t) ·
Umax

Ymax
, (7)

where Umax and Ymax are the maximum allowable control input and maximum displacement output,
respectively. The open-loop control represents the basic characteristics of the system as no controller
is utilized.

PID control, a widely utilized controller, has the advantages of simple parameter adjustment
and ease of use. However, for nonlinear systems such as the PEA, the tuning of the gains in the
PID controller is not an easy task. It might not work properly to systematically adjust the PID gains
via strictly following well-developed approaches such as the Ziegler–Nichols method. Further, the
behavior of the PEA is susceptible to many factors, making it difficult or impossible for the PID
control to maintain the control performance in all scenarios. All these increase the difficulty in PID
tuning. In this paper, the critical ratio method is adopted to tune the PID gains. At the beginning,
only the proportional gain Kp is tuned with the other gains set to 0. Subsequently, the other gains are
adjusted after the Kp is specified. For the PEA, PI control is found to be adequate to achieve satisfactory
performance. In fact, a trial and error process is inevitable to finely tune the PID gains to achieve
satisfactory results.

4.1. Step Response

The step response is generally utilized to test the system’s positioning accuracy. Further, it can also
show the system’s tracking performance for non-continuous trajectories. For step response, the gains
of the proposed single-neuron adaptive controller are tuned to be K = 0.0002 and d = 0.4 following the
method provided in Section 3.2. The gains of the PID controller are manually tuned to be Kp = 0.8,
Ki = 1000, and Kd = 0 following the critical ratio method. Step response experiments are carried out
and the experimental results are shown in Figure 4. The step response of the open-loop system is also
provided for the purpose of comparison.
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As the resonant frequency of the PEA is 69 kHz and the sampling rate is set to 10 kHz, the
transient state of the open-loop system is not observable. However, the slow creeping of the PEA can
be observed and the steady-state positioning error is quite large. As a result, for the PEA, the response
is fast, whereas the steady-state positioning accuracy is low. For the PID control, the PEA can converge
within 8 ms and the steady-state positioning error is reduced to the noise level, whereas oscillations
can be found in the transient state. For the proposed single-neuron adaptive controller, the rise time is
on the same level of the open-loop system, indicating a fast response. There are no oscillations in the
transient state. The proposed controller can also reduce the steady-state positioning error to the noise
level. The convergence time, i.e., the learning time, of the proposed controller is on the level of several
milliseconds. The experimental results show that the learning time of the proposed controller has an
obvious sensitivity to the magnitude of the step size. For a smaller magnitude step, e.g., 4 µm step, the
proposed controller can respond quickly, whereas it will take a relatively longer time (approximately
14 ms) for the controller to converge. For larger magnitudes, e.g., 8 µm step, the proposed controller
can respond quickly and converge in about 6 ms.

Based on the above experimental results, both the proposed controller and the PID controller can
reduce the steady-state positioning error to the noise level. The proposed controller is superior to the
conventional PID controller in that it achieves a fast response and smooth transient state behavior.
For the convergence time, the proposed controller converges faster for large step values, whereas the
convergence time increases for small step values.

4.2. Tracking of Sinusoidal Trajectories

Sinusoidal trajectories are selected in this paper to verify the tracking performance of the proposed
method on continuous trajectories. First, a low-frequency trajectory is adopted to tune the parameters
of the controllers. In this case, the rate-dependence of the PEA’s hysteresis can be neglected. This helps
to ease the tuning of the parameters. The parameters of the controllers are tuned until excellent tracking
performance is achieved in this case. These values are then fixed and higher-frequency trajectories are
utilized to test the robustness and adaptability of the controllers.

