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Abstract: A new kind of fringing electrostatic actuation mode is developed. In this new actuation
mode, the expression of fringing electrostatic force is found. The nonlinear dynamic analysis of this
new actuation mode is presented by using the Method of Multiple Scales. An experiment is designed
to observe the dynamic behaviors of this structure. It is observed that the resonance frequency rises
with the increase of the initial displacement and the decrease of the slit gap; a smaller slit gap makes
marked change of the resonance frequency in the same range of the initial displacement; the increase of
the vibration amplitude is linear with the increase of the initial displacement; the fringing electrostatic
force has a larger impact on the frequency response of the nonlinear vibration when the initial
displacement, the beam length and the actuated voltage are larger. This new fringing electrostatic
actuation mode can be used in a micro tactile sensor. The results of dynamic analysis can provide
support for sensor design. Based on the dynamic investigations into the micro cantilevered beam
actuated by fringing electrostatic force; three usage patterns of the sensor are introduced as follows.
Firstly, measuring resonance frequency of the micro beam can derive the initial displacement.
Second, the initial displacement can be derived from vibration amplitude measurement. Third, jump
phenomenon can be used to locate the initial displacement demand.

Keywords: fringing electrostatic; nonlinear dynamic; tactile sensor

1. Introduction

Tactile sensors, most commonly referred to as strain and pressure sensors, can collect mechanical
property data from the human body and the local environment, and then provide valuable insights into
the human health status or artificial intelligence systems [1–3]. Meanwhile, it can also be equipped on
robots in order to be aware of their surroundings, keep away from potentially destructive effects and
provide information for subsequent tasks such as in-hand manipulation [4,5]. Change of resistance,
capacitance, electrical charge and optical distribution can be used in various sensing systems [6], and
the typical sensing mechanisms for tactile sensors includes piezo-resistive, capacitive, piezo-electric
and optical. Compared with other types of tactile sensors, capacitive sensors have high sensitivity and
fast frequency response [7–9]. Thus, many resonance capacitive sensors, which are very sensitive to
small changes, are designed and optimized [10–13].

The electrostatic actuation method is an important method of Micro electromechanical systems
(MEMS). The system actuated by the electrostatic force is parametric excitation system [14–16]. Among
the electrostatic actuation structures, parallel-plates configuration is widely used in MEMS [17–22].
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However, this actuation method can lead to instabilities like pull-in [23–25]. In order to obtain large
amplitude and avoid the instabilities, the fringing-field actuation technique has got its attention.
This actuation approach has several advantages, including the ability to obtain large amplitude
displacements without the limitation of the proximity of the electrodes and the possibility of significantly
tuning the resonant frequency response range [26]. This structure has attracted attention and has been
studied by some communities. Experimental and theoretical analysis of micro-cantilevers actuated by
fringing-field electrostatics was performed [26]. The different behaviors of curved micro beam with
low initial elevation and relatively high initial elevation were studied when actuated by fringing-field
electrostatic force [27]. A parametrically excited electrostatic resonator, which had a flexible support,
used weaker electrostatic fringe fields to get higher vibrational amplitude [28]. These researches
show that the device actuated by the fringing electrostatic force can reveal many new static and
dynamic behaviors.

In the present work, researchers always care about the situations when the beam thickness is
near the electrode thickness [26]. In these cases, the relationship between the electrostatic force and
the initial displacement is linear when the beam vibrates near the middle of the electrode in the
thickness direction. However, we find that the relationship between the electrostatic force and the
initial displacement is nonlinear when the thickness of the electrode is much more than the thickness of
the beam. This situation can reveal some new dynamic behaviors. Based on the dynamic investigations
into the micro cantilevered beam actuated by fringing electrostatic force, the working principle and the
usage patterns of a new micro tactile sensor are presented in this paper.

The paper is organized as follows. In Section 2, a new resonance tactile sensor is designed and
the dynamic modeling of a micro cantilevered beam actuated by fringing electrostatic fields is given.
This section consists of three parts: in Section 2.1, the working principle of the micro tactile sensor is
presented; in Section 2.2, the fringing electrostatic force and the influences of geometric parameters on
this force are found; in Section 2.3, the governing equation of this new kind of fringing electrostatic
actuation mode is outlined. In Section 3, the dynamic characteristics of the micro cantilevered beam
which actuated by fringing electrostatic force are analyzed. In Section 4, an experiment is designed to
observe the dynamic analysis of this structure. In Section 5, the dynamic behaviors of this structure are
summarized and the usage patterns of this micro tactile sensor are presented.

