
micromachines

Article

Tight Evaluation of Real-Time Task Schedulability for
Processor’s DVS and Nonvolatile Memory Allocation

Sunhwa A. Nam 1, Kyungwoon Cho 2 and Hyokyung Bahn 1,*
1 Department of Computer Engineering, Ewha University, Seoul 03760, Korea; sunhwa.nam@gmail.com
2 Embedded Software Research Center, Ewha University, Seoul 03760, Korea; cezanne@ewha.ac.kr
* Correspondence: bahn@ewha.ac.kr; Tel.: +82-2-3277-2368

Received: 1 May 2019; Accepted: 1 June 2019; Published: 3 June 2019
����������
�������

Abstract: A power-saving approach for real-time systems that combines processor voltage scaling
and task placement in hybrid memory is presented. The proposed approach incorporates the task’s
memory placement problem between the DRAM (dynamic random access memory) and NVRAM
(nonvolatile random access memory) into the task model of the processor’s voltage scaling and
adopts power-saving techniques for processor and memory selectively without violating the deadline
constraints. Unlike previous work, our model tightly evaluates the worst-case execution time of
a task, considering the time delay that may overlap between the processor and memory, thereby
reducing the power consumption of real-time systems by 18–88%.

Keywords: real-time system; dynamic voltage scaling; task placement; low-power technique;
nonvolatile memory

1. Introduction

As IoT (internet-of-things) technologies grow rapidly for emerging applications such as smart
living and health care, reducing power consumption in battery-based IoT devices becomes an important
issue. An IoT device is a type of real-time system, of which, power-saving has been widely studied in
terms of the processor’s dynamic voltage scaling (DVS). DVS lowers the supplied voltage of a processor
when a load of tasks is less than the processor’s full capacity, thereby saving power consumption
without violating the deadline constraints of real-time tasks. Although the execution time will increase
due to the lowered supplied voltage, it would spend less power, as the power consumption in the
CMOS (complementary metal-oxide semiconductor) digital circuits is proportional to the square of the
supplied voltage [1].

Meanwhile, recent research has shown that memory subsystems are reaching a significant portion
of power consumption in real-time embedded systems [2]. Such tremendous power consumption
results mainly from the refresh operations of DRAM (dynamic random access memory) [2,3]. As
DRAM is a volatile medium, it requires continuous power recharge in order to retain its data even in
idle states. This article shows that the power consumption of real-time systems can be further reduced
by combining a processor’s voltage scaling with hybrid memory technologies, consisting of DRAM
and NVRAM.

NVRAM (nonvolatile random access memory) technologies have emerged as an attempt of saving
the power consumption of DRAM, as NVRAM does not need refresh operations [3]. NVRAM is
byte-addressable memory similar to DRAM but it is better than DRAM in terms of energy-consumption
and scalability. Thus, NVRAM is expected to be used as a main memory medium like DRAM in the
not too far future [3–5]. Unfortunately, NVRAM has two critical weaknesses that prevent the total
substitution of DRAM memory. First, the number of write operations allowed for each NVRAM cell
is limited. For example, the current write endurance of PRAM (phase-change memory), a kind of

Micromachines 2019, 10, 371; doi:10.3390/mi10060371 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0002-7188-3889
http://dx.doi.org/10.3390/mi10060371
http://www.mdpi.com/journal/micromachines
https://www.mdpi.com/2072-666X/10/6/371?type=check_update&version=2

Micromachines 2019, 10, 371 2 of 12

representative NVRAM media, is known to be about 107–108 [3,6]. The second drawback is that the
access time of NVRAM is expected to be slower than that of DRAM [5,7,8].

Despite these limitations, the prospect of NVRAM is still bright. One way of coping with the
slow access latency and the write endurance problem of NVRAM is to adopt DRAM along with
NVRAM [5,7]. This can hide the slow performance of NVRAM and also increase the lifespan of
NVRAM. Two different memory architectures that comprise DRAM and NVRAM can be considered.
The first architecture, depicted in Figure 1a, uses DRAM as an upper-level memory of NVRAM,
which we call, the hierarchical memory architecture. The other memory architecture, depicted in
Figure 1b, presents both DRAM and NVRAM at the same main memory level, managing them together
under a single physical address space [5]. We call this architecture the hybrid memory architecture.
In general-purpose time-sharing systems, the hierarchical memory architecture can improve the
performance of virtual memory systems, as changing the backing store from slow HDD (hard disk
drive) to fast NVRAM significantly reduces the page fault handling latency. However, as we focus on
real-time systems, virtual memory is difficult to use, since page fault situations cannot be predicted
beforehand, making the deadline guaranteed service difficult. This implies that the size of the DRAM
should be large enough not to incur unexpected page faults, which is not fit for our target system, as
we focus on reducing the use of DRAM for saving power consumption. Thus, we adopt the hybrid
memory architecture and determine the location of tasks between DRAM and NVRAM in order to
satisfy the deadline constraints by estimating the memory access latency beforehand.

Micromachines 2019, 10, x FOR PEER REVIEW 2 of 12

operations allowed for each NVRAM cell is limited. For example, the current write endurance of
PRAM (phase-change memory), a kind of representative NVRAM media, is known to be about
107–108 [3,6]. The second drawback is that the access time of NVRAM is expected to be slower than
that of DRAM [5,7,8].

Despite these limitations, the prospect of NVRAM is still bright. One way of coping with the
slow access latency and the write endurance problem of NVRAM is to adopt DRAM along with
NVRAM [5,7]. This can hide the slow performance of NVRAM and also increase the lifespan of
NVRAM. Two different memory architectures that comprise DRAM and NVRAM can be
considered. The first architecture, depicted in Figure 1a, uses DRAM as an upper-level memory of
NVRAM, which we call, the hierarchical memory architecture. The other memory architecture,
depicted in Figure 1b, presents both DRAM and NVRAM at the same main memory level,
managing them together under a single physical address space [5]. We call this architecture the
hybrid memory architecture. In general-purpose time-sharing systems, the hierarchical memory
architecture can improve the performance of virtual memory systems, as changing the backing
store from slow HDD (hard disk drive) to fast NVRAM significantly reduces the page fault
handling latency. However, as we focus on real-time systems, virtual memory is difficult to use,
since page fault situations cannot be predicted beforehand, making the deadline guaranteed service
difficult. This implies that the size of the DRAM should be large enough not to incur unexpected
page faults, which is not fit for our target system, as we focus on reducing the use of DRAM for
saving power consumption. Thus, we adopt the hybrid memory architecture and determine the
location of tasks between DRAM and NVRAM in order to satisfy the deadline constraints by
estimating the memory access latency beforehand.

