
micromachines

Article

The Matrix KV Storage System Based on
NVM Devices

Tao Cai * , Fuli Chen, Qingjian He, Dejiao Niu * and Jie Wang

School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China;
13027520312@163.com (F.C.); he_qingjian@outlook.com (Q.H.); wangjie287@live.com (J.W.)
* Correspondence: caitao@ujs.edu.cn (T.C.); djniu@ujs.edu.cn (D.N.)

Received: 28 April 2019; Accepted: 22 May 2019; Published: 27 May 2019
����������
�������

Abstract: The storage device based on Nonvolatile Memory (NVM devices) has high read/write speed
and embedded processor. It is a useful way to improve the efficiency of Key-Value (KV) application.
However it still has some limitations such as limited capacity, poorer computing power compared
with CPU, and complex I/O system software. Thus it is not an effective way to construct KV storage
system with NVM devices directly. We analyze the characteristics of NVM devices and demands of KV
application to design the matrix KV storage system based on NVM Devices. The group collaboration
management based on Bloomfilter, intragroup optimization based on competition, embedded KV
management based on B+-tree, and the new interface of KV storage system are presented. Then,
the embedded processor in the NVM device and CPU can be comprehensively utilized to construct
a matrix KV pair management system. It can improve the storage and management efficiency of
massive KV pairs, and it can also support the efficient execution of KV applications. A prototype is
implemented named MKVS (the matrix KV storage system based on NVM devices) to test with YCSB
(Yahoo! Cloud System Benchmark) and to compare with the current in-memory KV store. The results
show that MKVS can improve the throughput by 5.98 times, and reduce the 99.7% read latency and
77.2% write latency.

Keywords: key value storage system; nonvolatile memory; key value pairs management; I/O system
software stack

1. Introduction

The disk and flash-based solid-state device (SSD) cannot provide high random I/O performance.
The I/O performance is much lower than the speed of a CPU and the storage device is the bottleneck of
computer system. Nowadays, a series of NVM (nonvolatile memory) has been developed, such as
phase-change memory (PCM) [1], shared transistor technology random access memory (STT-RAM) [2],
Intel’s 3D X-point [3], etc. These devices have the advantages of being byte-addressable, longer writing
lifetime compared with Flash, low power consumption, and close to the I/O speed of dynamic random
access memory (DRAM). Then the NVM device has high read and write speed. However the current
I/O system software stack was designed for low-speed storage devices, which becomes an important
factor affecting the performance of the NVM storage system. Relevant research indicates that the I/O
system software stack accounts for more than 94% of the time overhead in the NVM storage system.
Therefore, how to reduce the time overhead of the I/O system software stack is important to improve
NVM storage system performance. Key-value (KV) store is an important application and it has been
widely used in many systems, such as Dynamo at Amazon [4], Voldemort at LinkedIn [5], Cassandra at
Apache [6], LevelDB at Google [7], and RocksDB at Facebook [8]. It is tailored in many data-intensive
internet applications, such social networking, e-commerce, and online gaming. Currently, the NVM
device is used instead of an HDD (hard disk drive) or Flash-based SSD (solid state drive). The KV

Micromachines 2019, 10, 346; doi:10.3390/mi10050346 www.mdpi.com/journal/micromachines

http://www.mdpi.com/journal/micromachines
http://www.mdpi.com
https://orcid.org/0000-0003-1423-2710
http://www.mdpi.com/2072-666X/10/5/346?type=check_update&version=1
http://dx.doi.org/10.3390/mi10050346
http://www.mdpi.com/journal/micromachines


Micromachines 2019, 10, 346 2 of 18

application generally needs to go through the file system when accessing the storage system. However,
research shows that the latency of the file system accounts for 30% of the total delay, resulting in an 85%
performance loss. Therefore, how to design new KV storage systems according to the characteristics
of NVM devices and the KV application is an important factor in improving the performance of the
KV application.

The NVM device has the embedded processor and it can share some management task for storage
system or application. However, compared with CPU, the embedded processor of NVM device has
limited computing power, and it is difficult to index and management of a large number of KV pairs
independently. At the same time, the capacity of a single NVM device is limited, and it is difficult to
meet the demand for large-capacity KV store. Building a storage array with multiple NVM devices
can achieve huge storage space, and using multiple NVM devices can effectively share the index and
search tasks of KV pairs. Therefore, building storage arrays with NVM devices is an effective way to
solve the problem of high-efficiency storage and management of a large number of KV pairs. However,
the traditional storage array is a server-independent storage device that must be connected to the
server using a network or interface. The read/write speed of the NVM device is much higher than that
of the traditional storage device. It makes the network or interface become a bottleneck and affects
the performance of the NVM array. Therefore, integrating multiple NVM devices into the server,
constructing the server’s embedded storage array, and reducing the hardware and software overhead
when accessing storage arrays are important issues.

BloomFilter is a commonly used to distribute data and access requests in a distributed system.
However its computation time and space overhead are very large, it is not suitable for embedding into
NVM devices, and calculates using the embedded processor in NVM devices. The performance of
NVM devices has instability due to wear leveling and garbage collection. Thus, it is not a good choice
to directly using BloomFilter in NVM arrays. Therefore, it is necessary to study a new distributed KV
management strategy for the characteristics of NVM arrays.

The main contributions of this paper are as follows.

• We comprehensively utilize the embedded processor in the NVM device and the CPU to construct
a matrix KV pair management mechanism. The CPU completes the KV pair distribution task with
high computational overhead, and then the embedded processor separately indexes part of the
KV pair stored in the NVM device. Thereby it can improve the efficiency of mass KV storage and
management, and also improve the efficiency of the KV applications.

• The KV pairs are distributed among multiple groups of NVM devices in the host. The multiple
sets of NVM devices are used to share the storage and management tasks of the massive KV pairs.
Thereby it can avoid the limited capacity of a single NVM device, realize efficient storage and
management of massive KV pairs, improves the efficiency and concurrency of KV pair access, and
increases the execution speed of KV applications.

• One NVM devices group consists of several NVM devices, and the competition of these NVM
devices improves the efficiency of KV pair storage and management. Then it can avoid the impact
of NVM device read/write speed instability on access KV efficiency.

• The KV engine is embedded in each NVM device, and the distributed KV management system
in the host is built. Then the KV pair can be managed by the embedded processor of the NVM
device. The exchange of a large number of KV pairs between the NVM device and the host can be

• The I/O software stack for accessing KV pairs can be shorten to adapt to the characteristics of NVM
arrays and KV applications. It can improve the efficiency of KV pair access and management
for KV application. At the same time, several system calls are added to encapsulate the KV
management operations of matrix KV storage system; this can ensure the compatibility of existing
applications and avoid numerous modifications to current KV applications.



Micromachines 2019, 10, 346 3 of 18

2. Related Works

There are many researches on how to improve the access speed of a storage system based on NVM
devices. A PCIe PCM array named Onyx was implemented and tested [9]. The results showed that
it could improve the performance of read and small write by ~72–120% compared with Flash-based
SSD. FusionIO extended the support of file systems for atomic writing [10]. It could convert write
requests in MySQL to atomic write requests by sending to NVM devices, and improved the efficiency
of transactions by 70%. S. Kannan, A, used NVM devices to store checkpoints locally and remotely [11].
The pre-replication policy was designed to move the checkpoint from memory to NVM devices before
the checkpoint is started. The efficiency of metadata management largely affects the I/O performance of
a file system. In general, metadata are stored with the data of a file in blocks, and a small modification
to the metadata leads to the update of the entire block. To take the advantage of the high efficiency of
NVM devices to optimize the access performance of the metadata, Subramanya R Dulloor designed a
lightweight file system called PMFS for NVDIMMs (non-volatile dual in-line memory module) [12].
It uses cache lines and a 64-byte granulated log to ensure file system consistency, while reducing
the performance impact of metadata updating and balances supporting existing applications and
optimizing the access performance on NVM devices. Youyou Lu designed Blurred Persistence for
transactional persistent memory [13]. It could blur the volatility–persistence boundary to reduce
the overhead in transaction support and improve system performance by 56.3% to 143.7%. Wei Q
proposed the persistence in memory metadata management mechanism (PIMM), which reduces SSD
I/O traffic by utilizing persistence and byte-addressable of NVM devices [14]. PIMM separated data
from the metadata access path and stored the data on SSD at runtime and the metadata on NVM
devices. PIMM is prototyped on a real NVDIMM platform. Extensive evaluation on the implemented
prototype showed that it could reduce the block erase of SSD by 91% and improve I/O performance
under several real workloads.