2. Problem Formulation and Dynamic Modeling

2.1. Working Principle

The proposed micro tactile sensor consists of a micro cantilevered beam and a pair of micro
electrodes. The concept structure of the micro tactile sensor is shown in Figure 1. One end of the micro
cantilevered beam is fixed on the base. The edge of the micro electrode is also connected to the base.
The base is nonconductive. The micro cantilevered beam and the micro electrode are conductive, but
they are disconnected. When the electrostatic voltage is applied to the micro beam and the micro
electrode is connected to the ground wire, the fringing electrostatic force appears between the micro
beam and the micro electrode. Under the actuation of the electrostatic force, the micro beam vibrates.
When the pressure P is applied to the micro electrode, the parts which link electrode and base deform
linearly, the micro electrode moves from position 1 to position 2. Then the relative position between
the micro cantilevered beam and the micro electrode changes dp. This relative position change leads
to the change of fringing electrostatic force, which effects the vibration behaviors of the micro beam.
In this way the vibration behaviors of the micro beam can reflect the pressure applied to the micro
electrode. Some obvious advantages are as following: a large deflection can be obtained without the
limitation of the proximity of the electrodes; this structure which is compatible with the circuit can be
designed to smaller scale; a smaller scale leads to a better sensitivity.
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electrode are evenly distributed at the eight points, as shown in Figure 2. Then, the charge of each 119 
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Figure 1. Concept structure of the tactile sensor.

It is the key issue to grasp the relative position change effects the vibration behaviors of the micro
cantilevered beam. The paper focuses on the influence of the relative position change in the vibration
behaviors of the micro cantilevered beam. This can provide support for sensor design. Figure 2 is
the schematic illustration of micro cantilevered beam and micro electrode. In this picture, lb wb and
tb denote the length, width and thickness of the micro beam respectively; ls ws and ts denote the
length, width and thickness of the micro electrode respectively; dg denotes the slit gap in the width
direction; d denotes the initial displacement in the thickness direction, it is the placement position of
the beam. In order to study the vibration behaviors of the micro beam, the geometric parameters of
the structure are taken as lb = ls = 5 mm, wb = 0.4 mm, tb = 0.01 mm, ws = 1.5 mm, ts = 0.3 mm and
dg = 0.04 mm. The range of the initial displacement is less than half of the electrode thickness.
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2.2. Fringing Electrostatic Force

In this paper, the thickness of the electrode is much more than the thickness of the beam, as shown
in Figure 2. The distributed electrostatic force is qe = fe × v2

e , in which fe is electrostatic force on the
beam per unit length per square voltage; ve(t) is a combined DC/AC voltage applied on the beam, i.e.,
ve(t) = vDC + vAC cosωet.

When the cantilevered beam is in a position of the fringing electrostatic actuation structure, the voltage
applied to the cantilevered beam is defined as +ve, the voltage applied to the electrode is defined as
−ve, and the capacitance between the cantilevered beam and electrode is 4Ce. Then, the charge on the
cantilevered beam is +8Ceve, The charge on the electrode is −8Ceve. Assume that the charges on the
cantilevered beam are evenly distributed at the two points, and the charges on the electrode are evenly
distributed at the eight points, as shown in Figure 2. Then, the charge of each point on the cantilevered
beam is qb = +4Ceve, and the charge of each point on the electrode is qs = −Ceve. According to Coulomb’s
law and the geometric position of the plate, the electrostatic force acting on the cantilevered beam in the
direction of thickness is

Fe = 2keqbqs

(
r11
−2 sinθ11 + r21

−2 sinθ21 + r12
−2 sinθ12 + r22

−2 sinθ22+

r13
−2 sinθ13 + r23

−2 sinθ23 + r14
−2 sinθ14 + r24

−2 sinθ24

)
(1)
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See Appendix A for the symbolic meaning.
In the expression of electrostatic force—the proportion of r12

−2 sinθ12 and r22
−2 sinθ22 are the

largest. When the fringing electrostatic force near d = 0 is concerned, the Taylor expansion of the above
approximate expression near d = 0 is