CPU Cache Memory
bus

N
V

RA
M

D
RA

MMemory
controller

(a)

CPU Cache Memory
bus

NVRAM

DRAM

Memory
controller

(b)

Figure 1. Architecture of the proposed system. (a) Hierarchical memory architecture, (b) hybrid
memory architecture.

Although a task in NVRAM needs more time to be accessed, we can expect that an NVRAM
resident task is still likely to be schedulable if it is executed under a low voltage mode of a processor.
Our aim is to load tasks on NVRAM if it does not violate the deadline of real-time tasks, thereby
reducing the power consumption further. To do so, we incorporate the task’s memory placement
problem into the processor voltage scaling and evaluate the effectiveness of the unified approach.
Simulation experiments show that our technique reduces the power consumption of real-time
systems by 18–88%.

2. The Proposed Policy

Let Γ = {τ1, τ2, …, τn} be the set of n independent tasks in a real-time system, which has a
processor capable of dynamic voltage scaling, and main memory consisting of DRAM and NVRAM
as shown in Figure 1b. Each task τi is characterized by <ni, CPIi, pi, si>, where ni is the number of
instructions to be executed, CPIi is the clock cycles per instruction for τi, pi is the period of τi, and si is

Figure 1. Architecture of the proposed system. (a) Hierarchical memory architecture, (b) hybrid
memory architecture.

Although a task in NVRAM needs more time to be accessed, we can expect that an NVRAM
resident task is still likely to be schedulable if it is executed under a low voltage mode of a processor.
Our aim is to load tasks on NVRAM if it does not violate the deadline of real-time tasks, thereby
reducing the power consumption further. To do so, we incorporate the task’s memory placement
problem into the processor voltage scaling and evaluate the effectiveness of the unified approach.
Simulation experiments show that our technique reduces the power consumption of real-time systems
by 18–88%.

2. The Proposed Policy

Let Γ = {τ1, τ2, . . . , τn} be the set of n independent tasks in a real-time system, which has a
processor capable of dynamic voltage scaling, and main memory consisting of DRAM and NVRAM
as shown in Figure 1b. Each task τi is characterized by <ni, CPIi, pi, si>, where ni is the number of
instructions to be executed, CPIi is the clock cycles per instruction for τi, pi is the period of τi, and si is

Micromachines 2019, 10, 371 3 of 12

the size of τi’s memory reference stream during its execution. By considering common assumptions
used in previous works [1], we make five assumptions for our system model.

A1. The size of the DRAM is large enough to accommodate entire task sets, but the power is turned
off for the part of the DRAM where tasks are not loaded;

A2. Each task is executed independently and does not affect others;
A3. Context switch overhead (the overhead of switching a processor from one task to another) and

voltage switching overhead (the overhead of switching the voltage mode of a processor from one
to another) are negligible;

A4. The frequency of a processor is set to an appropriate level as the voltage supply is adjusted;
A5. We consider periodic tasks, and thus the period of a task implicitly determines the deadline of

the task.

In our task model, the worst-case execution time (WCET) of a task can be determined based on
the number of instructions to be executed in the processor and the memory access latency of the task.
As modern embedded processors have an on-chip cache, main memory is accessed only upon a cache
miss. Thus, memory delay caused by NVRAM also occurs only when a requested block is not in the
on-chip cache. Once a block is loaded on the cache, then accessing a part of data within the block does
not incur memory accesses. Let c be the cache block size and si be the total size of memory reference
stream in task τi. Then, in the worst case, the number of memory accesses can be represented as si/c.

In our task model, WCET of a task is decided by the slower time component of executing
instructions and accessing memory with the given voltage mode and the memory type. Specifically,
WCET ti of a task τi with the processor’s voltage level vi and the memory type mi is defined as:

ti = max{ti,cpu (vi, ni), ti,mem (mi, si)} (1)

where ti,cpu (vi, ni) is the execution time of ni instructions in the processor with the voltage level of
vi and ti,mem (mi, si) is the memory access time of task τi with the memory type mi and the size of
reference stream si, which can be subsequently defined as follows:

ti,cpu (vi, ni) = (ni/vi) × CPIi × LC (2)

ti,mem (mi, si) = (si/c) × LT(mi) (3)

where CPIi represents clock cycles per instruction for the task τi, LC is the cycle time, c is the cache
block size, and LT(mi) is the memory access latency of the memory type mi. Note that the voltage
level vi is set to 1 for the default voltage mode, and becomes less than 1 as the processor is set to a low
voltage mode.

The schedulability of a real-time task set Γ is tested by the utilization U of a processor as follows:

U =
n∑

i=1

ti
pi
≤ 1 (4)

We use the earliest deadline first (EDF) scheduling algorithm as it is known to perform scheduling
without deadline misses, provided that there exist any feasible schedules on that task set [1]. Now,
let us take a look at an example task set consisting of three tasks τ1, τ2, and τ3, whose worst-case
execution times t1, t2, and t3 are 2, 1, and 1, respectively, under the default setting (i.e., normal voltage
mode and DRAM only placement), and their periods are 8, 10, and 14, respectively. The schedulability
of the task set is tested by calculating the utilization of the tasks τ1, τ2, and τ3, and adding up them i.e.,
U = 2/8 + 1/10 + 1/14 = 0.421. As the total utilization is less than 1, the task set is schedulable. Figure 2a
shows the scheduling result for the task set with the EDF. Although the task set is schedulable, idle
intervals reach up to 50% of the total possible working time of the processor. This inefficiency can be

Micromachines 2019, 10, 371 4 of 12

relieved by lowering the processor’s voltage for some idle intervals. For example, if two low voltage
levels of 0.5 and 0.25 are applied for tasks τ2 and τ3, respectively, t2 and t3 will be 2 and 4, respectively.
Accordingly, the utilization of the processor is increased to U = 2/8 + 2/10 + 4/14 = 0.736, which is
still less than 1 and thus schedulable. Also, if we locate τ3 in NVRAM whose access latency is twice
that of the DRAM, one may think that t3 will be 8, and thus it is not schedulable as U = 2/8+ 2/10
+ 8/14 = 1.021 > 1. However, we tightly model WCET (worst case execution time) considering the
overlapped time delay between the processor and memory, as shown in Equation (1), and thus t3 is
still 4. Therefore, in our model, the utilization of the processor by applying both DVS and NVRAM
becomes less than 1, still being schedulable. Figure 2b shows the scheduling result with our model
when the aforementioned voltage scaling and memory mapping is adopted. As we see, idle intervals
are decreased significantly when compared with the result in Figure 2a.