Additionally, much work has been done on the system software overhead and performance loss
caused by the access interface. Swanson analyzed the hardware and software overhead of the storage
system based on NVM devices [15], pointing out that the current I/O system software stack needs
to be reconstructed. The proportion on the software stack for traditional architecture is 18%, while
PCIe-NVM is 63%. The overhead of the software greatly prevents the NVM device from achieving the
purpose of increasing bandwidth and reducing latency. This article points to the shortcomings of using
the traditional block I/O interface, and proposes a primitive that batch processes multiple I/O requests
to achieve atomic writes, which can reduce overhead of applications, file systems, and operating
systems. Besides, direct access to NVM devices is also very popular. DEVFS also reminded that the
software stack of storage system should be carefully considered when exploring the characteristics
of the storage device [16]. The traditional software stack of storage requires the application to be
trapped in the operating system and involved in many layers such as memory buffers, cache, file
system, block layer, etc. They will undoubtedly greatly increase the access latency, thus reducing
the benefits of the NVM device with high I/O speed. Researchers reminded readers that file systems
account for a large proportion of software overhead, so it is important to optimize or current file
systems. In the PCIe-NVM prototype system, the file system accounts for 30% of the total latency
and reduces performance by 85%. Volos explored the interface optimization technology for SCM
(storage class memory) [17], and proposed to use the hardware access control function to avoid the
time overhead of the context switch between the kernel space and user space when accessing the file
system and to spread the file system function into the application to achieve more flexibility. Although
the performance of the system can be greatly improved by adjusting the existing storage I/O stack,
the programming based on the fixed POSIX interface is still too cumbersome and inefficient and is
not friendly enough to the programmer. In this regard, research on direct I/O has also been carried
out, which allow users to interact directly with memory without modifying metafiles, while reducing
the access control overhead for data at the file system level. The hardware-based file system access
control was used to separate access paths for metadata and data [18,19], and a direct I/O between the



Micromachines 2019, 10, 346 4 of 18

user space storage devices was used to avoid metadata modification. In addition, in order to take
advantage of the byte addressing of NVM devices, it is necessary to pay attention to the granularity of
access and update. Mnemosyne is a lightweight access interface for NVDIMMs to solve the problem of
how user programs create and manage nonvolatile memory and how to ensure data consistency [20].
The load/store instruction was used to access the NVDIMMs directly [21].

Many studies were focused on how to improve the search efficiency and access performance of
KV pairs according to the characteristics of KV store. Data-intensive storage in the age of big data
urgently demands a flexible and efficient KV store, in particular in the field of web services. KV store is
responsible for storing large amounts of data and accessing them quickly. KV store consists of massive
small files, and the saccess characteristics and proportion of each operation must be considered when
designing the system. Xingbo Wu designed LSM-Trie [22], a prefix tree structure that can effectively
manage metadata and reduce write time overhead of KV store. The combination of KV store and
NVM was also a hot spot. The hybrid storage was praised due to the read and write performance gap
between NVM devices and DRAM. For NVM, especially PCM has limited writing lifetime. Therefore,
there are many researches on how to optimize NVM devices to reduce write times [23–26]. For example,
Chen proposed an unordered leaf node B+ tree to reduce the write overhead caused by sorting [23].
HIKV realize the overall optimization of KV operation by using the advantages of hybrid storage
and hybrid indexing [27]. In order to take the advantage of byte-addressable for the NVM device,
Deukyeon redesigned the B+ tree to overcome the problem that the amount of write transmission data
is inconsistent with cache line. The open source project Pmemkv is a KV database for NVM devices [28].
It uses the linked list and C++ binding of the persistent memory development kit (PMDK) libpmemobj
library to implement a persistent memory-aware queue for direct memory access. NVMKV optimizes
the KV store based on the internal structure of the NVM device, and implements a lightweight KV
store using an FTL-sparse address space, dynamic mapping technology, and transaction consistency,
while supporting a highly lock-free parallel mechanism [29] that can almost reach bare device speed.
The workload analysis of cache showed that the ratio of get operation to set operation is up to 30:1 in
KV store. This means that the concurrency is very important demand to the storage system for KV store.
The NVM device has good parallelism. Echo [30] and NVStore [31] use MVCC for concurrency control.
Chronos [32] and MICA [33] use partitioning to achieve concurrency control for hash tables. PALM is
a lock-free concurrent B+ tree [34]. FPTree use HTM (hardware transactional memory) to handle the
concurrency of internal nodes and use fine-grained locks for leaf nodes to access concurrently [18].
ALOHA-KV proposes counter example to prove that concurrent transactions can reduce the time
overhead without conflicts, and designs the epoch-based ECC (error correcting code) mechanism to
minimize the overhead caused by synchronization conflicts [35].

3. Challenges

• The embedded processor of NVM devices

Similar to Flash-based SSDs, NVM devices generally also equipped with embedded processors
that have a certain amount of computing power while completing the internal management functions
of NVM device. However, the existing KV storage system lacks a corresponding optimization strategy,
and cannot utilize the embedded processor to share the KV storage system management function,
which also affects the I/O performance of the KV storage system while wasting computing resources.
When the efficiency of the access interface of the NVM storage system is difficult to increase rapidly,
how to distribute the management functions to the NVM device in a way of efficiently managing and
processing massive data in a big data system can reduce the number of accesses to the NVM device in
the KV storage system and the impact of slow access interfaces on KV storage system performance.

• The limitations of the NVM device

A single NVM device has limited capacity and it is difficult to store massive KV pairs. The NVM
array is an effective way to build a large-capacity storage system. Unlike traditional disks, the



Micromachines 2019, 10, 346 5 of 18

performance of NVM devices is instability due to wear leveling and garbage collection. The read/write
speed of NVM devices will change with different amount of data stored and different period of lifetime,
which increases the complexity of NVM array management.

• The low speed interface of NVM storage system

With the concurrency of multiple NVM devices, NVM devices can achieve extremely high I/O
performance but the speed of interface is relatively slower than the NVM storage system. Currently,
PCIe (Peripheral Component Interconnect Express), SAS (Serial Attached SCSI), and SATA (Serial ATA)
are commonly used interfaces for NVM devices with a large storage capacity. Due to the limitation
of interface type and protocol, the transmission speed of NVM device interface is generally slower
than the read/write speed inside NVM device. It is restricted by the structure and hardware of whole
computer system and is difficult to make an improvement in a short time.

• Complex I/O software stack

When reading and writing NVM devices, the KV store needs to go through system calls, file
systems, page caches, block layers, etc., which not only consist of multiple data conversion, but also
involve several data copies between the user space and kernel space. At the same time, there are
several caches, such as page caches and caches, in NVM devices. The read and write speed of the NVM
device is already close to the DRAM that built these caches, and these caches should affect efficiency of
KV store. In addition, the current I/O system software stack is designed and optimized for accessing a
large amount of data, and it is difficult to effectively adapt to random read and write of small data for
KV pairs.

4. System Design

4.1. The Architecture of MKVS

We modified the structure of the current KV store and I/O system software stack to design a new
matrix KV storage system based on NVM Devices named MKVS. The structure is shown in Figure 1.

Firstly, several layers in the current I/O system software stack are bypassed such as page cache,
file system and general block layer, etc. It can shorten the I/O system software stack to reduce the
time overhead of access KV pairs. The group collaboration management module based on Bloomfilter,
intragroup optimization module based on competition, embedded KV management module based on
B+-tree, and the new interface of MKVS are added. The group collaboration management module
based on Bloomfilter is responsible for distributing the KV pairs among multiple NVM device groups
by using Bloomfilter and distributing the KV application access requests into the corresponding NVM
device groups to realize distributed storage and management of KV pairs. The intragroup optimization
module based on competition is responsible for dealing with KV pair access requests by multiple
NVM devices in the same NVM device group competitively. The embedded KV pair management
based on the B+-tree module is responsible for establishing an index of KV pairs stored in the NVM
device and efficiently managing these KV pairs by using an embedded processor of the NVM device.
In addition, some system calls are added to the interface of MKVS so that KV applications can skip the
KV database, file system, page cache, and general block layer and directly access the corresponding
functions in MKVS.



Micromachines 2019, 10, 346 6 of 18

Micromachines 2019, 10, x FOR PEER REVIEW 6 of 18 

 

KV application

Group collaboration management module based on Bloomfilter

...

Embedded KV management module 
based on B+-tree

NVM device 1...