Fe = 2keqbqs


C1

C2
+

1
3

ts
(
6ts/C2

5/2
− 1.75tsC1/C2

)
C2

d3 +

[
2

C23/2
−

1.5ts
2

C25/2

]
d

 (2)

in which C1 = 3.75ts
2/C2

5/2
− 3/C2

3/2, C2 = dg
2 + 0.25ts

2.
From this Taylor expansion, we can see that the expression of fringing electrostatic force near

d = 0 can be fitted by polynomials containing the first and third terms of the distance d.
By using the finite element software, Figure 3 shows the equipotential lines when actuated voltage

of 1 Volt is applied across the two electrodes and the beam for d = 0 mm, d = 0.02 mm, d = 0.04 mm,
d = 0.06 mm, respectively. When d = 0 mm, the equipotential lines are symmetrical around the beam,
When the initial displacement increases, the equipotential lines become unsymmetrical, which leads to
the appearance of the fringing electrostatic force.
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Under different electrode thickness, the values of fringing electrostatic force responding to initial
displacement are calculated. In Figure 4, the data points and fitted curves of fringing electrostatic force
per unit length are recorded. When the thickness of the electrode is much greater than the thickness
of the beam, the electrostatic force increases monotonically and nonlinearly. Since the thickness of
the electrode dominates the deflection range of the beam, the thickness of the electrode should not be
too small. Thus, the fit function of the fringing electrostatic force responding to initial displacement
should consist of linear term and nonlinear term in this case. The polynomial fit function which
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includes linear and cubic parameters is proposed, and the fringing electrostatic force is approximated
as fe = r1d+ r3d3, in which r1 and r3 are fitting parameters. The assumption of the fringing electrostatic
force can reflect the trend of electrostatic force change, and this assumption is convenient for analysis.
The beam vibrates around the initial displacement d, the fringing electrostatic force responding to
the vibration amplitude u can be written as fe = r1(d + u) + r3(d + u)3 = ep

(
1 + ep1u + ep2u2 + ep3u3

)
,

in which ep = r1d + r3d3, ep1 =
(
r1 + 3r3d2

)
/ ep, ep2 = 3r3d/ ep, ep3 = r3/ ep.
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different electrode thickness.

The fit function of electrostatic force in this paper is different from that in reference [26]. Figure 5
shows the fitted curves of electrostatic force based on different fit function when ts = 0.3 mm. In this figure,
FC. 0 is the fitted curves which based on this paper, FC. 1 and FC. 2 are the fitted curves which based on
reference [26]. As shown in Figure 5, FC. 1 and FC. 2 cannot fit the data when d = 0 mm – 0.30 mm.
The beam vibrates in the range of the thickness of the electrode, i.e., d = 0 mm – 0.15 mm, which is
what we care about in this paper. FC. 0 can fit the data when d = 0 mm – 0.15 mm. It means that
the fit functions, which based on reference [26], cannot fit the electrostatic force in this case. The fit
function in this paper can reflect the change of the electrostatic force, when the vibration amplitude of
the cantilevered beam is less than the thickness of the electrode.
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2.3. Dynamic Modeling

The influences of the initial displacement change in the beam’s dynamic behaviors are focused in
this paper. By using the elastic beam theory, the equation of motion and the boundary conditions of
the beam are written as [26]

EI
∂4u(x, t)
∂x4

+ ρwbtb
∂2u(x, t)
∂t2 = qe + qa (3)
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u(0, t) =
∂u(0, t)
∂x

= 0,
∂2u(lb, t)
∂x2 =

∂3u(lb, t)
∂x3 = 0 (4)

where u(x, t) is the deflection of the beam in the thickness direction; E is the Young’s modulus;
I = wbt3

b/12 is the inertial moment of the beam cross section; ρ is the mass density of the beam.
The material parameters of the beam, which is made of brass, are taken as E = 108 GPa and
ρ = 8500 kg/m3. Actuation force qe and damping force qa represent the fringing electrostatic force and
the aerodynamic force per unit length respectively. The distributed aerodynamic force qa is [29,30]∣∣∣qa

∣∣∣ = 0.5ρawbca(∂u/∂t)2, in which the direction of the aerodynamic force is opposite to the direction of
the velocity; ca is the drag coefficient; ρa is the density of the air.

For analytical convenience, we obtain the following non-dimensional equation of motion and the
boundary conditions.

∂4U
∂X4

+
∂2U
∂T2 = E0

(
1 + E1U + E2U2 + E3U3

)
(1 + VAC cos WeT)

2
−A

∂U
∂T

∣∣∣∣∣∂U
∂T

∣∣∣∣∣ (5)

U(0, T) =
∂U(0, T)
∂X

= 0,
∂2U(1, T)
∂X2 =

∂3U(1, T)
∂X3 = 0 (6)