Micromachines 2019, 10, x FOR PEER REVIEW 4 of 12

will be 2 and 4, respectively. Accordingly, the utilization of the processor is increased to U = 2/8 +
2/10 + 4/14 = 0.736, which is still less than 1 and thus schedulable. Also, if we locate τ3 in NVRAM
whose access latency is twice that of the DRAM, one may think that t3 will be 8, and thus it is not
schedulable as U = 2/8+ 2/10 + 8/14 = 1.021 > 1. However, we tightly model WCET (worst case
execution time) considering the overlapped time delay between the processor and memory, as
shown in Equation (1), and thus t3 is still 4. Therefore, in our model, the utilization of the processor
by applying both DVS and NVRAM becomes less than 1, still being schedulable. Figure 2b shows the
scheduling result with our model when the aforementioned voltage scaling and memory mapping is
adopted. As we see, idle intervals are decreased significantly when compared with the result in
Figure 2a.

(a)

(b)

Figure 2. Comparison of the scheduled task set. (a) Scheduling result by original earliest deadline
first (EDF), (b) scheduling result by the proposed approach.

As we deal with hard real-time systems, we assume that task scheduling is performed
beforehand (i.e., off-line scheduling) and the scheduling does not change during the execution of
the tasks. That is, the schedulability test is performed with the given resources (the voltage modes
and memory types) at the design phase and the system resources are determined based on the
schedulability test results, not to miss the deadlines of all tasks. This is a typical procedure for
real-time task scheduling, and we extend it for memory placement. Note that as traditional
real-time systems do not use virtual memory swapping due to the unpredictable page fault
handling I/O (input/output) latency, the full address space of a task is loaded on the physical
memory once it starts its execution. Thus, we also assume that the memory footprint of a task is
determined at the scheduling phase, which is set to the maximum value for satisfying the deadline
constraints in the worst case.

Algorithm 1 depicts the pseudo-code of our task setting and scheduling, of which the objective
function is the maximization of power_saving with the constraint of U less than 1, implying that there
are no deadline misses in the task set. Our problem can be modeled similar to the 0/1 knapsack
problem. Thus, we solve the problem based on dynamic programming, which is one of the most
efficient techniques to solve the 0/1 knapsack problem [9]. The algorithm tries to lower the power
mode of each task i (1 ≤ i ≤ n) without exceeding the given utilization of each step. The state of each
task with the utilization 1 will be our final solution. One can refer to the approximation algorithm of
0/1 knapsack problem for more details [9]. To decide the increment of utilization, we performed
empirical analysis and found that the increment of 0.1 was appropriate in our case as the results
were not sensitive when it became less than that value.

Algorithm 1 Task setting and scheduling
Input: n, number of tasks; power_saving(i, U), maximum power
savings for tasks 1, 2, .., i with utilization less than U;
power_savingi, power savings obtained by adopting task i to
low power mode; Ui, increased utilization by adopting task i
to low power mode
Output: Φ, a schedule of all tasks

for i is 1 to n do

power_saving (i, 0) ← 0;

Figure 2. Comparison of the scheduled task set. (a) Scheduling result by original earliest deadline first
(EDF), (b) scheduling result by the proposed approach.

As we deal with hard real-time systems, we assume that task scheduling is performed beforehand
(i.e., off-line scheduling) and the scheduling does not change during the execution of the tasks. That is,
the schedulability test is performed with the given resources (the voltage modes and memory types) at
the design phase and the system resources are determined based on the schedulability test results, not
to miss the deadlines of all tasks. This is a typical procedure for real-time task scheduling, and we
extend it for memory placement. Note that as traditional real-time systems do not use virtual memory
swapping due to the unpredictable page fault handling I/O (input/output) latency, the full address
space of a task is loaded on the physical memory once it starts its execution. Thus, we also assume that
the memory footprint of a task is determined at the scheduling phase, which is set to the maximum
value for satisfying the deadline constraints in the worst case.

Algorithm 1 depicts the pseudo-code of our task setting and scheduling, of which the objective
function is the maximization of power_saving with the constraint of U less than 1, implying that there
are no deadline misses in the task set. Our problem can be modeled similar to the 0/1 knapsack
problem. Thus, we solve the problem based on dynamic programming, which is one of the most
efficient techniques to solve the 0/1 knapsack problem [9]. The algorithm tries to lower the power
mode of each task i (1 ≤ i ≤ n) without exceeding the given utilization of each step. The state of each
task with the utilization 1 will be our final solution. One can refer to the approximation algorithm
of 0/1 knapsack problem for more details [9]. To decide the increment of utilization, we performed
empirical analysis and found that the increment of 0.1 was appropriate in our case as the results were
not sensitive when it became less than that value.

Micromachines 2019, 10, 371 5 of 12

Algorithm 1 Task setting and scheduling

Input: n, number of tasks; power_saving(i, U), maximum power savings for tasks 1, 2, ..., i with utilization less
than U; power_savingi, power savings obtained by adopting task i to low power mode; Ui, increased utilization
by adopting task i to low power mode
Output: Φ, a schedule of all tasks

for i is 1 to n do
power_saving (i, 0) ← 0;

end for
for U is 0.0 to 1.0 by 0.1 do
power_saving (0, U) ← 0;

end for
for i is 1 to n do

for U is 0.0 to 1.0 by 0.1 do
if Ui >U
power_saving (i, U) ← power_saving (i–1, U);

else
power_saving (i, U) ←max{power_saving (i–1, U),

power_saving (i–1, U –Ui) + power_savingi };
end if

end for
end for

set processor and memory states based on power_saving(n, 1);
schedule task set via EDF;

3. Performance Evaluations

We compare our technique, called DVS-HM (dynamic voltage scaling with hybrid memory), with
DVS-DRAM, HM (hybrid memory), and DRAM, which operate as follows.

• DVS-DRAM: This algorithm uses the processor’s dynamic voltage scaling, similar to DVS-HM,
but does not use NVRAM and all tasks reside in DRAM;

• HM: This algorithm does not use the processor’s dynamic voltage scaling, but uses hybrid memory
consisting of DRAM and NVRAM, and places tasks in NVRAM if it is still schedulable;

• DRAM: This is a baseline condition that does not adopt either the processor’s dynamic voltage
scaling or hybrid memory technologies. That is, the processor is executed with its full voltage
mode and all tasks reside in the DRAM.