NVM device group 1

Intra-
group 

optimizat
ion 

module 
based on 
competiti

onNVM device n

Embedded KV management module 
based on B+-tree

NVM device k...

NVM device group j

Intra-
group 

optimiza
tion 

module 
based on 
competit

ion

Embedded KV management module 
based on B+-tree

NVM device m

File system

Page cache

General block layer

System call

KV store

NVM arrary

Embedded KV management module 
based on B+-tree

Matrix KV Store

The New System Call

 
Figure 1. The structure of MKVS. 

MKVS distributes KV pairs among several groups of NVM devices, which can avoid the 
problem of limited capacity of a single NVM device and ensure the efficiency of massive KV pair 
storage and management. Multiple groups of NVM devices can effectively share the storage and 
management tasks of massive KV pairs, improve the efficiency and concurrency of KV pairs access. 
Then the execution performance KV applications can be improved. The Bloomfilter needs large 
time and space overhead; it is computed by the CPU. Consequently, it can avoid excessive 
consumption of the embedded processor in the NVM device and prevent a bottleneck of 
management efficiency for massive KV pairs. One NVM device group contains multiple NVM 
devices, and the efficiency of accessing and managing KV pairs can be improved by utilizing the 
concurrency of the several NVM devices. Then the influence of KV store efficiency can be avoided 
by performance instability of NVM device. Meanwhile, the time overhead of accessing KV pairs can 
also be reduced by the complete of several NVM devices in one NVM device group. In general, 
MKVS can comprehensively utilize the embedded processor in the NVM device and CPU to 
construct a matrix KV pair management system. The CPU completes the distribution task of KV 
pairs with high time overhead, and then the embedded processor maintains indexes for KV pairs 
stored in NVM devices, respectively. Therefore, the heterogeneous distributed system for KV 
management can be established to improve the storage and management efficiency of massive KV 
pairs, and it also can support the efficient execution of KV applications. 

4.2. The Group Collaborative Management Based on BloomFilter 

MKVS contains multiple NVM device groups. By distributing the KV pairs among these 
groups, the number of KV pairs that each NVM device needs to store and manage can be reduced. 
Thereby the efficiency of accessing KV pairs can be improved. Then how to distribute KV pairs 
among NVM device groups is important to affect the efficiency of MKVS. We design a group 
collaborative management based on BloomFilter. 

BloomFilter can be used to distribute data and access requests in the distributed computing 
system. However, its calculation requires a lot of time and space overhead. Therefore, the CPU is 
used to calculate the key of the KV pairs by BloomFilter and assign the access request to the 
corresponding NVM device group. The Counting BloomFilter is used in group collaborative 
management and is based on BloomFilter. It can avoid the difficulty of deletion operation for the 
BloomFilter. When using the group collaborative management based on BloomFilter, the 
pseudocode for the KV pair insert operation is as follows. 

Collaborative_Insert (Key, Value ) 

Figure 1. The structure of MKVS.

MKVS distributes KV pairs among several groups of NVM devices, which can avoid the problem
of limited capacity of a single NVM device and ensure the efficiency of massive KV pair storage and
management. Multiple groups of NVM devices can effectively share the storage and management tasks
of massive KV pairs, improve the efficiency and concurrency of KV pairs access. Then the execution
performance KV applications can be improved. The Bloomfilter needs large time and space overhead; it
is computed by the CPU. Consequently, it can avoid excessive consumption of the embedded processor
in the NVM device and prevent a bottleneck of management efficiency for massive KV pairs. One
NVM device group contains multiple NVM devices, and the efficiency of accessing and managing KV
pairs can be improved by utilizing the concurrency of the several NVM devices. Then the influence of
KV store efficiency can be avoided by performance instability of NVM device. Meanwhile, the time
overhead of accessing KV pairs can also be reduced by the complete of several NVM devices in one
NVM device group. In general, MKVS can comprehensively utilize the embedded processor in the
NVM device and CPU to construct a matrix KV pair management system. The CPU completes the
distribution task of KV pairs with high time overhead, and then the embedded processor maintains
indexes for KV pairs stored in NVM devices, respectively. Therefore, the heterogeneous distributed
system for KV management can be established to improve the storage and management efficiency of
massive KV pairs, and it also can support the efficient execution of KV applications.

4.2. The Group Collaborative Management Based on BloomFilter

MKVS contains multiple NVM device groups. By distributing the KV pairs among these groups,
the number of KV pairs that each NVM device needs to store and manage can be reduced. Thereby the
efficiency of accessing KV pairs can be improved. Then how to distribute KV pairs among NVM device
groups is important to affect the efficiency of MKVS. We design a group collaborative management
based on BloomFilter.

BloomFilter can be used to distribute data and access requests in the distributed computing
system. However, its calculation requires a lot of time and space overhead. Therefore, the CPU is used
to calculate the key of the KV pairs by BloomFilter and assign the access request to the corresponding
NVM device group. The Counting BloomFilter is used in group collaborative management and is
based on BloomFilter. It can avoid the difficulty of deletion operation for the BloomFilter. When using
the group collaborative management based on BloomFilter, the pseudocode for the KV pair insert
operation is as follows.



Micromachines 2019, 10, 346 7 of 18

Collaborative_Insert (Key, Value)
Read the Key and Value of the KV pair;
Use Counting Bloomfilter to calculate the hash value of the Key;
If (There is a corresponding hash value) {

Find the corresponding NVM devices group;
Call the lookup KV interface of the NVM device;

If (There is no corresponding Key in the NVM device) {
Write the KV pair using the insert KV interface of NVM device;}

Else{
Return a prompt that the corresponding KV pair has already existed;}}

Else{
Insert the hash value corresponding to the Key;
Find the corresponding NVM device group;
Write the KV pair using the insert KV interface of NVM device;}

The pseudocode for the KV pair update operation in the group collaborative management based
on BloomFilter is as follows.

Collaborative_Updata (Key, Value)
Read the Key and Value of the KV pair;
Use Counting Bloomfilter to calculate the hash value of the Key;
If (There is a corresponding hash value) {

Find the corresponding NVM device group;
Call the lookup KV interface of the NVM device;

If (There is no corresponding Key) {
Return a prompt that there is no corresponding KV pair;}

Else{
Update the corresponding KV pair using the update KV interface of NVM device;}}

Else{
Return a prompt that there is no corresponding KV pair;}

The pseudocode for the KV pair get operation in the group collaborative management based on
BloomFilter is as follows.

Collaborative_Get(Key)
Read the Key corresponding to the KV pair to be read;
Use Counting Bloomfilter to calculate the hash value of the Key;
If (There is not corresponding hash value){

Return information that there is no corresponding KV pair;}
Else{

Find the corresponding NVM device group;
Call the lookup KV interface of the NVM device;

If (There is no corresponding KV pair in the NVM device){
Return a prompt that there is no corresponding KV pair;}

Else {
Obtain a corresponding KV pair by using the get KV interface of NVM device;

Return the KV pair to the KV application;} }

The pseudocode for the KV pair delete operation in the group collaborative management based
on BloomFilter is as follows.



Micromachines 2019, 10, 346 8 of 18

Collaborative_Delete(Key)
Read the Key corresponding to the KV pair to be deleted;
Use Counting BloomFilter to calculate the hash value of the Key;
If (There is not corresponding hash value) {

Return information that there is no corresponding KV pair; }
Else{

Find the corresponding NVM device group;
Call the lookup KV interface of the NVM device;

If (There is no corresponding KV pair in the NVM device) {
Return a prompt that there is no corresponding KV pair;}

Else {
Call the delete KV interface of the NVM device to delete the corresponding KV pair;

Return the prompt to delete the KV pair successfully; } }

4.3. The Intragroup Optimization Based on Competition

The performance of NVM devices has instability due to wear leveling and garbage collection.
The read/write speed of NVM devices will change with different amount of data stored and different
period of lifetime. The group collaborative management based on BloomFilter cannot adapt to the
different read/write speeds of NVM devices in the NVM array. We design an intragroup optimization
based on competition. Each NVM device group contains a multiple of NVM devices, and a competition
mechanism is used among these NVM devices to improve the efficiency of KV pair management.
When an NVM device group receives a KV pair access request, it is simultaneously sent to all NVM
devices in this NVM device group. These NVM devices simultaneously execute this access request
and the result should be returned to the KV application when the first NVM device finishes it.

When using the intragroup optimization based on competition, the pseudocode for the KV pair
competitive read operation is as follows.