See Appendix B for the symbolic meaning.
We use the Galerkin discretization method to transform the partial differential equation to the ordinary

differential equations [31]. The model in this paper is based on the fundamental frequency vibration.
The steady-state solution of the non-dimensional governing equation is written by U(X, T) = Φ(X)Θ(T),
and the mode function Φ(X) for cantilevered beam is Φ(X) = chλrX − cosλrX + ξr(shλrX− sinλrX),
in which λr = 1.875, ξr = −(chλr + cosλr)/(shλr + sinλr). Substituting U(X, T) = Φ(X)Θ(T) into the
governing equation. Then multiplying the outcome by the mode function, and integrating the resultant
equation from X = 0 to 1. An ordinary differential equation with respect to time is obtained as

∂2Θ
∂T2 + αkΘ =

αEp
(
1 + αep1Θ + αep2Θ2 + αep3Θ3

)[(
1 + VAC

2

2

)
+ 2VAC cos WeT +

VAC
2

2 cos 2WeT
]
− αa

∂Θ
∂T

∣∣∣∂Θ
∂T

∣∣∣ (7)

See Appendix C for the symbolic meaning.
The deflection splits into a static deflection and a dynamic deflection, i.e., Θ(T) = Θ0p + ϑp(T),

then we obtain static equation and dynamic equation.

S0 + S1Θ0p + S2Θ2
0p + S3Θ3

0p = 0 (8)

ϑ′′p + K1ϑp + K2ϑp
2 + K3ϑp

3 + αaϑ
′
p

∣∣∣ϑ′p∣∣∣ =

(FE1 cos WeT + FE2 cos 2WeT)+(
KE1P1ϑp + KE1P2ϑp

2 + KE1P3ϑp
3
)

cos WeT+(
KE2P1ϑp + KE2P2ϑp

2 + KE2P3ϑp
3
)

cos 2WeT

 (9)

where (′) denotes the derivate with respect to T. See Appendix D for the symbolic meaning.

3. Dynamic Analysis

The static equation is a one variable cubic equation, which can be solved by using the method
of reference [32]. The nonlinear dynamic equation is solved by using the Method of Multiple Scales
(MMS). Then the dynamic equation can be written by

ϑ′′p + K1ϑp + εK2ϑp
2 + εK3ϑp

3 + εαaϑ
′
p

∣∣∣ϑ′p∣∣∣ = ε


(FE1 cos WeT + FE2 cos 2WeT)+(
KE1P1ϑp + KE1P2ϑp

2 + KE1P3ϑp
3
)

cos WeT+(
KE2P1ϑp + KE2P2ϑp

2 + KE2P3ϑp
3
)

cos 2WeT

 (10)
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where ε is regarded as a small non-dimensional bookkeeping parameter, σ is a detuning parameter,
We

2 = K1+εσ.
Introduce W2

0 = αk, when the static deflection is small and σ = 0, the resonance frequency ratio is

We
2/W0

2 = K1/αk = Kw0 −Kw2d2 (11)

in which the coefficients are

Kw0 = 1− r1

(∫ 1
0 ΦdX

)2

∫ 1
0
∂4Φ
∂X4 ΦdX

lb4v2
DC

EI

1 + 1
2

(
vAC
vDC

)2, Kw2 = 3r3

(∫ 1
0 ΦdX

)2

∫ 1
0
∂4Φ
∂X4 ΦdX

lb4v2
DC

EI

1 + 1
2

(
vAC
vDC

)2 (12)

The primary resonance of nonlinear dynamic equation is analyzed, yields

−Weα0β0
′ = 1

2σα0 −
1
4 K3α0

3+(
1
2 FE1 +

1
4 KE1P2α0

2
)

cos β0 +
(

1
4 KE2P1α0 +

1
4 KE2P3α0

3
)

cos 2β0
(13)

−Weα0
′ = −

W2
e
π
αaα0

2 +
1
2

FE1 sin β0 +
(1

4
KE2P1α0 +

1
8

KE2P3α0
3
)

sin 2β0 (14)

where α0 is the amplitude of ϑp, β0 is the phase difference with We, (′) denotes the derivate with respect
to T1 = εT. The complete proof is given in Appendix E.

The steady-state periodic motion corresponds to the solution of the system of equations,
by conditions α′0 = 0 and β′0 = 0. Finally, the frequency response equation of the primary resonance
can be derived as−PC1 −

√
PC1

2 − 8PC2(PC0 − PC2)

4PC2

2

+

 −4PC2PS0

4PC2PS1 − 2PC1PS2 − 2PS2
√

PC1
2 − 8PC2(PC0 − PC2)

2

= 1

(15)
in which the coefficients are

PC0 = 1
2σα0 −

1
4 K3α0

3, PC1 = 1
2 FE1 +

1
4 KE1P2α0

2, PC2 = 1
4 KE2P1α0 +

1
4 KE2P3α0

3,

PS0 = −
W2

e
π αaα0

2, PS1 = 1
2 FE1, PS2 = 1

4 KE2P1α0 +
1
8 KE2P3α0

3.