The sizes of the DRAM and NVRAM are equally set to accommodate the entire task set. Table 1
shows the access latency and the power consumption of the DRAM and PRAM (phase-change random
access memory), which is a type of NVRAM we experimented with. In theoretical aspects, there is no
limitation in the level of the processor’s operating modes. However, as DVS-supported processors
usually allow a very limited number of operating modes for practical reasons, we also allow four
voltage levels of 1, 0.5, 0.25, and 0.125.

Table 1. DRAM (dynamic random access memory) and NVRAM (nonvolatile random access
memory) characteristics.

Characteristics DRAM PRAM

Read latency 50 (ns) 100 (ns)

Write latency 50 (ns) 350 (ns)

Micromachines 2019, 10, 371 6 of 12

Table 1. Cont.

Characteristics DRAM PRAM

Read energy 0.1 (nJ/bit) 0.2 (nJ/bit)

Write energy 0.1 (nJ/bit) 1.0 (nJ/bit)

Idle power 1 (W/GB) 0.1 (W/GB)

Power consumption in the memory system can be divided into active and idle power consumption.
Idle power consumption includes the leakage power and refresh power. The leakage power is power
consumed even when the memory is idle and the leakage power of NVRAM is negligible compared to
that of DRAM. DRAM memory cells store data in small capacitors that lose their charge over time and
must be recharged. This process is called refresh. Regardless of the read and write operations, DRAM
consumes considerable refresh power to sustain refresh cycles to retain its data. However, this is not
required in NVRAM because of its non-volatile characteristics. Active power consumption, on the other
hand, refers to the power dissipated when data is being read and written. In our experiments, power
consumptions of processor and memory are separately evaluated and then accumulated. The total
power consumption Powertotal is evaluated as:

Powertotal = Powercpu + Powermem (5)

where:
Powercpu=

∑
cpu_mode {Unit_Powercpu_mode × Cyclescpu_mode} (6)

and:
Powermem =

∑
mem_type {Unit_Active_Powermem_type × Active_Cyclesmem_type +

Unit_Idle_Powermem_type × Idle_Cyclesmem_type}.
(7)

Unit_Powercpu_mode is the unit power consumption per cycle for the given CPU mode and
Cyclescpu_mode is the number of CPU cycles with the given CPU mode. Unit_Active_Powermem_type

is the active power per cycle for accessing the given memory type, Active_Cyclesmem_type is the
number of memory cycles for accessing the given memory type. Unit_Idle_Powermem_type is the static
power per cycle, including both the leakage power and refresh power for the given memory type,
and Idle_Cyclesmem_type is the number of memory cycles for the idle period for the given memory type.

We performed experiments under both synthetic and realistic workload conditions. In the
synthetic workload, we created 10 task sets varying the load of tasks for a given processor capacity,
similar to previous studies [10]. In the case of the realistic workload, we used two workloads, the robotic
highway safety marker (RSM) workload [11] and the IoT workload [12]. Tables 2 and 3 list the workload
configurations for the RSM and IoT workloads that we experimented with [11,12].

Table 2. Robotic highway safety marker (RSM) task set parameters. WCET = worst case execution
time; PID = process id.

Task Period WCET

Serial 7.8125 ms 100 µs

Length 7.8125 ms 1 ms

Way Point 23.4375 ms 2.5 ms

Encoder 23.4375 ms 350 µs

PID 23.4375 ms 1.06 ms

Motor 23.4375 ms 250 µs

Micromachines 2019, 10, 371 7 of 12

Table 3. Internet-of-things (IoT) task set parameters. WCET = worst case execution time; GUI =

graphical user interface.

Task Period WCET

Sense Temperature 100 ms 10 µs

Send data to server 1 min 6 ms

Sense Vibration 10 ms 600 µs

Compress and send 1 s 7.5 ms

Get info. & calc. 10 ms 1 ms

Control machine 10 ms 1 ms

Update GUI 1 s 20 ms

3.1. Experiments with Synthetic Workloads

Figure 3 shows the power consumption in processor and memory for the four schemes when the
synthetic workload is used. As shown in Figure 3a, DVS-DRAM and DVS-HM, which adopt voltage
scaling, similarly saved a substantial amount of processor’s power consumption. HM and DRAM,
which do not use DVS, showed a relatively higher power consumption than DVS-DRAM and DVS-HM,
although the gap became small in some cases. In particular, DVS was less effective as a task set’s load
approached the full capacity of a processor. This was because the chance of utilizing idle periods of a
processor by DVS becomes difficult in such cases. Note that the load of a task set became heavy as the
task set number increases in our cases.

Micromachines 2019, 10, x FOR PEER REVIEW 7 of 12

and DVS-HM, although the gap became small in some cases. In particular, DVS was less effective as
a task set’s load approached the full capacity of a processor. This was because the chance of utilizing
idle periods of a processor by DVS becomes difficult in such cases. Note that the load of a task set
became heavy as the task set number increases in our cases.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a)

0
5

10
15
20
25
30
35
40
45
50
55

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

Figure 3. Processor and memory power consumption under synthetic workloads. (a) Power
consumption in processor, (b) power consumption in memory. DVS-HM = dynamic voltage scaling
with hybrid memory; DVS-DRAM = dynamic voltage scaling with dynamic random access memory;
HM = hybrid memory; DRAM = dynamic random access memory.

Figure 3b shows the power consumption in the memory. The DVS-HM and HM, which use
NVRAM along with DRAM, consumed less energy than the DVS-DRAM and DRAM, which only
use DRAM. This is because the idle power of NVRAM is close to zero, and thus the reduced size of
DRAM—by adopting NVRAM—saved the refresh power of the DRAM. However, as the latency of
NVRAM is longer than that of DRAM, executing a task in NVRAM may increase the execution time
in the processor, possibly increasing the processor’s power consumption. However, as shown in
Figure 3a, such a phenomenon happened only in HM and it disappeared in DVS-HM, which uses
voltage scaling along with hybrid memory placement. When comparing the DVS-DRAM and
DVS-HM, we can see that adopting NVRAM does not increase the processor’s power consumption if
DVS is used. This is because power-saving can be maximized by executing a processor in a low
voltage mode when the task is located in NVRAM.

Figure 4a shows the total energy consumption by adding up the consumed energy in processor
and memory. DVS-HM saved the energy consumption of the DRAM, DVS-DRAM, and HM by 36%,
18%, and 28%, respectively. Figure 4b,c separately show the active and idle power consumptions.
Although the DVS-HM performed worse than the DVS-DRAM, in terms of active power
consumption, it performed the best in idle power consumption, leading to the minimized total
power consumption. Figure 5 shows the processor’s utilization. As we see, DVS-HM showed the
highest utilization in all cases and was close to 100% in some cases.