Competitive_Get (Key)
Read the value of Key corresponding to the KV pair to be read;
Call the lookup KV interface of all NVM devices in the same NVM device group;
If (an NVM device has found the corresponding Key) {
Return the corresponding KV pair to the KV application;
Cancel lookup operation of other NVM devices in the same NVM device group:}
Else
If (There are some NVM devices that do not complete the lookup operation)

continue waiting;
Else

Return information that there is no corresponding KV pair;

The pseudocode for the KV pair competitive insert operation in the intragroup optimization based
on competition is as follows.

Competitive_Insert (Key, Value)
Read the Key and Value of the KV pair;
Call the insert KV interface of all NVM devices in the same NVM device group;
If (an NVM device has completed the insert operation)
Return successful information;
Else

continue waiting;

The pseudocode for the KV pair competitive update operation in the intragroup optimization
based on competition is as follows.



Micromachines 2019, 10, 346 9 of 18

Competitive_Update (Key, Value)
Read the Key and Value of the KV pair;
Call the update KV interface of all NVM devices in the same NVM device group;
If (an NVM device has completed the update operation)
Return successful information;
Else

continue waiting;

The pseudocode for the KV pair competitive delete operation in the intragroup optimization
based on competition is as follows.

Competitive_Delete (Key)
Read the Key corresponding to the KV pair to be deleted;
Call the delete KV interface of all NVM devices in the same NVM device group;
If (an NVM device has completed the delete operation)
Return successful information;
Else

continue waiting;

Using intragroup optimization based on competition can mitigate the impact of NVM devices
on the performance of KV store. By competing with other NVM devices in the same NVM device
group, the access speed of KV pairs can be improved and the throughput of searching KV pairs can
also be increased.

4.4. The Embedded KV Pairs Management Based on B+-Tree

In MKVS, the NVM device is only used to store the KV pairs. The embedded processor in the
NVM device is used to establish an index of the KV key based on B+-Tree in each NVM device.
There is an embedded KV engine in every NVM device, and it can manage the KV pairs using the
embedded processor. A KV operation, such as lookup KV, get KV, update KV, insert KV, and delete KV,
is implemented by adding an embedded KV engine to each NVM device. Then the NVM device can
manage KV pairs autonomously. At the same time, the traditional byte or block interface of storage
device is changed, and some new interfaces of KV operation such as lookup, get, insert, delete, and
update of the KV pair are added to the NVM device. Then the result of the KV management operation
can be conveniently obtained from the NVM device.

The embedded KV engine in each NVM device can be used to construct a distributed KV store in
one host. It can be used to reduce the time and space overhead of KV pairs management, and has
good scalability. It also can avoid the transfer a large amount of data between CPU and the NVM
device when searching KV pairs. Then the interface of NVM device should not be the bottleneck of KV
store. At the same time, by changing the interface of the NVM device and implementing the KV access
interface, the I/O system software overhead can be effectively reduced and the efficiency of the KV
application can be improved.

4.5. The Interface of MKVS

The current I/O system software stack needs to pass through multiple levels, such as cache, file
system, and general block layer, to access KV pairs in the NVM device. It affects the read/write speed
of KV store. Meanwhile, the conventional byte or block interface could not let the KV application to
access KV pairs by using the embedded KV engine in NVM devices.

We short the I/O system software stack of MKVS for KV applications. As shown in Figure 2, the KV
access interfaces are added to MKVS, and system calls corresponding to these KV access interfaces are
added at the same time. Therefore, KV applications can skip several layers in the I/O system software
stack, such as KV Store, file operating system call, file system, general block layer, etc., directly access



Micromachines 2019, 10, 346 10 of 18

KV management operations embedded in MKVS, and complete access and management functions
required by KV application.Micromachines 2019, 10, x FOR PEER REVIEW 10 of 18 

 

 
Figure 2. Schematic diagram of the MKVS access interface. 

Therefore, the I/O system software stack for accessing the KV pair can be shortened and the 
efficiency of accessing and managing the KV pair can be improved. The KV management operation 
is encapsulated by the system call, which can ensure compatibility with existing applications and 
avoiding a lot of modifications to KV applications. 

5. Evaluation 

First, we implemented a prototype of the matrix KV storage system based on NVM devices 
(MKVS), and then used the Yahoo! Cloud System Benchmark (YCSB) to test and compare with the 
main in-memory KV store. YCSB includes a set of core workloads that define a basic benchmark. 
The Workloada in YCSB is a typical read–write mixed workload; the ratio of read and write 
requests is 50%. The Workloadb in YCSB is used to test the read performance and more than 95% 
access request are read operation. 

5.1. The Prototype 

Currently there are no commercial NVM devices. PMEM is a popular open source NVM 
device simulator. It is used to simulate NVM devices with default configuration. Then the group 
collaboration management module based on BloomFilter, intragroup optimization module based 
on competition, embedded KV management module based on B+-tree, and some new system calls 
are implemented to construct the prototype of MKVS. It contains two PMEM groups and there are 
two PMEM in each group. 

The machine used for testing has two Intel E5 processors, 128GB of RAM, and a 120GB SAS 
port SSD hard drive. Centos7 is used as the operating system and the kernel version is 4.4.112. 
YCSB is used as a test tool. The five basic interfaces—read, insert, delete, update, and scan—were 
implemented for YCSB. Meanwhile, YCSB is run on local mode to avoid the impact of the network. 
There are two stages in the YCSB: Load and Run. The KV pairs should be inserted in KV store in 
Load stage and the access workload of KV pairs should be done in Run stage. 

In order to effectively test and analyze MKVS, three prototypes are implemented named 
MKVS, MKVS-GEKV, and MKVS-EKV. MKVS is a full-scale prototype that includes the group 
collaboration management module based on Bloomfilter, intragroup optimization module based on 
competition, and embedded KV management module based on B+-tree. MKVS-GEKV is a 
prototype that lacks the intragroup optimization module based on competition. MKVS-EKV is a 
prototype of embedded KV management based on B+-tree. In addition, the three popular 
in-memory KV store were also used to test and compare: Redis, MongoDB, and Memcached. 
Meanwhile, the two KV stores based on PMEM, named PMEM-KV and PMEM-Redis, are also use 
to test. 

5.2. Write Performance of KV Pairs 

Figure 2. Schematic diagram of the MKVS access interface.

Therefore, the I/O system software stack for accessing the KV pair can be shortened and the
efficiency of accessing and managing the KV pair can be improved. The KV management operation
is encapsulated by the system call, which can ensure compatibility with existing applications and
avoiding a lot of modifications to KV applications.

5. Evaluation

First, we implemented a prototype of the matrix KV storage system based on NVM devices
(MKVS), and then used the Yahoo! Cloud System Benchmark (YCSB) to test and compare with the
main in-memory KV store. YCSB includes a set of core workloads that define a basic benchmark.
The Workloada in YCSB is a typical read–write mixed workload; the ratio of read and write requests is
50%. The Workloadb in YCSB is used to test the read performance and more than 95% access request
are read operation.

5.1. The Prototype

Currently there are no commercial NVM devices. PMEM is a popular open source NVM device
simulator. It is used to simulate NVM devices with default configuration. Then the group collaboration
management module based on BloomFilter, intragroup optimization module based on competition,
embedded KV management module based on B+-tree, and some new system calls are implemented
to construct the prototype of MKVS. It contains two PMEM groups and there are two PMEM in
each group.

The machine used for testing has two Intel E5 processors, 128GB of RAM, and a 120GB SAS port
SSD hard drive. Centos7 is used as the operating system and the kernel version is 4.4.112. YCSB is
used as a test tool. The five basic interfaces—read, insert, delete, update, and scan—were implemented
for YCSB. Meanwhile, YCSB is run on local mode to avoid the impact of the network. There are two
stages in the YCSB: Load and Run. The KV pairs should be inserted in KV store in Load stage and the
access workload of KV pairs should be done in Run stage.

In order to effectively test and analyze MKVS, three prototypes are implemented named MKVS,
MKVS-GEKV, and MKVS-EKV. MKVS is a full-scale prototype that includes the group collaboration
management module based on Bloomfilter, intragroup optimization module based on competition,
and embedded KV management module based on B+-tree. MKVS-GEKV is a prototype that lacks the
intragroup optimization module based on competition. MKVS-EKV is a prototype of embedded KV
management based on B+-tree. In addition, the three popular in-memory KV store were also used to
test and compare: Redis, MongoDB, and Memcached. Meanwhile, the two KV stores based on PMEM,
named PMEM-KV and PMEM-Redis, are also use to test.