The relationship between the electrostatic force and the initial displacement is nonlinear. It can
reveal nonlinear dynamic behaviors of the vibration beam. When vDC = 30 V and vAC = 0.5 V,
based on the frequency response equation, the frequency response curve of the primary resonance is
shown in Figure 6. It exhibits linear behavior. Based on Equation (11) and setting σ = 0, i.e., when
the vibration beam resonates, the relationship between the square of resonance frequency and that
of initial displacement is linear, as shown in Figure 7. From Figure 7, the resonance frequency rises,
with the increase of the initial displacement and the decrease of the slit gap. In the same range of the
initial displacement, a smaller slit gap makes marked change of the resonance frequency. So, the initial
displacement can be obtained from resonance frequency measurement. What’s more, decreasing the
slit gap can enhance the sensitivity of the sensor to the initial displacement.

The vibration peak value can be found by the frequency response equation, Figure 8 shows
the effects of initial displacement and slit gap on the vibration amplitude of the primary resonance.
Increase of the vibration amplitude is linear, with the increase of the initial displacement. Linearity is
an important parameter for sensors because linearity indicates a directly proportional relationship
between output and input signals of a sensing system [1]. So, it is available that the initial displacement
is obtained from vibration amplitude measurement of the primary resonance.

When vDC = 300 V and vAC = 5 V, the nonlinear dynamic equation Equation (9) is solved by using
the MMS and the Fourth-Order Runge–Kutta Method (RK4) [33], and the effect of the initial displacement
on the vibration amplitude is shown in Figure 9. The results of the MMS and the RK4 are in a good
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agreement when the amplitude is small. The error between the results of the MMS and the RK4 increases,
when the vibration amplitude increases. Figure 9 proves the results of the MMS verified. As shown in
Figure 9, when d = 0.03 mm, there are two values of the vibration amplitude when We /W0 = 1.0750
and 1.0775. The jump phenomenon has been found, when the initial displacement increases, the jump
frequency increases.
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Figure 9. Vibration amplitude which is solved by using Method of Multiple Scales (MMS) and RK4
when vDC = 300 V and vAC = 5 V.

Primary resonance’s vibration amplitude versus initial displacement under different excitation
frequency ratio is shown in Figure 10. In Figure 10, the frequency ratio is 1.0750, 1.0775 and 1.0800
respectively. Within the range of initial displacement [0.01 mm, 0.05 mm], the amplitude is calculated
once every 0.002 mm interval, and the bifurcation diagram of amplitude with respect to initial
displacement is drawn. It can be clearly observed that the number of equilibrium points of parameter
u changes with the change of parameter d. For the case of frequency ratio 1.0750, parameter u has
three equilibrium points when parameter d = 0.03; for the case of frequency ratio 1.0775, parameter
u has three equilibrium points when parameter d = 0.032 and 0.034; for the case of frequency ratio
1.0800, parameter u has three equilibrium points when parameter d = 0.034 and 0.036. With the change
of parameter d, there is a jump phenomenon in parameter u. When the jump phenomenon occurs,
the corresponding excitation frequency is the resonance frequency of the vibration system.
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Figure 10. Primary resonance’s vibration amplitude versus initial displacement under different
excitation frequency ratio.

By comparing the frequencies of the three equilibrium points, it is found that with the increase
of initial displacement, the smaller excitation frequencies first appear three equilibrium points.
Because there is a corresponding relationship between the excitation frequency ratio and the initial
displacement of the cantilever beam when there are three equilibrium points in the vibration system.
Therefore, the initial displacement of the cantilever beam can be described by measuring the excitation
frequency of the three equilibrium points. So, jump phenomenon can be used to locate the demand
initial displacement. The excitation frequency can be changed to adjust the change of the demand
initial displacement.

When d = 0.03 mm and We/W0 = 1.075, phase trajectory is drawn in Figure 11. It can be seen
from the figure that the amplitude of the cantilever beam is related to its initial state, that is, when the
initial state energy is high, the amplitude of the cantilever beam corresponds to the higher equilibrium
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point S1; when the initial state energy is low, the amplitude of the cantilever beam corresponds to the
lower equilibrium point S3. The equilibrium point S2 is unstable saddle.Micromachines 2019, 10, x 10 of 17 
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The jumping amplitude change can be detected more easily and more quickly. In the following,
the jump phenomenon is studied, based on the frequency response equation. And the impact of the
different parameters, which include the material parameters, the beam length and the actuated voltage,
on the nonlinear dynamic characteristic is presented.