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a)

Figure 3. Processor and memory power consumption under synthetic workloads. (a) Power
consumption in processor, (b) power consumption in memory. DVS-HM = dynamic voltage scaling
with hybrid memory; DVS-DRAM = dynamic voltage scaling with dynamic random access memory;
HM = hybrid memory; DRAM = dynamic random access memory.

Figure 3b shows the power consumption in the memory. The DVS-HM and HM, which use
NVRAM along with DRAM, consumed less energy than the DVS-DRAM and DRAM, which only
use DRAM. This is because the idle power of NVRAM is close to zero, and thus the reduced size of
DRAM—by adopting NVRAM—saved the refresh power of the DRAM. However, as the latency of
NVRAM is longer than that of DRAM, executing a task in NVRAM may increase the execution time in
the processor, possibly increasing the processor’s power consumption. However, as shown in Figure 3a,

Micromachines 2019, 10, 371 8 of 12

such a phenomenon happened only in HM and it disappeared in DVS-HM, which uses voltage scaling
along with hybrid memory placement. When comparing the DVS-DRAM and DVS-HM, we can see
that adopting NVRAM does not increase the processor’s power consumption if DVS is used. This is
because power-saving can be maximized by executing a processor in a low voltage mode when the
task is located in NVRAM.

Figure 4a shows the total energy consumption by adding up the consumed energy in processor
and memory. DVS-HM saved the energy consumption of the DRAM, DVS-DRAM, and HM by 36%,
18%, and 28%, respectively. Figure 4b,c separately show the active and idle power consumptions.
Although the DVS-HM performed worse than the DVS-DRAM, in terms of active power consumption,
it performed the best in idle power consumption, leading to the minimized total power consumption.
Figure 5 shows the processor’s utilization. As we see, DVS-HM showed the highest utilization in all
cases and was close to 100% in some cases.

Micromachines 2019, 10, x FOR PEER REVIEW 7 of 12

and DVS-HM, although the gap became small in some cases. In particular, DVS was less effective as
a task set’s load approached the full capacity of a processor. This was because the chance of utilizing
idle periods of a processor by DVS becomes difficult in such cases. Note that the load of a task set
became heavy as the task set number increases in our cases.

0
20
40
60
80

100
120
140
160
180

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a)

0
5

10
15
20
25
30
35
40
45
50
55

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

Figure 3. Processor and memory power consumption under synthetic workloads. (a) Power
consumption in processor, (b) power consumption in memory. DVS-HM = dynamic voltage scaling
with hybrid memory; DVS-DRAM = dynamic voltage scaling with dynamic random access memory;
HM = hybrid memory; DRAM = dynamic random access memory.

Figure 3b shows the power consumption in the memory. The DVS-HM and HM, which use
NVRAM along with DRAM, consumed less energy than the DVS-DRAM and DRAM, which only
use DRAM. This is because the idle power of NVRAM is close to zero, and thus the reduced size of
DRAM—by adopting NVRAM—saved the refresh power of the DRAM. However, as the latency of
NVRAM is longer than that of DRAM, executing a task in NVRAM may increase the execution time
in the processor, possibly increasing the processor’s power consumption. However, as shown in
Figure 3a, such a phenomenon happened only in HM and it disappeared in DVS-HM, which uses
voltage scaling along with hybrid memory placement. When comparing the DVS-DRAM and
DVS-HM, we can see that adopting NVRAM does not increase the processor’s power consumption if
DVS is used. This is because power-saving can be maximized by executing a processor in a low
voltage mode when the task is located in NVRAM.

Figure 4a shows the total energy consumption by adding up the consumed energy in processor
and memory. DVS-HM saved the energy consumption of the DRAM, DVS-DRAM, and HM by 36%,
18%, and 28%, respectively. Figure 4b,c separately show the active and idle power consumptions.
Although the DVS-HM performed worse than the DVS-DRAM, in terms of active power
consumption, it performed the best in idle power consumption, leading to the minimized total
power consumption. Figure 5 shows the processor’s utilization. As we see, DVS-HM showed the
highest utilization in all cases and was close to 100% in some cases.

0
20
40
60
80

100
120
140
160
180
200

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a) Micromachines 2019, 10, x FOR PEER REVIEW 8 of 12

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(c)

Figure 4. Power consumptions under synthetic workloads. (a) Total power consumptions, (b) active
power consumptions, (c) idle power consumptions.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 AVG

U
til

iz
at

io
n,

 %

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 5. Processor utilizations under synthetic workloads.

3.2. Experiments with Realistic Workloads

To see the effectiveness of the proposed algorithm in more realistic situations, we performed
additional experiments under two realistic workload conditions, a robotic highway safety marker
(RSM) workload [11] and an IoT workload [12]. Similar to the synthetic workload cases, we show
that the proposed algorithm is effective in increasing the processor’s utilization and decreasing the
power consumption. Figure 6 shows the power consumptions in processor and memory separately
when the RSM and IoT workloads are used. For both workloads, power consumption in the
processor was significantly reduced when the DVS was used. Specifically, DVS-HM and
DVS-DRAM saved the processor’s power consumption by 86–88% in comparison with HM and
DRAM, as shown in Figure 6a.

0

10

20

30

40

50

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a)

Figure 4. Power consumptions under synthetic workloads. (a) Total power consumptions, (b) active
power consumptions, (c) idle power consumptions.

Micromachines 2019, 10, 371 9 of 12

Micromachines 2019, 10, x FOR PEER REVIEW 8 of 12

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(c)

Figure 4. Power consumptions under synthetic workloads. (a) Total power consumptions, (b) active
power consumptions, (c) idle power consumptions.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 AVG

U
til

iz
at

io
n,

 %

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 5. Processor utilizations under synthetic workloads.

3.2. Experiments with Realistic Workloads

To see the effectiveness of the proposed algorithm in more realistic situations, we performed
additional experiments under two realistic workload conditions, a robotic highway safety marker
(RSM) workload [11] and an IoT workload [12]. Similar to the synthetic workload cases, we show
that the proposed algorithm is effective in increasing the processor’s utilization and decreasing the
power consumption. Figure 6 shows the power consumptions in processor and memory separately
when the RSM and IoT workloads are used. For both workloads, power consumption in the
processor was significantly reduced when the DVS was used. Specifically, DVS-HM and
DVS-DRAM saved the processor’s power consumption by 86–88% in comparison with HM and
DRAM, as shown in Figure 6a.

0

10

20

30

40

50

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a)

Figure 5. Processor utilizations under synthetic workloads.