In this paper, a 1 Hz sinusoidal trajectory is utilized to tune the parameters of the proposed
method and the PID controller. For the proposed method, the parameters are tuned to K = 0.002 and
d = 0.4. For the PID controller, the gains of Kp, Ki, and Kd are tuned to 1.11, 100, and 0, respectively.
Figure 5 shows the tracking performance of the 1 Hz sinusoidal trajectory. Compared to the open-loop
system, both the proposed method and the PID controller can successfully compensate the hysteresis
of the PEA. The PEA can follow the desired trajectory well. It can be observed that the steady-state
tracking error of the proposed method can be reduced to the noise level. The steady-state tracking
error of the PID controller is slightly higher than the noise level but is still comparable to the proposed
method. In the following experiments, sinusoidal and triangular trajectories with higher frequencies
are utilized while the parameters of the two controllers are fixed to the above values. This helps
to test the robustness and adaptability of the proposed method against the rate-dependence of the
PEA’s hysteresis.
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Figures 6 and 7 show the sinusoidal trajectory tracking results at 10 and 50 Hz, respectively. As
the frequency of the desired trajectory increases, the trajectory tracking error of the proposed method
increases slightly but still remains at the same magnitude of the measurement noise, exhibiting high
robustness and adaptability against the rate-dependence of the PEA’s hysteresis. On the contrary, the
tracking performance of the PID controller starts to drop significantly at the frequency of 10 Hz. For
the 50 Hz trajectory, the tracking performance of the PID control is even lower than the open-loop
control. As a result, the PID gains tuned at the 1 Hz trajectory is only applicable for slow trajectories
and might not work properly for fast trajectories.
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More trajectory tracking experiments are performed, whereas not all the experimental results
are presented for the conciseness of this paper. In order to quantitatively investigate the tracking
performance, the root-mean-square tracking error (RMSE) and relative root-mean-square error (RRMSE)
of these sinusoidal trajectories are calculated and presented in Table 1. RMSE and RRMSE are defined
in the following equations:

RMSE =

√√√ N∑
i=1

(yi − ri)
2/N , (8)

RRMSE =

√√√ N∑
i=1

(yi − ri)
2/

N∑
i=1

ri × 100%, (9)

where yi and ri represents the i th values of the actual and desired trajectories, respectively, and N is
the length of sampling data.

Table 1. Tracking errors of proportional-integral-derivative (PID) and the proposed approach.

Frequency (Hz)
The Proposed Method PID

RMSE (nm) RRMSE (%) RMSE (nm) RRMSE (%)

1 64.5 0.76 101.9 1.20
5 90.2 1.06 349.3 4.11
10 108.6 1.28 626.1 7.37
20 133.0 1.56 941.5 11.08
50 170.2 2.02 1158.8 13.63

As the parameters of the controllers are tuned at the 1 Hz trajectory, the RMSEs of the proposed
method at the PID control are 64.5 and 101.9 nm, corresponding to a 0.76% and 1.2% relative error,
respectively. As the frequency increases, the tracking performances of both controllers start to
degrade. For the proposed method, the RMSE increases to 170.2 nm, i.e., 2.02% relative error. On the
contrary, the RMSE of the PID control increases to 1158.8 nm, an approximately 13.63% relative error.
These experimental results demonstrate that the proposed method can successfully compensate the
rate-dependent hysteresis of the PEA.
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4.3. Tracking of Triangular Trajectories

Sinusoidal trajectories are smooth trajectories that do not contain high-frequency harmonic
components. In applications, triangular trajectories are also widely utilized, e.g., the scanning of the
sample in an atomic force microscope. Unlike sinusoidal trajectories, triangular trajectories contain
high-frequency harmonic components, increasing the difficulty in control. Therefore, the triangular
trajectory is also selected in this paper to verify the performance of the proposed method for non-smooth
trajectories. The parameters of the PID controller and the proposed method obtained in Section 4.2 are
also inherited.

As shown in Figure 8, for the 1 Hz triangular trajectory, the tracking performance is similar
to the 1 Hz sinusoidal trajectory. Both the PID control and the proposed method can reduce the
tracking error to the noise level. This demonstrates the applicability of the two controllers for slow
trajectories. Similarly, the tracking performance of both controllers decreases with the increment in the
frequency of the triangular trajectory, which is obvious in Figures 9 and 10. Due to the influence of
the high-frequency harmonic components, the tracking performance of the proposed method on the
triangular trajectories is slightly lower than that of the sinusoidal trajectories. However, the tracking
error still remains at very small ranges, showing strong robustness against the rate-dependence.
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4.4. Hysteresis Compensation Efficiency