The effects of the initial displacement and the material parameters on the frequency response
curve of the primary resonance are shown in Figure 12. The frequency ratio We/W0 of the vibration
peak value of the aluminum beam, whose Young’s modulus is the least, is the biggest. That because
that when the Young’s modulus decreases, the value of the parameter E0 increases, which leads the
increase of the frequency ratio We/W0. It means that the fringing electrostatic force has a largest impact
on the resonance frequency of the aluminum beam. As show in this figure, the amplitude u of the brass
beam, whose density is the largest, is the biggest. The nonlinear response of the brass beam is obvious.
That because that when the density increases, the value of the parameter αa decreases, which leads
the decrease of the damping and the increase of the vibration amplitude. To increase the vibration
amplitude, we use the brass beam.
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When ls = 6 mm, the effects of the initial displacement on the frequency response curve of the
primary resonance are shown in Figure 13. Compared with Figure 9, the vibration amplitude u and
frequency ratio We/W0 of the vibration peak value are larger, the nonlinear behavior is more obvious.
Meanwhile, with the increase of the initial displacement, the increase of the jump frequency changes
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is more obviously. It means that the fringing electrostatic force has a larger impact on the frequency
response, when the length of beam is larger.
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ls = 6 mm.

When vDC = 350 V vAC = 5 V and vDC = 300 V vAC = 10 V, Figure 14 shows the frequency
response curve of the primary resonance under different initial displacement. Compared with Figure 9,
when DC/AC voltage are big enough, the electrostatic force can lead to obvious nonlinear vibration.
Furthermore, as the increase of the actuated voltage, the nonlinear vibration strengthens. When a larger
amplitude is expected, the actuated voltage is always set big enough, and the nonlinear vibration must
be considered.
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4. Experimental Setup and Results

An experiment is designed to observe the dynamic analysis of this structure. The experimental
setup for the dynamic tests consists of excitation powers (high voltage power and waveform generation),
mechanical parts (cantilevered beam and electrode) and detection parts (laser displacement sensor and
oscilloscope). The schematic of experimental setup is depicted in Figure 15. Because the experimental
conditions are limited, the geometric parameters of the structure are magnified, which are taken
as lb = 50 mm, wb = 4 mm, tb = 0.1 mm, ls = 50 mm, ws = 15 mm, ts = 3 mm, dg = 0.5 mm and
vDC = 300 V, vAC = 5 V.
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Figure 15. Experimental setup.

The cantilevered beam is directly actuated by a periodic wave produced from a waveform
generator, while DC voltage produced by high voltage power is applied to the cantilevered beam
at the same time. The electrode is connected with ground. In this way, both DC voltage and AC voltage
are applied between the cantilevered beam and electrode. The moving platform can change the initial
displacement between the cantilevered beam and electrode.

The vibration of the cantilevered beam is more obvious, when the excitation frequency is close to the
resonance frequency. And the vibration amplitude is the largest, when the excitation frequency equals
to the resonance frequency. The laser displacement sensor is used to detect the vibration amplitude,
by transforming the amplitude change to voltage change. Then this voltage change signal is given to the
oscilloscope. The oscilloscope is used to display and record the data of both frequency and amplitude.
It means that the resonance frequency change can be detected by using both the laser displacement
sensor and the oscilloscope.

When vDC = 300 V and vAC = 5 V, Figure 16 shows that the resonance frequency rises with the
increase in initial displacement, in which d = 0 mm – 0.8 mm. As the same as the theory analysis,
it is expected that relationship between the input (the square of initial displacement) and the output
(the square of resonance frequency) is linear, when the beam is far from the middle and the end of
the electrode in the thickness direction. In this range, the initial displacement can be obtained from
resonance frequency measurement.
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The vibration amplitude of the cantilevered beam is relatively small, when the cantilevered beam
is near the middle of the electrode in the thickness direction. It is not easy to find the resonance
frequency. So, the error is large near this point in Figure 16.

When the beam is near the end of the electrode in the thickness direction, the frequency response
curves are shown in Figure 17. When vDC = 100 V and 200 V, the frequency response curve is linear.,
while the amplitude of the beam is relatively small. But when vDC = 300 V, the frequency response
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curve is nonlinear, while the nonlinearity of the system is of the softening type, as shown in [26]. If the
amplitude of the beam is large enough, the electrostatic force does not agree with linear and cubic fit
function at all, when the beam is near the end of the electrode in the thickness direction. So, it causes
an error near the end of the electrode in Figure 16.Micromachines 2019, 10, x 13 of 17 
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thickness direction.