3.2. Experiments with Realistic Workloads

To see the effectiveness of the proposed algorithm in more realistic situations, we performed
additional experiments under two realistic workload conditions, a robotic highway safety marker
(RSM) workload [11] and an IoT workload [12]. Similar to the synthetic workload cases, we show
that the proposed algorithm is effective in increasing the processor’s utilization and decreasing the
power consumption. Figure 6 shows the power consumptions in processor and memory separately
when the RSM and IoT workloads are used. For both workloads, power consumption in the processor
was significantly reduced when the DVS was used. Specifically, DVS-HM and DVS-DRAM saved the
processor’s power consumption by 86–88% in comparison with HM and DRAM, as shown in Figure 6a.

Micromachines 2019, 10, x FOR PEER REVIEW 8 of 12

0
20
40
60
80

100
120
140
160

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 AVG

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(c)

Figure 4. Power consumptions under synthetic workloads. (a) Total power consumptions, (b) active
power consumptions, (c) idle power consumptions.

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 AVG

U
til

iz
at

io
n,

 %

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 5. Processor utilizations under synthetic workloads.

3.2. Experiments with Realistic Workloads

To see the effectiveness of the proposed algorithm in more realistic situations, we performed
additional experiments under two realistic workload conditions, a robotic highway safety marker
(RSM) workload [11] and an IoT workload [12]. Similar to the synthetic workload cases, we show
that the proposed algorithm is effective in increasing the processor’s utilization and decreasing the
power consumption. Figure 6 shows the power consumptions in processor and memory separately
when the RSM and IoT workloads are used. For both workloads, power consumption in the
processor was significantly reduced when the DVS was used. Specifically, DVS-HM and
DVS-DRAM saved the processor’s power consumption by 86–88% in comparison with HM and
DRAM, as shown in Figure 6a.

0

10

20

30

40

50

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(a)

Micromachines 2019, 10, x FOR PEER REVIEW 9 of 12

0

5

10

15

20

25

30

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

Figure 6. Processor and memory power consumptions under realistic workloads. (a) Power
consumption in processor, (b) power consumption in memory.

When we compared the power consumption in memory, algorithms that use NVRAM along
with DRAM significantly reduced the power consumption, as shown in Figure 6b. Specifically, the
DVS-HM and HM consumed 89–90% less power than the DVS-DRAM and DRAM, which only use
DRAM. This is because the idle power of NVRAM is very small.

Figure 7 shows the total power consumption when realistic workloads are used. As shown in
the figure, the trends of the graphs are consistent with the synthetic workload cases. Specifically,
DVS-HM saved the power consumption of DRAM, DVS-DRAM, and HM by 88%, 74%, and 83%,
respectively, in the RSM workload and 88%, 68%, and 87%, respectively, in the IoT workload. Figure
8 shows the processor’s utilization for realistic workloads. As can be seen from the figure, DVS-HM
exhibited the highest utilization by adopting low-power resource configurations in both the
processor and memory. The HM also showed a high utilization similar to DVS-HM, but this was not
due to the low voltage setting of the processor, as HM does not use DVS. In fact, the high utilization
of the HM was caused by the stalls in executing the instructions while accessing the slow NVRAM
memory. Due to this reason, the HM presented a significantly larger power consumption in the
processor, although its utilization became high, which was different from the DVS-HM cases.

0

10

20

30

40

50

60

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 7. Total power consumption under realistic workloads.

0
10
20
30
40
50
60
70
80

RSM IoT

U
til

iz
at

io
n,

 %

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 8. Processor utilizations under realistic workloads.

4. Related Works

4.1. Hybrid Memory Technologies

Recently, hybrid memory technologies consisting of DRAM and NVRAM have been catching
interest. As NVRAM is byte-accessible, similar to DRAM, but consumes less energy and provides
higher scalability than DRAM, it is anticipated to be adopted in the main memory hierarchy of

Figure 6. Processor and memory power consumptions under realistic workloads. (a) Power
consumption in processor, (b) power consumption in memory.

When we compared the power consumption in memory, algorithms that use NVRAM along with
DRAM significantly reduced the power consumption, as shown in Figure 6b. Specifically, the DVS-HM
and HM consumed 89–90% less power than the DVS-DRAM and DRAM, which only use DRAM. This
is because the idle power of NVRAM is very small.

Figure 7 shows the total power consumption when realistic workloads are used. As shown in the
figure, the trends of the graphs are consistent with the synthetic workload cases. Specifically, DVS-HM
saved the power consumption of DRAM, DVS-DRAM, and HM by 88%, 74%, and 83%, respectively,
in the RSM workload and 88%, 68%, and 87%, respectively, in the IoT workload. Figure 8 shows the
processor’s utilization for realistic workloads. As can be seen from the figure, DVS-HM exhibited the
highest utilization by adopting low-power resource configurations in both the processor and memory.
The HM also showed a high utilization similar to DVS-HM, but this was not due to the low voltage
setting of the processor, as HM does not use DVS. In fact, the high utilization of the HM was caused by
the stalls in executing the instructions while accessing the slow NVRAM memory. Due to this reason,
the HM presented a significantly larger power consumption in the processor, although its utilization
became high, which was different from the DVS-HM cases.

Micromachines 2019, 10, 371 10 of 12

Micromachines 2019, 10, x FOR PEER REVIEW 9 of 12

0

5

10

15

20

25

30

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

Figure 6. Processor and memory power consumptions under realistic workloads. (a) Power
consumption in processor, (b) power consumption in memory.

When we compared the power consumption in memory, algorithms that use NVRAM along
with DRAM significantly reduced the power consumption, as shown in Figure 6b. Specifically, the
DVS-HM and HM consumed 89–90% less power than the DVS-DRAM and DRAM, which only use
DRAM. This is because the idle power of NVRAM is very small.

Figure 7 shows the total power consumption when realistic workloads are used. As shown in
the figure, the trends of the graphs are consistent with the synthetic workload cases. Specifically,
DVS-HM saved the power consumption of DRAM, DVS-DRAM, and HM by 88%, 74%, and 83%,
respectively, in the RSM workload and 88%, 68%, and 87%, respectively, in the IoT workload. Figure
8 shows the processor’s utilization for realistic workloads. As can be seen from the figure, DVS-HM
exhibited the highest utilization by adopting low-power resource configurations in both the
processor and memory. The HM also showed a high utilization similar to DVS-HM, but this was not
due to the low voltage setting of the processor, as HM does not use DVS. In fact, the high utilization
of the HM was caused by the stalls in executing the instructions while accessing the slow NVRAM
memory. Due to this reason, the HM presented a significantly larger power consumption in the
processor, although its utilization became high, which was different from the DVS-HM cases.