Micromachines 2019, 10, 346 11 of 18

5.2. Write Performance of KV Pairs

At first, 1000 KV pairs should be inserted into the KV store in the Load phase of YCSB to test
throughput, time overhead, and average delay in a single-threaded mode. The results are shown in
Table 1.

Table 1. The results of inserting 1000 KV pairs.

MKVS MKVS-GEKV MKVS-EKV PMEM-KV PMEM-Redis Redis MongoDB Memcached

Throughput
(ops/s) 5226 4933 4765 4539 4603 4500 1364 1818

Runtime
(ms) 196 201 215 220 218 222 733 550

Average
Latency (ms) 135 139 176 148 144 150 503 417

As can be found from Table 1, MKVS performs best efficiency of inserting KV pairs. Compared
with MKVS-GEKV and MKVS-EKV, the throughput of inserting KV pairs has increased by 6% and
10%, respectively. Compared with Redis, MongoDB, and Memcached, the MKVS, MKVS-GEKV, and
MKVS-EKV also can improve the significant throughput. MKVS-EKV has the lowest throughput
among MKVS-GEKV and MKVS-EKV, but its throughput is increased by 2.5 times compared with
MongoDB and 6% compared with Redis. While MKVS has the highest throughput, its throughput is
increased by 2.8 times compared with MongoDB and is 16% higher than Redis. Meanwhile, compared to
PMEM-KV and PMEM-Redis, MKVS, MKVS-GEKV, and MKVS-EKV can also improve the throughput
of inserting KV pairs. MKVS’s throughput increased by 15% and 16% compared with PMEM-KV and
PMEM-Redis, respectively. These results show that matrix KV storage system based on NVM can
effectively improve the insert throughput of KV pairs. In addition, compared to Redis, MongoDB,
Memcached, PMEM-KV, and PMEM-Redis, the average waiting time for inserting KV pairs of MKVS
and MKVS-GEKV is reduced by 6% to 73%, which can effectively reduce the execution time of writing
KV pairs.

Then, the number of threads in YCSB was changed to 2, 4, 8, and 16, respectively, and the
throughput of inserting KV pair is tested. The results are shown in Table 2.

Table 2. The results of inserting KV pairs with multithreads.

Throughput
(ops/s) MKVS MKVS-GEKV MKVS-EKV PMEM-KV PMEM-Redis Redis MongoDB Memcached

2 threads 6580 6320 5451 5397 5702 5649 1808 1960
4 threads 7301 6994 6113 6064 6057 6037 2409 2481
8 threads 7526 7313 7143 6915 6995 6944 2493 2174

16 threads 7221 6759 6172 5873 6112 6012 2770 2247

From Table 2, it can be found that the throughput of inserting KV pairs increases with the number
of threads. MKVS’s throughput of inserting KV pairs is increased by ~9–23% compared with PMEM-KV
and ~8–21% compared with PMEM-Redis. Except for MongoDB and Memcached, the throughput of
other prototypes show an upward trend before the number of thread is low than 8, and then decreased
when the number of thread increased from 8 to 16. MKVS’s throughput of inserting KV pairs decreased
by a minimum of 4%, while PMEM-KV dropped by 15% at the maximum. These results show that
MKVS can reduce the impact of NVM devices on the performance of KV storage systems, and also
shows that storage devices and system software will become the bottleneck of the performance of KV
storage system with the large number of threads.

5.3. Read-Intensive Workload

There are more than 95% read operations in Workloadb of YCSB. We used it to test the read
performance of the prototype. The number of threads is set to 1, the number of KV pairs is 1000,



Micromachines 2019, 10, 346 12 of 18

and the number of operations is 1000. The results are shown in Table 3, where RAVL is the average
read latency.

Table 3. The performance with read-intensive workload.

MKVS MKVS-GEKV MKVS-EKV PMEM-KV PMEM-Redis Redis MongoDB Memcached

Throughput
(ops/s) 11,805 12,083 10,869 10,154 10,358 6451 1615 1700

Runtime
(ms) 80 75 92 101 98 155 619 588

RAVL (ms) 1.62 1.55 1.67 1.69 1.68 80 359 436

From the results in Table 3, it can be seen that MKVS, MKVS-GEKV, and MKVS-EKV can improve
the throughput of reading KV pairs by 16.7%~6.5 times. The ratio of increase is higher than the write
throughput. This is also because the read speed of NVM devices is higher than write speed, and
the MKVS can reduce more time overhead of the KV storage system and utilize the I/O performance
advantage of the NVM device. MKVS lose 2% read throughput compared to MKVS-GEKV, which is
due to the fact that the KV pairs stored by MKVS are distributed among NVM devices in one group.
However, the read throughput of MKVS increases by 9% compared with MKVS-EKV, which shows
that intragroup optimization based on competition can effectively improve the read efficiency of KV
storage system. In addition, MKVS can effectively reduce the average read latency of KV pairs; the
average read latency is reduced by ~4–99.6% compared with Redis, MongoDB, Memcached, PMEM-KV,
and PMEM-Redis.

Secondly, we change the number of threads to perform Workloadb. The number of threads is 1, 2,
4, 8, and 16. The number of access operations is 1000 and the number of KV pairs is 1000. The results
are shown in Table 4.

Table 4. The results of multithreads with Workloadb.

Throughput
(ops/s) MKVS MKVS-GEKV MKVS-EKV PMEM-KV PMEM-Redis Redis MongoDB Memcached

Single
thread 11,805 12,083 10,869 10,154 10,358 6451 1615 1700

2 thread 14,467 14,322 12,157 10,538 11,254 7936 1956 1488
4 thread 15,950 15,353 12,987 11,293 12,036 9708 2403 2695
8 thread 16,601 16,029 11,363 10,481 10,879 9433 2439 2525

16 thread 15,477 14,728 10,866 9588 10,258 8547 2652 2004

Similar to the change of write throughput, the read throughput is increased obviously with
increasing number of threads. Except MongoDB, the read throughput of other prototypes decreases
when the number of read threads increases from 8 to 16. The change of MKVS is just 6%. At the
same time, after the number of read threads is more than 1, the read throughput of MKVS is higher
than that of MKVS-GEKV, which indicates that the intragroup optimization based on competition
can adapt to the multiple read threads and effectively improve the read bandwidth of the KV storage
system. In addition, when the number of read threads increases from 1 to 16, the read throughput
of MKVS increases by 41% at the most, while MKVS-GEKV increased by only 5%. At the same
time, PMEM-KV and PMEM-Redis only increases by 3% and 5%. These results demonstrate that the
intragroup optimization based on competition can be well adapted to multithreaded reading workload
and improve the read performance of KV storage system.

Then, the number of KV pairs changed to 5000, 10,000, and 2000, respectively, and the throughput
of prototypes was tested with Workloadb. The number of access operations is 1000 and the number of
threads is 1. The results are shown in Figure 3.



Micromachines 2019, 10, 346 13 of 18

Micromachines 2019, 10, x FOR PEER REVIEW 13 of 18 

 

Then, the number of KV pairs changed to 5000, 10,000, and 2000, respectively, and the 
throughput of prototypes was tested with Workloadb. The number of access operations is 1000 and 
the number of threads is 1. The results are shown in Figure 3. 

 
Figure 3. The throughput of changing the number of KV pairs with Workloadb. 

Changing the number of KV pairs allows focusing on testing the adaptability with different 
amounts of read and write data. Figure 3 shows the results on Workloadb. It can be seen that the 
throughput of MKVS, MKVS-GEKV, and MKVS-EKV is always higher than other prototypes with 
the change of KV pair number. The read throughput of MKVS is the highest when the number of 
KV pairs is 10,000; it is 53.1% higher than that of PMEM-KV and 9.4 times higher than Mongodb. 
This indicates that MKVS can improve the read speed of KV pairs compared with current KV 
storage systems. When the number of KV pairs increased from 5000 to 20,000, the read throughput 
of MKVS first increases and then decreases. At the same time, the read throughput of Mongodb and 
Memcached increases slowly, but the read throughput of MKVS-GEKV, MKVS-EKV, PMEM-KV, 
PMEM-Redis, and Redis decreases continuously. This shows that MKVS can reduce the 
management time overhead of KV storage system, and improve read throughput of KV pairs. It 
also shows that the management time overhead of Mongodb and Memcached is too large, so that 
the read speed of KV pair is much slower than NVM devices. 

Finally, the number of access operations is changed to 5000 and 10,000, respectively, and the 
throughput of prototypes are tested with Workloadb. The number of KV pairs is 1000 and the 
number of threads is 1. The results are shown in Figure 4. 