When the excitation frequency equals to the resonance frequency, the vibration amplitude is
the largest. The largest vibration amplitude values responding to different initial displacement are
recorded by the test. When the initial displacement is 0.4 mm to 0.8 mm, the vibration amplitudes
which are given by the MMS and the TEST are shown in Figure 18. When the initial displacement is
0.4 mm to 0.8 mm, the increase in the vibration amplitude is linear, and the initial displacement can be
obtained from amplitude measurement. As show in Figure 18, the result of the MMS agrees well with
the experimental result. Base on Figure 8, the measurement error of slit gap leads the error between
the results of the MMS and the TEST in Figure 18.
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In the above test, the hardening effect is not obvious, since the cubic fitting parameter is relatively
small. Figure 13 shows that the fringing electrostatic force has a larger impact on the frequency
response, when the length of beam is larger. To increase cubic fitting parameter, the slit gap is reduced
to 0.3 mm, and another beam with lb = 100 mm is used. The frequency response curve exhibits
hardening behavior, and there is a jump in 5.140 Hz, as shown in Figure 19.
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5. Conclusions

In this paper, a new fringing electrostatic actuation mode is developed. Some obvious advantages
of this new actuation mode are as following: a large deflection can be obtained without the limitation
of the proximity of the electrodes; this structure which is compatible with the circuit can be designed
to smaller scale; a smaller scale leads to better sensitivity. Through the combination of theoretical
modeling, analytical calculation, numerical verification and experimental research, the mechanism of
fringing electrostatic force and the complex response law of fringing electrostatic actuation vibration
system are revealed, the relationship between system parameters and vibration response is analyzed,
the application scheme of this actuation mode is put forward.

The fringing electrostatic force and the dynamic investigations into the micro cantilevered beam
actuated by fringing electrostatic force are of great concern. Through analysis, the expression of
fringing electrostatic force is found; the effects of the some parameters on the dynamic behaviors are
investigated. Results shows that the fringing electrostatic force is nonlinear, which leads to nonlinear
vibration of the micro-cantilevered beam; the resonance frequency rises with the increase of the initial
displacement and the decrease of the slit gap; in the same range of the initial displacement, a smaller
slit gap makes marked change of the resonance frequency; with the increase of the initial displacement,
the increase of the vibration amplitude is linear; when the initial displacement increases, the jump
frequency increases; the fringing electrostatic force has a larger impact on the frequency response, when
the length of beam is larger; as the increase of the actuated voltage, the nonlinear vibration strengthens.

Moreover, that are the influences of initial displacement change in the dynamic behaviors of the
micro cantilevered beam that helps us to design a new micro tactile sensor. This sensor can measure
the pressure based on the initial displacement change. The initial displacement can be derived by
measuring resonance frequency and vibration amplitude of the micro cantilevered beam. And the
jump phenomenon can be used to locate the initial displacement.
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Appendix A

r11
2 =

(
ws + dg

)2
+ (d− 0.5ts)

2, r21
2 =

(
ws + dg

)2
+ (d + 0.5ts)

2,

r12
2 = dg

2 + (d− 0.5ts)
2, r22

2 = dg
2 + (d + 0.5ts)

2,

r13
2 =

(
wb + dg

)2
+ (d− 0.5ts)

2, r23
2 =

(
wb + dg

)2
+ (d + 0.5ts)

2,
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r14
2 =

(
ws + wb + dg

)2
+ (d− 0.5ts)

2, r24
2 =

(
ws + wb + dg

)2
+ (d + 0.5ts)

2,

sinθ11 = (d− 0.5ts)/r11, sinθ21 = (d + 0.5ts)/r21,

sinθ12 = (d− 0.5ts)/r12, sinθ22 = (d + 0.5ts)/r22,

sinθ13 = (d− 0.5ts)/r13, sinθ23 = (d + 0.5ts)/r23,

sinθ14 = (d− 0.5ts)/r14, sinθ24 = (d + 0.5ts)/r24.

Appendix B

U = u/(0.5ts − d) ,

X = x/lb,

T = ωt,

ω =
√

EI/
(
ρwbtbl4b

)
,

We = ωe/ω,

VAC = vAC/vDC,

E0 = l4bepv2
DC/[EI(0.5ts − d)],

E1 = ep1(0.5ts − d),

E2 = ep2(0.5ts − d)2,

E3 = ep3(0.5ts − d)3,

A = ρaca(0.5ts − d)/(2ρtb).