The trajectory tracking results for sinusoidal trajectories are utilized to analyze the hysteresis
compensation efficiency of the proposed method. The hysteresis loops in these experimental results are
shown in Figure 11, where a 45◦ line is included to show the unitary mapping from the desired trajectory
to the actual trajectory. For the 1 Hz sinusoidal trajectory, the resultant input–output relationship of
both the PID controller and the proposed method coincide with the 45◦ line. The hysteresis loop is not
observable, which means the hysteresis has been efficiently compensated. As the frequency increases,
the input–output relationship of the proposed method stays close to the 45◦ line. On the contrary,
for the PID controller, obvious hysteresis loops can still be observed in the input–output relationship
for sinusoidal trajectories higher than 5 Hz. From Figure 11, we can conclude that the proposed
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method can successfully compensate the rate-dependent hysteresis of the PEA when compared to the
PID controller.

Micromachines 2020, 11, x 12 of 14 

 

line. On the contrary, for the PID controller, obvious hysteresis loops can still be observed in the 
input–output relationship for sinusoidal trajectories higher than 5 Hz. From Figure 11, we can 
conclude that the proposed method can successfully compensate the rate-dependent hysteresis of the 
PEA when compared to the PID controller. 

 

Figure 11. Hysteresis compensation efficiency for the sinusoidal trajectories. 

5. Conclusions 

The rate-dependence and asymmetry of the PEA’s hysteresis increase the difficulty in the 
hysteresis modeling and compensation. Further, the PEA’s hysteresis is susceptible to the system’s 
configurations, making the hysteresis compensation of PEAs very case-sensitive. In this paper, a 
single-neuron adaptive hysteresis compensation method is proposed. The supervised learning and 
Hebb learning rules are adopted to dynamically adjust the weights of the neurons according to the 
error between the actual and desired trajectories and their first-order and second-order differences. 
As a branch of neural network control, the single-neuron adaptive control simplifies the training 
process of neural network control while retaining the advantages of neural network control. The 
learning efficiency and convergence are improved. Positioning control results show that the proposed 
method can reduce the steady-state tracking error to the noise level, and the transient state 
performance can be guaranteed. The experimental results of tracking sinusoidal and triangular 
trajectories with frequencies up to 50 Hz show that the proposed method can successfully compensate 
the rate-dependent hysteresis of the PEA. The steady-state tracking error can be maintained in a small 
range, showing great robustness and adaptability against the rate-dependence. Future work will 
focus on further improving the tracking performance for higher-frequency trajectories. 

Author Contributions: Y.Q. conceived and designed the experiments; H.D performed the experiments and 
sorted out the experimental results; Y.Q. analyzed the data; Y.Q. and H.D wrote the paper. All authors have read 
and agreed to the published version of the manuscript. 

5 Hz 1 Hz 10 Hz 

50 Hz 20 Hz 

Figure 11. Hysteresis compensation efficiency for the sinusoidal trajectories.

5. Conclusions

The rate-dependence and asymmetry of the PEA’s hysteresis increase the difficulty in the hysteresis
modeling and compensation. Further, the PEA’s hysteresis is susceptible to the system’s configurations,
making the hysteresis compensation of PEAs very case-sensitive. In this paper, a single-neuron
adaptive hysteresis compensation method is proposed. The supervised learning and Hebb learning
rules are adopted to dynamically adjust the weights of the neurons according to the error between
the actual and desired trajectories and their first-order and second-order differences. As a branch of
neural network control, the single-neuron adaptive control simplifies the training process of neural
network control while retaining the advantages of neural network control. The learning efficiency and
convergence are improved. Positioning control results show that the proposed method can reduce the
steady-state tracking error to the noise level, and the transient state performance can be guaranteed.
The experimental results of tracking sinusoidal and triangular trajectories with frequencies up to 50 Hz
show that the proposed method can successfully compensate the rate-dependent hysteresis of the
PEA. The steady-state tracking error can be maintained in a small range, showing great robustness and
adaptability against the rate-dependence. Future work will focus on further improving the tracking
performance for higher-frequency trajectories.
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