0

10

20

30

40

50

60

RSM IOT
Po

w
er

 c
on

su
m

pt
io

n,
 m

W

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 7. Total power consumption under realistic workloads.

0
10
20
30
40
50
60
70
80

RSM IoT

U
til

iz
at

io
n,

 %

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 8. Processor utilizations under realistic workloads.

4. Related Works

4.1. Hybrid Memory Technologies

Recently, hybrid memory technologies consisting of DRAM and NVRAM have been catching
interest. As NVRAM is byte-accessible, similar to DRAM, but consumes less energy and provides
higher scalability than DRAM, it is anticipated to be adopted in the main memory hierarchy of

Figure 7. Total power consumption under realistic workloads.

Micromachines 2019, 10, x FOR PEER REVIEW 9 of 12

0

5

10

15

20

25

30

RSM IOT

Po
w

er
 c

on
su

m
pt

io
n,

 m
W

Task set

DVS-HM DVS-DRAM HM DRAM

(b)

Figure 6. Processor and memory power consumptions under realistic workloads. (a) Power
consumption in processor, (b) power consumption in memory.

When we compared the power consumption in memory, algorithms that use NVRAM along
with DRAM significantly reduced the power consumption, as shown in Figure 6b. Specifically, the
DVS-HM and HM consumed 89–90% less power than the DVS-DRAM and DRAM, which only use
DRAM. This is because the idle power of NVRAM is very small.

Figure 7 shows the total power consumption when realistic workloads are used. As shown in
the figure, the trends of the graphs are consistent with the synthetic workload cases. Specifically,
DVS-HM saved the power consumption of DRAM, DVS-DRAM, and HM by 88%, 74%, and 83%,
respectively, in the RSM workload and 88%, 68%, and 87%, respectively, in the IoT workload. Figure
8 shows the processor’s utilization for realistic workloads. As can be seen from the figure, DVS-HM
exhibited the highest utilization by adopting low-power resource configurations in both the
processor and memory. The HM also showed a high utilization similar to DVS-HM, but this was not
due to the low voltage setting of the processor, as HM does not use DVS. In fact, the high utilization
of the HM was caused by the stalls in executing the instructions while accessing the slow NVRAM
memory. Due to this reason, the HM presented a significantly larger power consumption in the
processor, although its utilization became high, which was different from the DVS-HM cases.

0

10

20

30

40

50

60

RSM IOT
Po

w
er

 c
on

su
m

pt
io

n,
 m

W
Task set

DVS-HM DVS-DRAM HM DRAM

Figure 7. Total power consumption under realistic workloads.

0
10
20
30
40
50
60
70
80

RSM IoT

U
til

iz
at

io
n,

 %

Task set

DVS-HM DVS-DRAM HM DRAM

Figure 8. Processor utilizations under realistic workloads.

4. Related Works

4.1. Hybrid Memory Technologies

Recently, hybrid memory technologies consisting of DRAM and NVRAM have been catching
interest. As NVRAM is byte-accessible, similar to DRAM, but consumes less energy and provides
higher scalability than DRAM, it is anticipated to be adopted in the main memory hierarchy of

Figure 8. Processor utilizations under realistic workloads.

4. Related Works

4.1. Hybrid Memory Technologies

Recently, hybrid memory technologies consisting of DRAM and NVRAM have been catching
interest. As NVRAM is byte-accessible, similar to DRAM, but consumes less energy and provides
higher scalability than DRAM, it is anticipated to be adopted in the main memory hierarchy of future
computer systems. Mogul et al. suggest an efficient memory management policy for DRAM and
PRAM hybrid memory [4]. Their policy tries to place read-only pages in PRAM, while writable pages
in DRAM, thereby reducing the slow PRAM writes [4]. Dhiman et al. propose a hybrid memory
architecture consisting of PRAM and DRAM, which dynamically moves data between PRAM and
DRAM in order to balance the write count of PRAM [5]. Qureshi et al. propose a hierarchical memory
architecture consisting of DRAM and PRAM [7]. Specifically, they use DRAM as the write buffer of
PRAM in order to prolong the lifespan of PRAM and hide the slow write performances of PRAM.
Lee et al. propose the CLOCK-DWF (clock with dirty bits and write frequency) policy for hybrid
memory architecture, consisting of DRAM and PRAM [6]. They allocate read-intensive pages to PRAM
and write-intensive pages to DRAM by online characterization of memory access patterns. Zhou et al.
propose a hierarchical memory architecture consisting of DRAM and PRAM [8]. In particular, they
propose a page replacement policy that tries to reduce both the cache misses and the write-backs from
DRAM. Narayan et al. propose a page allocation approach for hybrid memory architectures at the
memory object level [13]. They characterize memory objects and allocate them to their best-fit memory
module to improve performance and energy efficiency. Kannan et al. propose heterogeneous memory
management in virtualized systems [14]. They designed a heterogeneity-aware guest operating
system (OS), which allows for placing data in the appropriate memory, which avoids page migrations.
They also present migration policies for performance-critical pages and memory sharing policies for
guest machines.

4.2. Low-Power Techniques for Real-time Scheduling

Many studies have been performed on DVS in order to reduce power consumption in real-time
systems [15–18]. Pillai and Shin propose a mechanism of selecting the lowest operating frequency

Micromachines 2019, 10, 371 11 of 12

that will meet deadlines for a given task set [19]. They propose three algorithms for DVS: Static DVS,
cycle-conserving DVS, and look-ahead DVS. Static DVS selects the voltage of a processor statically,
whereas cycle-conserving DVS uses reclaimed cycles for lowering the voltage when the actual execution
time of a task is shorter than the worst-case execution time. Look-ahead DVS lowers the voltage
further by determining future computation requirements and deferring the execution of the task in
accordance. Lee et al. use the slack time to lower the processor’s voltage [1]. Specifically, initial
voltages can be dynamically switched upon reclaiming unused clock cycles when a task completes
before its deadline. Lin et al. point out that there is a memory mapping problem, as heterogeneous
memory types are used [10]. They use dynamic programming and greedy approximation for solving
the problem. Zhang et al. propose task placement in hybrid memory to save energy consumption [20].
In their scheme, tasks are located one by one in the NVRAM and the schedulability is checked. This
procedure is repeated until the locations of all tasks are determined. Ghor and Aggoune propose
a slack-based method to find the least voltage schedule for real-time tasks [16]. They stretch the
execution time of tasks through off-line computing and schedule tasks as late as possible without
missing their deadlines.