Figure 3. The throughput of changing the number of KV pairs with Workloadb.

Changing the number of KV pairs allows focusing on testing the adaptability with different
amounts of read and write data. Figure 3 shows the results on Workloadb. It can be seen that the
throughput of MKVS, MKVS-GEKV, and MKVS-EKV is always higher than other prototypes with the
change of KV pair number. The read throughput of MKVS is the highest when the number of KV pairs
is 10,000; it is 53.1% higher than that of PMEM-KV and 9.4 times higher than Mongodb. This indicates
that MKVS can improve the read speed of KV pairs compared with current KV storage systems. When
the number of KV pairs increased from 5000 to 20,000, the read throughput of MKVS first increases
and then decreases. At the same time, the read throughput of Mongodb and Memcached increases
slowly, but the read throughput of MKVS-GEKV, MKVS-EKV, PMEM-KV, PMEM-Redis, and Redis
decreases continuously. This shows that MKVS can reduce the management time overhead of KV
storage system, and improve read throughput of KV pairs. It also shows that the management time
overhead of Mongodb and Memcached is too large, so that the read speed of KV pair is much slower
than NVM devices.

Finally, the number of access operations is changed to 5000 and 10,000, respectively, and the
throughput of prototypes are tested with Workloadb. The number of KV pairs is 1000 and the number
of threads is 1. The results are shown in Figure 4.

From the results shown in Figure 4, the read throughput of MKVS, MKVS-GEKV, and MKVS-EKV
is always higher than other prototypes with the change of the access operation number. When the
number of access operations is 5000, MKVS can increase the read throughput by 0.19~11.7 times
compared with Redis, MongoDB, Memcached, PMEM-KV, and PMEM-Redis. When the number of
access operations is 10,000, it is 30%~18.6 times. The read throughput improvement of MKVS increases
with the number of access operations. At the same time, when the number of access operations
increases from 5000 to 10,000, MKVS has highest ratio between the increased read throughput and the
number of access operations, its value is 6.4. Meanwhile, Memcached reaches 0.1 at the lowest. These
results indicate that MKVS has high scalability when the number of access operations is changed.



Micromachines 2019, 10, 346 14 of 18

Micromachines 2019, 10, x FOR PEER REVIEW 14 of 18 

 

 
Figure 4. The throughput of changing the number of access operations with Workloadb. 

From the results shown in Figure 4, the read throughput of MKVS, MKVS-GEKV, and 
MKVS-EKV is always higher than other prototypes with the change of the access operation number. 
When the number of access operations is 5000, MKVS can increase the read throughput by 0.19~11.7 
times compared with Redis, MongoDB, Memcached, PMEM-KV, and PMEM-Redis. When the 
number of access operations is 10,000, it is 30%~18.6 times. The read throughput improvement of 
MKVS increases with the number of access operations. At the same time, when the number of 
access operations increases from 5000 to 10,000, MKVS has highest ratio between the increased read 
throughput and the number of access operations, its value is 6.4. Meanwhile, Memcached reaches 
0.1 at the lowest. These results indicate that MKVS has high scalability when the number of access 
operations is changed. 

5.4. Mixed Workload 

There are many update requests in Workloada, the ratio of read and write requests is 50%. It is 
a typical read–write mixed workload. First, Workloada is used to test the performance of 
prototypes in single thread mode. The number of KV pairs is 1000 and the number of operations is 
1000. The results are shown in Table 5, where the RAVL is average read latency and UAVL is 
average write latency. 

Table 5. The performance in single thread mode with Workloada. 

 
MKV

S 
MKVS-GEK

V 
MKVS-EK

V 
PMEM-K

V 
PMEM-Redi

s 
Redi

s 
MongoD

B 
Memcache

d 

Throughpu
t (ops/s) 

8624 8504 7863 7455 7514 5714 1262 1890 

Runtime 
(ms) 

110 112 133 138 136 175 792 529 

RAVL (ms) 1.34 1.33 1.36 1.38 1.38 101 411 386 
UAVL（ms

） 
150 158 167 177 172 85 658 404 

From Table 5, it can be found that MKVS can effectively improve the read–write throughput 
compared with other prototypes. The largest throughput improvement is increased by 5.98 times 

Figure 4. The throughput of changing the number of access operations with Workloadb.

5.4. Mixed Workload

There are many update requests in Workloada, the ratio of read and write requests is 50%. It is a
typical read–write mixed workload. First, Workloada is used to test the performance of prototypes in
single thread mode. The number of KV pairs is 1000 and the number of operations is 1000. The results
are shown in Table 5, where the RAVL is average read latency and UAVL is average write latency.

Table 5. The performance in single thread mode with Workloada.

MKVS MKVS-GEKV MKVS-EKV PMEM-KV PMEM-Redis Redis MongoDB Memcached

Throughput
(ops/s) 8624 8504 7863 7455 7514 5714 1262 1890

Runtime
(ms) 110 112 133 138 136 175 792 529

RAVL (ms) 1.34 1.33 1.36 1.38 1.38 101 411 386
UAVL (ms) 150 158 167 177 172 85 658 404

From Table 5, it can be found that MKVS can effectively improve the read–write throughput
compared with other prototypes. The largest throughput improvement is increased by 5.98 times
compared with MongoDB, and the smallest throughput improvement is increased by 14.8% compared
with PMEM-Redis. The read–write throughput of MKVS-GEKV and MKVS-EKV is always higher
than other prototypes, except MKVS. At the same time, MKVS can reduce the read and write latency
compared with Redis, MongoDB, Memcached, PMEM-KV, and PMEM-Redis. The read latency is
reduced by ~2.9–99.7% and the write latency is reduced by ~12.8–77.2%. These results show that
MKVS can effectively improve the response speed of reading and writing KV pairs.

Then we change the number of threads to perform Workloada. The number of threads is 1, 2, 4, 8,
and 16, respectively. The number of KV pairs is 1000 and the number of operations is 1000. The results
are shown in Table 6.



Micromachines 2019, 10, 346 15 of 18

Table 6. The throughput of Workloada with different threads.

Throughput
(ops/s) MKVS MKVS-GEKV MKVS-EKV PMEM-KV PMEM-Redis Redis MongoDB Memcached

2 threads 10,854 9851 9233 8530 8823 8124 1893 2145
4 threads 11,953 11,524 9708 9434 9673 9618 2183 2906
8 threads 12,833 12,571 11,069 9503 11,014 10,894 2717 2597

16 threads 12,097 11,684 10,526 9148 9749 9523 2409 2369

From the results of Table 6, it can be found that MKVS has the highest read–write throughput
when executing Workloada with different number of threads. At the same time, the throughput of
MKVS-GEKV and MKVS-EKV is always higher than other prototypes. The read–write throughput of
all prototype systems decreased, when the number of threads increased from 8 to 16. The most obvious
degradation is Redis by 12.6%, while MKVS is only 5.7%. This shows that MKVS has good stability of
read–write throughput.

Thirdly, the number of KV pairs is changed to 5000, 10,000, and 20,000, respectively, and the
throughput of prototypes are tested with Workloada. The number of access requests is 1000 and the
number of threads is 1. The results are shown in Figure 5.

Micromachines 2019, 10, x FOR PEER REVIEW 15 of 18 

 

compared with MongoDB, and the smallest throughput improvement is increased by 14.8% 
compared with PMEM-Redis. The read–write throughput of MKVS-GEKV and MKVS-EKV is 
always higher than other prototypes, except MKVS. At the same time, MKVS can reduce the read 
and write latency compared with Redis, MongoDB, Memcached, PMEM-KV, and PMEM-Redis. 
The read latency is reduced by ~2.9–99.7% and the write latency is reduced by ~12.8–77.2%. These 
results show that MKVS can effectively improve the response speed of reading and writing KV 
pairs. 

Then we change the number of threads to perform Workloada. The number of threads is 1, 2, 4, 
8, and 16, respectively. The number of KV pairs is 1000 and the number of operations is 1000. The 
results are shown in Table 6. 

Table 6. The throughput of Workloada with different threads. 

Throughpu
t (ops/s) 

MKV
S 

MKVS-GEK
V 

MKVS-EK
V 

PMEM-K
V 

PMEM-Redi
s 

Redi
s 

MongoD
B 

Memcache
d 

2 threads 10854 9851 9233 8530 8823 8124 1893 2145 
4 threads 11953 11524 9708 9434 9673 9618 2183 2906 
8 threads 12833 12571 11069 9503 11014 10894 2717 2597 
16 threads 12097 11684 10526 9148 9749 9523 2409 2369 

From the results of Table 6, it can be found that MKVS has the highest read–write throughput 
when executing Workloada with different number of threads. At the same time, the throughput of 
MKVS-GEKV and MKVS-EKV is always higher than other prototypes. The read–write throughput 
of all prototype systems decreased, when the number of threads increased from 8 to 16. The most 
obvious degradation is Redis by 12.6%, while MKVS is only 5.7%. This shows that MKVS has good 
stability of read–write throughput. 