Appendix C

αk =
∫ 1

0
∂4Φ
∂X4 ΦdX, αEp = E0

∫ 1
0 ΦdX, αep1 = E1

∫ 1
0 ΦdX, αep2 = E2

∫ 1
0 Φ2dX, αep3 = E3

∫ 1
0 Φ3dX,

αa = A
∫ 1

0 Φ3dX.

Appendix D

S0 =
(
1 +

V2
AC
2

)
αEp, S1 =

(
1 +

V2
AC
2

)
αEpαep1 − αk, S2 =

(
1 +

V2
AC
2

)
αEpαep2, S3 =

(
1 +

V2
AC
2

)
αEpαep3,

C0 = 1 + αep1Θ0p + αep2Θ2
0p + αep3Θ3

0p, C1 = αep1 + 2αep2Θ0p + 3αep3Θ2
0p,

C2 = αep2 + 3αep3Θ0p, C3 = αep3,

K1 = αk − αEp

(
1 +

V2
AC
2

)
C1, K2 = −αEp

(
1 +

V2
AC
2

)
C2, K3 = −αEp

(
1 +

V2
AC
2

)
C3,
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FE1 = 2VACαEpC0, FE2 = 0.5V2
ACαEpC0,

KE1P1 = 2VACαEpC1, KE1P2 = 2VACαEpC2, KE1P3 = 2VACαEpC3,

KE2P1 = 0.5V2
ACαEpC1, KE2P2 = 0.5V2

ACαEpC2, KE2P3 = 0.5V2
ACαEpC3.

Appendix E

The nonlinear dynamic equation is solved using the MMS. The solution can be represented by
an expansion having the form as

ϑp = ϑ0(T0, T1) + εϑ1(T0, T1) (A1)

where, Tn = εnT.
A detuning parameter σ is introduced and defined by K1 = W2

e − εσ, then equating coefficients of
like powers of ε, yield

O(ε0) :D2
0ϑ0 + We

2ϑ0 = 0 (A2)

O(ε1) :

D2
0ϑ1 + 2D0D1ϑ0 − σϑ0 + We

2ϑ1 + K2ϑ2
0 + K3ϑ3

0 + αaD0ϑ0|D0ϑ0| =

FE1 cos WeT0 +
(
KE1P1ϑ0 + KE1P2ϑ2

0 + KE1P3ϑ
3
0

)
cos WeT0+

FE2 cos 2WeT0 +
(
KE2P1ϑ0 + KE2P2ϑ2

0 + KE2P3ϑ3
0

)
cos 2WeT0

(A3)

when Dn = ∂
∂Tn

.

The general solution of Equation O
(
ε0

)
can be written as

ϑ0 = α(T1) exp(iWeT0) + cc (A4)

where cc represents the complex conjugate terms.
Substituting the solution of Equation O

(
ε0

)
into Equation O

(
ε1

)
, yields

O(ε1) :

D2
0ϑ1 + We

2ϑ1 = σαeiWeT0 − 2iWeD1αeiWeT0

−K2
(
αeiWeT0 + αe−iWeT0

)
αeiWeT0 −K3

(
αeiWeT0 + αe−iWeT0

)2
αeiWeT0

−αa
(
iWeαeiWeT0

)∣∣∣iWeαeiWeT0 − iWeαe−iWeT0
∣∣∣

+ 1
2 FE1eiWeT0 +

 KE1P1αeiWeT0 + KE1P2
(
αeiWeT0 + αe−iWeT0

)
αeiWeT0

+KE1P3
(
αeiWeT0 + αe−iWeT0

)2
αeiWeT0

 eiWeT0+e−iWeT0
2

+ 1
2 FE2e2iWeT0 +

 KE2P1αeiWeT0 + KE2P2
(
αeiWeT0 + αe−iWeT0

)
αeiWeT0

+KE2P3
(
αeiWeT0 + αe−iWeT0

)2
αeiWeT0

 e2iWeT0+e−2iWeT0
2

+cc

(A5)

At this point, it is convenient to express α in the polar form

α =
1
2
α0eiβ0 (A6)

where α0 and β0 are real functions of T1.
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In order to eliminate the secular term, one needs

σα− 2iWeD1α− 2K3α2α+ 1
2 FE1 +

1
2 KE1P2

(
α2 + αα

)
+[

1
2 KE2P1α+

1
2 KE2P3

(
α3 + 3αα2

)]
+

−
We
2π

∫ 2π/We

0 αa
(
iWeαeiWeT0

)∣∣∣iWeαeiWeT0 − iWeαe−iWeT0
∣∣∣e−iWeT0dT0 = 0

(A7)

Substituting α into the secular term and separating the result into real and imaginary parts,
we obtain Equation (12) and Equation (13).
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