5. Conclusions

This article presented a new real-time task scheduling approach that unifies the processor’s
voltage scaling and task placement in hybrid memory. Our approach incorporates the task placement
in hybrid memory into the task model of voltage scaling in order to maximize the power-saving of
real-time systems. The experimental results showed that the proposed technique reduces the power
consumption of real-time systems by 18–88%. In the future, we will perform measurement studies in
real systems in order to assess the effectiveness of the proposed approach in more realistic situations.

Author Contributions: S.N. designed the architecture and algorithm, K.C. performed the experiments. H.B.
supervised the work and provided expertise.

Funding: This research was funded by the ICT R & D program of MSIP/IITP (2019-0-00074, developing system
software technologies for emerging new memory that adaptively learn workload characteristics) and also
by the Basic Science Research Program through the NRF grant funded by Korea Government (MSIP) (No.
2019R1A2C1009275).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lee, Y.H.; Doh, Y.; Krishna, C.M. EDF scheduling using two-mode voltage clock scaling for hard real-time
systems. In Proceedings of the 2001 International Conference on Compilers, Architecture, and Synthesis for Embedded
Systems; ACM: New York, NY, USA, 2001; pp. 211–228.

2. Liu, S.; Pattabiraman, K.; Moscibroda, T.; Zorn, B.G. Flikker: Saving DRAM refresh-power through critical
data partitioning. ACM SIGPLAN Not. 2012, 47, 213–224. [CrossRef]

3. Eilert, S.; Leinwander, M.; Crisenza, G. Phase Change Memory: A New Memory Technology to Enable New
Memory Usage Models. 2011. Available online: https://www.ecnmag.com/article/2010/01/phase-change-
memory-new-memory-technology-enable-new-memory-usage-models (accessed on 3 June 2019).

4. Mogul, J.C.; Argollo, E.; Shah, M.; Faraboschi, P. Operating system support for NVM+DRAM hybrid main
memory. In 12th USENIX Workshop on Hot Topics in Operating Systems (HotOS); USENIX: Monte Verita,
Switzerland, 2009.

5. Dhiman, G.; Ayoub, R.; Rosing, T. PDRAM: A hybrid PRAM and DRAM main memory system. In 2009 46th
ACM/IEEE Design Automation Conference; IEEE: Piscataway, NJ, USA, 2009.

6. Lee, S.; Bahn, H.; Noh, S.H. CLOCK-DWF: A Write-History-Aware Page Replacement Algorithm for Hybrid
PCM and DRAM Memory Architectures. IEEE Trans. Comput. 2013, 63, 2187–2200. [CrossRef]

7. Qureshi, M.K.; Srinivasan, V.; Rivers, J.A. Scalable high performance main memory system using phase-change
memory technology. In ACM SIGARCH Computer Architecture News; ACM: New York, NY, USA, 2009.

http://dx.doi.org/10.1145/2248487.1950391
https://www.ecnmag.com/article/2010/01/phase-change-memory-new-memory-technology-enable-new-memory-usage-models
https://www.ecnmag.com/article/2010/01/phase-change-memory-new-memory-technology-enable-new-memory-usage-models
http://dx.doi.org/10.1109/TC.2013.98

Micromachines 2019, 10, 371 12 of 12

8. Zhou, P.; Zhao, B.; Yang, J.; Zhang, Y. A durable and energy efficient main memory using phase change
memory technology. In ACM SIGARCH Computer Architecture News; ACM: New York, NY, USA, 2009.

9. Ibarra, O.H.; Kim, C.E. Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM
1975, 22, 463–468. [CrossRef]

10. Lin, Y.; Guan, N.; Deng, Q. Allocation and scheduling of real-time tasks with volatile/non-volatile hybrid
memory systems. In 2015 IEEE Non-Volatile Memory System and Applications Symposium (NVMSA); IEEE:
Piscataway, NJ, USA, 2015; pp. 1–6.

11. Qadi, A.; Goddard, S.; Farritor, S. A dynamic voltage scaling algorithm for sporadic tasks. In RTSS 2003.
24th IEEE Real-Time Systems Symposium; IEEE: Piscataway, NJ, USA, 2003.

12. Wang, Z.; Liu, Y.; Sun, Y.; Li, Y.; Zhang, D.; Yang, H. An energy-efficient heterogeneous dual-core processor
for Internet of Things. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS); IEEE: Piscataway,
NJ, USA, 2015.

13. Narayan, A.; Zhang, T.; Aga, S.; Narayanasamy, S.; Coskun, A. MOCA: Memory object classification and
allocation in heterogeneous memory systems. In 2018 IEEE International Parallel and Distributed Processing
Symposium (IPDPS); IEEE: Piscataway, NJ, USA, 2018.

14. Kannan, S.; Gavrilovska, A.; Gupta, V.; Schwan, K. HeteroOS—OS design for heterogeneous memory
management in datacenter. In 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture
(ISCA); IEEE: Piscataway, NJ, USA, 2017.

15. Choi, K.; Lee, W.; Soma, R.; Pedram, M. Dynamic voltage and frequency scaling under a precise energy model
considering variable and fixed components of the system power dissipation. In Proceedings of the 2004 IEEE/ACM
International Conference on Computer-Aided Design; IEEE Computer Society: Washington, DC, USA, 2004.

16. Ghor, H.E.; Aggoune, E.H.M. Energy saving EDF scheduling for wireless sensors on variable voltage
processors. J. Adv. Comput. Sci. Appl. 2014, 5, 158–167.

17. David, H.; Fallin, C.; Gorbatov, E.; Hanebutte, U.R.; Mutlu, O. Memory power management via dynamic
voltage/frequency scaling. In Proceedings of the 8th ACM International Conference on Autonomic Computing;
ACM: New York, NY, USA, 2011.

18. Chetto, H.; Chetto, M. Some results of the earliest deadline scheduling algorithm. IEEE Trans. Software Eng.
1989, 10, 1261–1269. [CrossRef]

19. Pillai, P.; Shin, K.G. Real-time dynamic voltage scaling for low-power embedded operating systems. In ACM
SIGOPS Operating Systems Review; ACM: New York, NY, USA, 2001.

20. Zhang, Z.; Jia, Z.; Liu, P.; Ju, L. Energy efficient real-time scheduling for embedded systems with hybrid
main memory. J. Signal Proc. Syst. 2016, 84, 69–89. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/321906.321909
http://dx.doi.org/10.1109/TSE.1989.559777
http://dx.doi.org/10.1007/s11265-015-0995-3
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Proposed Policy
	Performance Evaluations
	Experiments with Synthetic Workloads
	Experiments with Realistic Workloads

	Related Works
	Hybrid Memory Technologies
	Low-Power Techniques for Real-time Scheduling

	Conclusions
	References