Thirdly, the number of KV pairs is changed to 5000, 10,000, and 20,000, respectively, and the 
throughput of prototypes are tested with Workloada. The number of access requests is 1000 and the 
number of threads is 1. The results are shown in Figure 5. 

 
Figure 5. The throughput of changing the number of KV pairs with Workloada. 

As can be seen from Figure 5, similar to the results with Workloadb, the throughput of MKVS, 
MKVS-GEKV, and MKVS-EKV is always higher than other KV storage systems. When the number 
of KV pairs is 10,000, MKVS has the highest read–write throughput. Meanwhile, its throughput is 

Figure 5. The throughput of changing the number of KV pairs with Workloada.

As can be seen from Figure 5, similar to the results with Workloadb, the throughput of MKVS,
MKVS-GEKV, and MKVS-EKV is always higher than other KV storage systems. When the number of
KV pairs is 10,000, MKVS has the highest read–write throughput. Meanwhile, its throughput is 34.8%
higher than PMEM-Redis and 2.9 times higher than Memcached. This indicates that MKVS has the
read and write speed advantage of KV pairs compared with current KV storage systems. Unlike the
read throughput with Workloadb, when the number of KV pairs increases from 5000 to 20,000, the
read–write throughput of all prototype systems first increases and then decreases.

Finally, the number of access operations is changed to 5000 and 10,000, respectively, and the
throughput of prototypes are tested with Workloada. The number of KV pairs is 1000 and the number
of threads is 1. The results are shown in Figure 6.



Micromachines 2019, 10, 346 16 of 18

Micromachines 2019, 10, x FOR PEER REVIEW 16 of 18 

 

34.8% higher than PMEM-Redis and 2.9 times higher than Memcached. This indicates that MKVS 
has the read and write speed advantage of KV pairs compared with current KV storage systems. 
Unlike the read throughput with Workloadb, when the number of KV pairs increases from 5000 to 
20,000, the read–write throughput of all prototype systems first increases and then decreases. 

Finally, the number of access operations is changed to 5000 and 10,000, respectively, and the 
throughput of prototypes are tested with Workloada. The number of KV pairs is 1000 and the 
number of threads is 1. The results are shown in Figure 6. 

 
Figure 6. The throughput of changing the number of access operations with Workloada. 

From the results shown in Figure 6, the read throughput of MKVS, MKVS-GEKV, and 
MKVS-EKV is always higher than other prototype systems with the change of access operations 
number. When the number of access operations is 5000, MKVS can increase the read–write KV 
throughput by 0.34~7.8 times compared to Redis, MongoDB, Memcached, PMEM-KV, and 
PMEM-Redis. It is 0.22~11.4 times when the number of access operations is 10,000. At the same time, 
when the number of access operations increases from 5000 to 10,000, MKVS has highest ratio 
between the increased read throughput and the number of access operations, its value is 4.14. 
Meanwhile, Memcached reaches 0.14 at the lowest. These results indicate that MKVS is suited to 
handle a large number of access operations and improve the read–write throughput of KV pairs. 

6. Conclusions 

We analyzed the characteristics of NVM devices and demands of KV application to design a 
group collaboration management based on Bloomfilter, intragroup optimization based on 
competition, embedded KV management based on B+-tree, and a new interface for the KV storage 
system. Then the matrix KV storage system based on NVM devices can be constructed. The 
embedded processor in the NVM device and CPU can be comprehensively utilized to improve the 
efficiency of massive KV pair management. It also can improve the efficiency of KV applications 
execution. The prototype is implemented named MKVS to test with YCSB. The results show that 
PMEKV has the advantage of throughput, latency and adaptability compared with current 
in-memory KV stores. 

Now we just use the Bloomfilter and B+-tree, they lack the optimization of efficiency and 
concurrency to the NVM devices. In the future, we should study the distributed and index 
algorithm for the matrix KV storage system. 

Figure 6. The throughput of changing the number of access operations with Workloada.

From the results shown in Figure 6, the read throughput of MKVS, MKVS-GEKV, and MKVS-EKV
is always higher than other prototype systems with the change of access operations number. When the
number of access operations is 5000, MKVS can increase the read–write KV throughput by 0.34~7.8
times compared to Redis, MongoDB, Memcached, PMEM-KV, and PMEM-Redis. It is 0.22~11.4 times
when the number of access operations is 10,000. At the same time, when the number of access operations
increases from 5000 to 10,000, MKVS has highest ratio between the increased read throughput and
the number of access operations, its value is 4.14. Meanwhile, Memcached reaches 0.14 at the lowest.
These results indicate that MKVS is suited to handle a large number of access operations and improve
the read–write throughput of KV pairs.

6. Conclusions

We analyzed the characteristics of NVM devices and demands of KV application to design a
group collaboration management based on Bloomfilter, intragroup optimization based on competition,
embedded KV management based on B+-tree, and a new interface for the KV storage system. Then the
matrix KV storage system based on NVM devices can be constructed. The embedded processor in
the NVM device and CPU can be comprehensively utilized to improve the efficiency of massive KV
pair management. It also can improve the efficiency of KV applications execution. The prototype is
implemented named MKVS to test with YCSB. The results show that PMEKV has the advantage of
throughput, latency and adaptability compared with current in-memory KV stores.

Now we just use the Bloomfilter and B+-tree, they lack the optimization of efficiency and
concurrency to the NVM devices. In the future, we should study the distributed and index algorithm
for the matrix KV storage system.

Author Contributions: F.C. and Q.H. conceived and designed the experiments; Q.H. performed the experiments;
T.C. and J.W. analyzed the data; D.N. contributed reagents/materials/analysis tools; T.C. wrote the paper.

Funding: This work was funded by the National Natural Science Foundation of China, grant number 61806086,
and the China Postdoctoral Science Foundation, grant number 2016M601737.

Conflicts of Interest: The authors declare no conflict of interest.



Micromachines 2019, 10, 346 17 of 18

References

1. Wong, H.; Raoux, S.; Kim, S.; Liang, J.; Reifenberg, J.; Rajendran, B.; Asheghi, M.; Goodson, K. Phase change
memory. Proc. IEEE 2010, 98, 2201–2227. [CrossRef]

2. Everspin Releases Fastest and Most Reliable Non-Volatile Storage Class Memory. Available
online: https://www.everspin.com/news/everspin-releases-fastest-and-most-reliable-non-volatile-storage-
class-memory (accessed on 13 April 2016).

3. Intel-Micron Memory 3D XPoint. Available online: http://intel.ly/leICROa (accessed on 15 May 2018).
4. Decandia, G.; Hastorun, D.; Jampani, M.; Kakulapati, G.; Lakshman, A.; Pilchin, A.; Sivasubramanian, S.;

Vosshall, P.; Vogels, W. Dynamo: Amazons highly available key-value store. In Proceedings of the
Twenty-first ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07), New York, NY, USA,
14–17 October 2007; pp. 205–220.

5. Project voldermort: A Distributed Key-value Storage System. Available online: https://www.project-
voldemort.com/voldemort/ (accessed on 22 May 2019).

6. Apache Cassandra. Available online: http://cassandra.apache.org (accessed on 20 May 2019).
7. Leveldb: A Fast and Lightweight Key/Value Database Library by Google. Available online: https://github.

com/google/leveldb (accessed on 22 May 2019).
8. Under the Hood: Building and Open-Sourcing Rocksdb. Available online: https://www.facebook.com/notes/

facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/ (accessed
on 22 May 2019).

9. Akel, A.; Caulfield, A.M.; Mollov, T.I.; Gupta, R.K.; Swanson, S. Onyx: A prototype phase change memory
storage array. In Proceedings of the 3rd USENIX Conference on Hot Topics in Storage and File Systems
(HotStorage 2011), Berkeley, CA, USA, 14 June 2011.

10. FusionIO. Open Compute Project 2013 Demo; ioScale and Atomic Writes on directFS Boost MySQL
Performance Up to 70%. Available online: http://www.fusionio.com/overviews/open-compute-project-2013-
demo.pdf (accessed on 20 May 2014).

11. Kannan, S.; Gavrilovska, A.; Schwan, K.; Milojicic, D. Optimizing Checkpoints Using NVM as Virtual
Memory. In Proceedings of the IEEE 27th International Symposium on Parallel & Distributed Processing
(IPDPS 2013), Boston, MA, USA, 20–24 May 2013; pp. 29–40.

12. Dulloor, S.R.; Kumar, S.K.; Keshavamurthy, A.; Lantz, P.; Subbareddy, D.; Sankaran, R.; Jackson, J. System
Software for Persistent Memory. In Proceedings of the 9th European Conference on Computer Systems
(EuroSys 2014), Amsterdam, The Netherlands, 14–16 April 2014.

13. Lu, Y.; Shu, J.; Sun, L. Blurred Persistence in Transactional Persistent Memory. In Proceedings of the 31st
International Conference on Massive Storage Systems and Technology (MSST 2015), Santa Clara, CA, USA,
30 May–5 June 2015.

14. Wei, Q.; Chen, C.; Xue, M. Extending SSD Lifetime with Persistent In-Memory Metadata Management.
In Proceedings of the IEEE International Conference on CLUSTER Computing (Cluster 2016), Taipei, Taiwan,
12–16 September 2016; pp. 308–311.

15. Swanson, S.; Caulfield, A.M. Refactor, Reduce, Recycle: Restructuring the I/O Stack for the Future of Storage.
Computer 2013, 46, 52–59. [CrossRef]

16. Kannan, S.; Arpaci-Dusseau, A.C.; Arpaci-Dusseau, R.H.; Wang, Y.; Xu, J.; Palani, G. Designing a true
direct-access file system with DevFS. In Proceedings of the 16th USENIX Conference on File and Storage
Technologies (FAST 2018), Oakland, CA, USA, 12–15 February 2018.

17. Caulfield, A.M.; Mollov, T.I.; Eisner, L.A.; De, A.; Coburn, J.; Swanson, S. Providing safe, user space access to
fast, solid state disks. ACM SIGARCH Comput. Archit. News 2012, 40, 387–400. [CrossRef]

18. Oukid, I.; Lasperas, J.; Nica, A.; Willhalm, T.; Lehner, W. FPTree: A hybrid scm-dram persistent and concurrent
b-tree for storage class memory. In Proceedings of the 2016 International Conference on Management of
Data (SIGMOD 2016), San Francisco, CA, USA, 26 June–1 July 2016; pp. 371–386.

19. Eisner, L.A.; Mollov, T.; Swanson, S.J. Quill: Exploiting Fast Non-volatile Memory by Transparently Bypassing the
File System; Department of Computer Science and Engineering, University of California: San Diego, CA,
USA, 2013.

20. Volos, H.; Tack, A.J.; Swift, M.M. Mnemosyne: Lightweight persistent memory. ACM SIGPLAN Not. 2011,
46, 91–104. [CrossRef]

http://dx.doi.org/10.1109/JPROC.2010.2070050
https://www.everspin.com/news/everspin-releases-fastest-and-most-reliable-non-volatile-storage-class-memory
https://www.everspin.com/news/everspin-releases-fastest-and-most-reliable-non-volatile-storage-class-memory
http://intel.ly/leICROa
https://www.project-voldemort.com/voldemort/
https://www.project-voldemort.com/voldemort/
http://cassandra.apache.org
https://github.com/google/leveldb
https://github.com/google/leveldb
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
https://www.facebook.com/notes/facebook-engineering/under-the-hood-building-and-open-sourcing-rocksdb/10151822347683920/
http://www.fusionio.com/overviews/open-compute-project-2013-demo.pdf
http://www.fusionio.com/overviews/open-compute-project-2013-demo.pdf
http://dx.doi.org/10.1109/MC.2013.222
http://dx.doi.org/10.1145/2189750.2151017
http://dx.doi.org/10.1145/1961296.1950379


Micromachines 2019, 10, 346 18 of 18

21. Condit, J.; Nightingale, E.B.; Frost, C.; Ipek, E.; Lee, B.; Burger, D.; Coetzee, D. Better I/O through
byte-addressable, persistent memory. In Proceedings of the ACM Symposium on Operating Systems
Principles (SOSP 2009), Big Sky, MA, USA, 11–14 October 2009.

22. Wu, X.; Xu, Y.; Shao, Z.; Jiang, S. LSM-trie: An LSM-tree-based ultra-large key-value store for small data
items. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC 2015), Santa Clara, CA,
USA, 8–10 July 2015; pp. 71–82.

23. Chen, S.; Gibbons, P.B.; Nath, S. Rethinking database algorithms for phase change memory. In Proceedings
of the 5th Biennial Conference on Innovative Data Systems Research (CIDR 2011), Asilomar, CA, USA,
9–12 January 2011; pp. 21–31.

24. Ni, J.; Hu, W.; Li, G.; Tan, K.; Su, D. Bp-tree: A predictive b+-tree for reducing writes on phase change
memory. IEEE Trans. Knowl. Data Eng. 2014, 26, 2368–2381.

25. Debnath, B.; Haghdoost, A.; Kadav, A.; Khatib, M.G.; Ungureanu, C. Revisiting hash table design for phase
change memory. ACM SIGOPS Operat. Syst. Rev. 2016, 49, 18–26. [CrossRef]

26. Zuo, P.; Hua, Y. A write-friendly hashing scheme for non-volatile memory systems. In Proceedings of the 33st
Symposium on Mass Storage Systems and Technologies (MSST 2017), Santa Clara, CA, USA, 15–19 May 2017;
pp. 1–10.

27. Xia, F.; Jiang, D.; Xiong, J.; Sun, N. Hikv: A hybrid index key-value store for dram-nvm memory systems.
In Proceedings of the 2017 USENIX Annual Technical Conference (USENIX ATC 2017), Santa Clara, CA,
USA, 12–14 July 2017; pp. 349–362.

28. Available online: https://github.com/pmem/pmemkv (accessed on 22 May 2019).
29. Marmol, L.; Sundararaman, S.; Talagala, N.; Rangaswami, R. NVMKV: A Scalable, Lightweight, FTL-aware

Key-Value Store. In Proceedings of the 2015 USENIX Annual Technical Conference, Santa Clara, CA, USA,
8–10 July 2015.

30. Bailey, K.A.; Hornyack, P.; Ceze, L.; Gribble, S.D.; Levy, H.M. Exploring storage class memory with key value
stores. In Proceedings of the 1st Workshop on Interactions of NVM/FLASH with Operating Systems and
Workloads (INFLOW 2013), Farmington, PA, USA, 3–6 November 2013.

31. Available online: https://os.mbed.com/docs/v5.8/mbed-os-api-doxy/md_mbed-os_features_nvstore_
README.html (accessed on 22 May 2019).

32. Kapoor, R.; Porter, G.; Tewari, M.; Voelker, G.M.; Vahdat, A. Chronos: Predictable low latency for data center
applications. In Proceedings of the Third ACM Symposium on Cloud Computing (SoCC 2012), San Jose, CA,
USA, 14–17 October 2012.

33. Lim, H.; Han, D.; Andersen, D.G.; Kaminsky, M. MICA: A holistic approach to fast in-memory key-value
storage. In Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 2014), Seattle, WA, USA, 2–4 April 2014; pp. 429–444.

34. Sewall, J.; Chhugani, J.; Kim, C.; Satish, N.; Dubey, P. PALM: Parallel architecture-friendly latch-free
modifications to b+ trees on many-core processors. Proc. VLDB Endow. 2011, 4, 795–806.

35. Fan, H.; Golab, W.; Morrey, C.B. ALOHA-KV: high performance read-only and write-only distributed
transactions. In Proceedings of the Symposium on Cloud Computing, Santa Clara, CA, USA,
24–27 September 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/2883591.2883597
https://github.com/pmem/pmemkv
https://os.mbed.com/docs/v5.8/mbed-os-api-doxy/md_mbed-os_features_nvstore_README.html
https://os.mbed.com/docs/v5.8/mbed-os-api-doxy/md_mbed-os_features_nvstore_README.html
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	Challenges 
	System Design 
	The Architecture of MKVS 
	The Group Collaborative Management Based on BloomFilter 
	The Intragroup Optimization Based on Competition 
	The Embedded KV Pairs Management Based on B+-Tree 
	The Interface of MKVS 

	Evaluation 
	The Prototype 
	Write Performance of KV Pairs 
	Read-Intensive Workload 
	Mixed Workload 

	Conclusions 
	References

